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1 Introduction

Many new goods have a significant effect on consumer welfare and this impact should be included

in a cost-of-living based inflation rate (Groshen et al., 2017). At least two conceptually different

ways of doing this have been applied in the literature. For example, the key idea underlying the

study by Hausman (1999) was to identify a virtual price for the new good before its appearance

(in his case, cellular phones). The virtual price is defined by the price which sets the demand

equal to zero. With knowledge about this virtual price, the price decline due to the introduction

of a new product can be calculated. An alternative method is to calculate the consumer gain

from new varieties directly. Typically, a Constant Elasticity of Substitution (CES) framework

is applied. At first sight, the CES framework may look unsuitable to calculate the impact from

new varieties since an infinite virtual price is required to set the demand to zero. However,

as illustrated by Feenstra (1994), even though the virtual price that drives demand to zero is

infinite within a CES framework, the consumer gain from having a new variety available is finite

if the elasticity of substitution is larger than one. Within this framework, a new variety will

only lower cost-of-living if the new product holds some new characteristics, i.e. it is not perfectly

substitutable with existing products. Given an estimate of the elasticity of substitution, the

consumer gain from new varieties is easily calculated.

Several papers have applied the Feenstra (1994) framework to calculate consumer gains

from new varieties. For example, Broda and Weinstein (2006) use it to analyse the value to U.S.

consumers of expanded import product varieties. Harrigan and Barrows (2009) analyse how the

end of the multifibre arrangement impacted prices and quality. Broda and Weinstein (2010)

found that product turnover lowered a cost of-living index by 0.8 percentage points annually

compared with a “fixed goods” price index. The lowering of cost-of-living from new varieties

should lead to an equal increase in output, and thus productivity, if these new varieties are

produced domestically.

Despite a large literature on aggregate productivity growth, reallocation and firm turnover,

this literature has not analysed and decomposed the contribution from new varieties to overall

productivity growth, see e.g. Griliches and Regev (1995), Baily et al. (1992), Foster et al. (2001),

Foster et al. (2006), Foster et al. (2008), Diewert and Fox (2010), and Acemoglu et al. (2017). All
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of these studies consider a decomposition which is based on a weighed average of productivity

levels. When comparing productivity levels across firms it is implicitly assumed that the products

are perfect substitutes (or even homogeneous; see Appendix B). But, new varieties yield extra

welfare to consumers precisely because they hold some new characteristics, i.e. they are not

perfect substitutes of existing products. Two different strands of the literature thus need to

be reconciled: the literature on how new goods impact prices and the literature on aggregate

productivity growth and firm turnover.

This paper is the first to provide a fully consistent decomposition of aggregate productivity

growth that identifies the contribution from new firms producing new varieties. Using the CES

approach adopted by Feenstra (1994), we show that the net effect on aggregate productivity

growth from firm turnover is approximately given by (sN − sX)/(σ − 1) where sN and sX are

the output shares of new and exiting firms, respectively, and σ is the elasticity of substitution

between varieties. The decomposition we propose generalises the decomposition used in the

literature on firm turnover: if products are perfect substitutes, which is the benchmark case

implicitly assumed in the literature, the elasticity of substitution tends to infinity and there is

no extra gain from new varieties.

To identify how firm turnover impacts productivity growth requires an estimator of the

elasticity of substitution. In the literature on new goods, following Feenstra (1994), the key

idea when estimating the demand elasticity has been to overcome the simultaneity problem in

the system of demand and supply equations by utilising the panel structure of the data set in

combination with orthogonality restrictions on the error terms. In particular, by using the second

order moments of prices and expenditure shares, the demand elasticity can be identified even

when allowing for an upward sloping supply curve. This framework has been used for example by

Feenstra et al. (2018) to identify Armington elasticities. To incorporate parameter restrictions,

Broda and Weinstein (2006) extended the framework in Feenstra (1994) using a grid search

of admissible values if the first estimator yields inadmissible estimates, e.g. elasticities of the

wrong sign. Adding to this literature, Soderbery (2015) created a hybrid estimator (henceforth

the Feenstra-Soderbery estimator) combining limited information maximum likelihood (LIML)

with a restricted nonlinear LIML routine which was shown to be more robust to data outliers

when the number of time periods is small or moderate. Our estimation procedure builds on the
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Feenstra-Soderbery estimator, but we refine it along two dimensions. The first refinement is that

we create a two-stage estimation framework that exploits cases where there are no simultaneity

problems, i.e. if supply is elastic or inelastic, to obtain a more efficient estimator. It has been well

known since Leamer (1981), who considered the time-series estimation of a demand and supply

system with orthogonal errors, that the demand elasticity σ is finite if and only if σ = 1 − β,

where β is the unique negative solution to θ1β
2 + θ2β − 1 = 0 and θ = (θ1,θ2) is a closed-form

vector function of the demand and supply elasticity. In those cases where the first-stage estimate

of θ is at the boundary of the parameter space, we switch in the second stage to an estimator

that depends on which boundary that is binding in the first stage. The two-stage estimator σ̂

is shown to be more efficient and to have an asymptotic mixture distribution when (the true)

θ is at the boundary of the parameter space, with a closed form expressions for the asymptotic

standard error of the estimator. The other refinement of our estimator is to generalise the current

practice of choosing a particular reference firm to eliminate fixed effects when generating second

order moments of prices and expenditure shares. An unfortunate consequence of the current

procedure is that it makes the estimator dependent on the choice of reference firm. We extend

current practice by generating a sequence of estimates for each possible reference firm and create

a pooled estimator. The pooled estimator is an average of the estimates corresponding to each

reference firm.

We illustrate the decomposition of productivity growth and the two-stage estimation pro-

cedure using the case of firm turnover in Norway. We have firm-level panel data covering the

period from 1995 to 2016 for the manufacturing sector. Estimates of σ range from 2 to 9. Based

on these estimates we find that annual aggregate productivity growth has on average been down-

ward biased by about one half percentage point, which is substantial compared to the average

productivity growth of almost 2.5 per cent annually.

The rest of this paper is organised as follows. Section 2 outlines the decomposition of

aggregate productivity growth and identifies the impact from new varieties. In Section 3, the

econometric framework is presented and our proposed two-stage estimator is derived. In Sec-

tion 4, the data are described and our decomposition is applied empirically. Section 5 provides

a conclusion.
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2 Decomposition of aggregate productivity growth

Productivity is commonly defined as the ratio of outputs to inputs, both terms measured in

volumes. Analytically, a measure of aggregate productivity growth may be written as QY

/
QL,

where QY represents an index for overall output and QL represents an index for overall input

usage. This definition of productivity is standard; see Diewert and Nakamura (2003).

The input index, QL, may consist of several inputs depending on what measure of produc-

tivity is to be analysed. Although the framework we provide below may be generalised to include

inputs such as different capital objects, we will proceed with labour as the only input variable.

The productivity index will henceforth be a measure of labour productivity.

To understand how firm turnover impacts overall productivity growth, the output and input

indices must be decomposed into contributions from continuing, entering and exiting firms. To

that end, the following sections outline how both inputs and outputs are aggregated and highlight

the link between the literature on firm turnover and productivity growth and the literature on

new goods and gains from variety.

2.1 Aggregation of outputs

Our point of departure is the economic approach to index numbers. Within this approach there

are at least two ways to interpret the index QY . It can be based on a representative firm

producing a single final good where the index QY shows growth in final good production. This

is the approach taken in e.g. Hsieh and Klenow (2009). Alternatively, it can be based on a

representative consumer maximising utility over the set of goods produced by all firms where the

index QY shows growth in utility obtained from consuming those goods. This latter approach

is the cost-of-living approach to index theory. It dates back to Konüs (1939) and is applied in

e.g. Broda and Weinstein (2006, 2010). Even though both conceptualisations yield the same

index, QY , we will follow the latter approach as it provides a clear link from the literature on

firm turnover to the established literature on new goods and gains from variety.

Figure 1 illustrates how firm turnover and product innovation may impact the output or

utility index QY . The objective of the representative consumer is to maximise utility for a given

level of expenditure. The isocost line AA′ shows the combination of goods that yields the same
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Figure 1: Firm turnover, new varieties and consumer welfare

expenditure level. In time period t − 1, only variety Y2 is available and consumption is at point

A. In period t, however, a new firm enters the market and produces a new variety Y1. The

introduction of the new good by the entering firm increases the overall utility for the consumer:

the indifference curve shifts outwards and consumption is at point B.

The size of the utility increase depends on the curvature of the indifference curve, or how

easy it is to substitute one variety for another, as expressed by the elasticity of substitution.

When there is some sort of complementarity between varieties, i.e. consumption of one variety

stimulates demand for the other variety, the indifference curves will show a curvature as illustrated

in Figure 1. However, if varieties are perfect substitutes, the elasticity of substitution tends to

infinity and the indifference curves become straight lines. The lower the elasticity of substitution,

the higher is the utility gain from having a new variety available.

To analyse how the elasticity of substitution impacts the output index, QY , we follow the

lines of Broda and Weinstein (2006) and proceed with a two-level utility function of a represen-

tative consumer. The upper level utility, Yt, is a CES aggregate in a fixed number of composite

goods, Yit:

Yt =

(
∑

i∈I

γiY
(σ−1)/σ
it

)σ/(σ−1)

(1)
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Table 1: Classification of firms

Continuing Entering Exiting

Time period t � �

Time period t − 1 � �

� denotes positive production.

where γi > 0 represents a quality parameter, σ > 0 is the elasticity of substitution among the

composite goods and I is the set of composite goods. The set of composite goods includes broad

categories such as furniture, electronics, clothes etc. Since the purpose of industry classifications

is to organise firms into industrial grouping based on similar products and activities, the set I

may also be thought of as a set of industries. At the lower level, each composite good is a CES

aggregate of different varieties:

Yit =




∑

f∈Fit

γifY
(σi−1)/σi

ift





σi/(σi−1)

(2)

where Yift is a variety produced by firm f in industry i, γif > 0 represents a quality parameter

for each variety, σi > 1 is the elasticity of substitution among the different varieties in industry

i and Fit is the set of varieties within the composite good i available at t.1

Importantly, it is assumed that each firm produces a single variety and all varieties are

treated as differentiated across firms. Hence, the set Fit can equivalently be interpreted as the

set of all firms producing a variety of good i in period t.

Note that due to firm turnover the set Fit varies over time. To illustrate, and to introduce

notation that will become useful later, let Cit denote the set of firms that are operative in two

consecutive time periods t−1 and t. We refer to these as continuing firms; see Table 1. Entering

firms, denoted Nit, operates in period t but not in t − 1. Firms exiting in period t, denoted

Xit, operates in period t − 1 but not in t. It then follows that the number of firms producing a

variety of good i in period t is the union of the set of continuing firms and the set of entering

1In contrast to the elasticity of substitution, σ, at the upper level utility function, σi, must be greater than
unity to ensure that new or disappearing varieties do not have an infinite effect on unit costs.
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firms: Fit = Cit ∪Nit. Correspondingly, the number of firms producing a variety at t− 1 can be

written as the union of the set of continuing and exiting firms in t: Fi,t−1 = Cit ∪ Xit.

To create the aggregate output index, we apply the results of Sato (1976), Vartia (1976a)

and Feenstra (1994). Sato (1976) and Vartia (1976a) showed how to calculate a price and a

quantum index for a CES aggregator function when the number of goods is constant for different

periods. This is useful for the upper tier of aggregation since the number of composite goods is

independent of time. Feenstra (1994) generalised the results of Sato (1976) and Vartia (1976a)

to handle situations where the number of categories changes over time, which is the case for the

set of firms Fit producing a variety of good i.

We begin by showing the Sato-Vartia index corresponding to Equation (1). Let Pit be

the price index of the composite good i and let the volume of the composite good, Yit, be cost-

minimising. The output index showing the ratio of utility for two periods, QY = Yt/Yt−1, is

then given by a Sato-Vartia index of the composite goods:

ln QY =
∑

i∈I

witΔln Yit (3)

with output weight wit equal to:

wit =
M(sit, si,t−1)∑
i∈I M(sit, si,t−1)

where sit = Vit/
∑

i∈I Vit (the expenditure share of good i) and M(y, z) denotes the logarithmic

mean of (non-negative) numbers y and z:

M(y, z) =






0 if y = 0 or z = 0

y if y = z

y−z
ln y−ln z otherwise

. (4)

A remarkable feature of the Sato-Vartia index is that it is independent of the quality

parameters and the elasticity of substitution. Note that in addition to being exact for the CES

aggregator function, the Sato-Vartia index also belongs to the complete class of superlative index

numbers, as shown by Barnett and Choi (2008). A superlative index is defined as being consistent
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with a function that approximates a true aggregator function to the second order (Diewert, 1976).

The case for using the Sato-Vartia index to aggregate composite goods is thus stronger than its

consistence with an underlying CES structure.

To calculate the output index for each composite good we apply the results of Feenstra

(1994) to incorporate the impact from firm turnover. He showed that the total index could be

decomposed into contributions from a standard Sato-Vartia index across continuous firms and

separate contributions from entering and exiting firms. Let sN
it denote the total expenditure

share of entering firms within industry i: sN
it =

∑
f∈Nit

Vift/
∑

f∈Fit
Vift. Also, let sX

it−1 =
∑

f∈Xit
Vif,t−1/

∑
f∈Fi,t−1

Vif,t−1 denote the total nominal output share in t− 1 of exiting firms

(operating in t − 1 but not t). Moreover, let

wift =
M(sift, sif,t−1)∑

f∈Cit
M(sift, sif,t−1)

where

sift =
Vift∑

f∈Cit
Vift

.

Applying the results of Feenstra (1994) and the product rule, the output index for the composite

good can be written:2

Δln Yit =
∑

f∈Cit

wiftΔln Yift − ln
(
1 − sN

it

)
+ ln

(
1 − sX

i,t−1

)
−

(
1

σi − 1

)

ln

(
1 − sN

it

1 − sX
i,t−1

)

. (5)

The first term is the standard Sato-Vartia index across continuous firms producing the

same composite good. The second and third terms represent the contribution from firm turnover

in the absence of product innovation. The fourth term shows the net effect on output from

creation of new varieties. Note that the net effect from new varieties depends on the elasticity of

substitution, as illustrated in Figure 1. If all firms are producing the same homogeneous good,

the elasticity of substitution tends to infinity and there is no extra utility or output gain from

2The CES approach to calculating welfare gain from new goods is not uncontroversial, see e.g. the comment by
Zvi Griliches to Feenstra and Shiells (1996, pp. 273 – 276). Diewert and Feenstra (2017) compare the CES utility
function with a flexible functional form where the reservation price is finite. However, the need for estimating
large systems of reservation prices for unavailable varieties in each period, makes their method infeasible when the
number of varieties (firms) is large, as is the case in our application, with several thousand entering and exiting
firms (see Section 4).
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firm turnover. Note also that in this framework we only identify the contribution from new

firms producing new varieties, i.e. not including the impact from the creation of new varieties

by existing (continuous) firms.

The analytical expression for the aggregate output index follows from inserting Equation

(5) into Equation (3):

ln QY =
∑

i∈I

wit

(
∑

f∈Cit

wiftΔln Yift − ln
(
1 − sN

it

)
+ ln

(
1 − sX

i,t−1

)

−

(
1

σi − 1

)

ln

(
1 − sN

it

1 − sX
i,t−1

))

. (6)

Equation (6) represents the complete decomposition of the output index.

2.2 Aggregation of inputs

It is common, but not uncontroversial, to aggregate input usage of labour as a simple sum of

hours worked across firms. There is a large literature on quality adjustment of labour services

dating back to at least Jorgenson and Griliches (1967). Although there are several alternative

measures of inputs usage, and since our main contribution is to provide a framework taking

account of firm turnover and new varieties, we proceed with the standard approach using the

sum of hours worked to derive the index for input usage, QL.3

Following the procedure of aggregating outputs, we aggregate inputs first across firms in a

given industry and then across industries. Let Lt denote the total sum of hours worked across all

industries and firms. For our purposes it is useful to write Lt as the sum of hours worked across

industries: Lt =
∑

i∈I Lit, where Lit =
∑

f∈Fit
Lift is the sum of hours worked in industry i.

Since the Sato-Vartia-Feenstra index is written as log changes it will be useful to rewrite

the ratio of sum of hours worked as a weighted average of log changes. To this end, note that

the logarithm of the input index, ln QL ≡ Δln Lt, can be exactly decomposed as a weighted sum

3The input index we derive in this paper may alternatively be defined within the theory of quality adjustment,
see e.g. von Brasch et al. (2018).
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of industry specific contributions:

ln QL =
∑

i∈I

θitΔln Lit, (7)

where the weights are given by:4

θit =
M(Lit, Li,t−1)
M(Lt, Lt−1)

. (8)

These weights do not generally add up to unity, but their sum is one at the most, see Vartia

(1976b, Appendix 4). Moreover, in a particular industry, i, hours worked may be decomposed

according to whether firms are continuing, entering or exiting, as follows:

Δln Lit =
∑

f∈Cit

θiftΔln Lift − ln
(
1 − hN

it

)
+ ln

(
1 − hX

i,t−1

)
(9)

where hN
it and hX

i,t−1 denote the shares of hours worked in entering and exiting firms in industry

i:

hN
it =

∑

f∈Nit

Lft/
∑

f∈Fit

Lift

hX
i,t−1 =

∑

f∈Xit

Lif,t−1/
∑

f∈Fit−1

Lif,t−1

and the weights θift are defined as follows:

θift =
M(Lift, Lif,t−1)

M(
∑

f∈Cit
Lift,

∑
f∈Cit

Lif,t−1)
. (10)

Inserting Equation (9) into Equation (7) yields the overall index for input usage:

ln QL =
∑

i∈I

θit

(
∑

f∈Cit

θiftΔln Lift − ln
(
1 − hN

it

)
+ ln

(
1 − hX

i,t−1

)
)

. (11)

Equation (11) decomposes the log change in the total sum of hours worked into contributions

from input usage across continuing, entering and exiting firms and represents the complete de-

4To see this, note that from the definition of the logarithmic mean in Equation (4), the input index may be

written as ln(
∑

i∈I Lit∑
i∈I Li,t−1

) =
∑

i∈I Lit−
∑

i∈I Li,t−1
M(
∑

i∈I Lit,
∑

i∈I Li,t−1)
=
∑

i∈I

(
M(Lit,Li,t−1)

M(
∑

i∈I Lit,
∑

i∈I Li,t−1)

)
ln
(

Lit
Li,t−1

)
.
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composition of the input index.

2.3 Contribution from product innovation and firm turnover to overall

productivity growth

Aggregate productivity growth is defined as the ratio of the output index QY to the input index

QL. Given the expressions for QY and QL in Equation (6) and Equation (11), it follows that:

ln(QY /QL) =
∑

i∈I

wit

[
∑

f∈Cit

wiftΔln(Yift/Lift) − ln

(
1 − sN

it

1 − hN
it

)

+ ln

(
1 − sX

i,t−1

1 − hX
i,t−1

)

−

(
1

σi − 1

)

ln

(
1 − sN

it

1 − sX
i,t−1

)]

+ RWIt + RBIt (12)

where

RWIt =
∑

i∈I

wit

∑

f∈Cit

(wift − θift)Δ ln Lift (13)

and

RBIt =
∑

i∈I

(wit − θit)Δ ln Lit. (14)

Equations (12)-(14) constitute the complete decomposition of aggregate productivity growth.

The first expression inside the square bracket in Equation (12) shows the contribution from

productivity growth among continuing firms. The second and third terms represent the contri-

bution from firm turnover in the absence of product innovation. If entering firms have a higher

revenue productivity than continuing firms, where revenue productivity is measured as the ratio

of revenue to hours worked, entering firms contribute positively to overall productivity growth.

Correspondingly, productivity growth will also be higher if exiting firms have a lower revenue

productivity than continuing firms.

The fourth term in Equation (12) shows the net effect from creation of new varieties.

As illustrated diagrammatically in Figure 1, the overall productivity growth from new varieties

depends on the elasticity of substitution. The net contribution can be approximated by (sN
it −

12



sX
i,t−1)/(σi − 1) when the output and input shares are small.5 For example, consider the case

where the output share of entering firms is sN
it = 0.07 and the output share of exiting firms is

sN
it = 0.02. If σi = 2, the overall contribution to productivity growth from net creation of new

varieties is approximately 5 percentage points. The expression also shows that the impact from

new varieties depends on the elasticity of substitution in a highly non-linear manner: If σi =3,

the contribution to productivity growth drops to approximately 2.5 percentage points, and to 1.7

percentage points if σi =4. To identify the contribution from new varieties to overall productivity

growth, it is thus crucial to precisely identify the size of the elasticity of substitution. We return

to the issue of identifying the elasticity of substitution in the empirical section.

Note that it is not the number of entering and exiting firms that drives the overall impact

on aggregate productivity growth. Even when the number of entering and exiting firms is equal,

if new varieties from entering firms have a higher quality than varieties produced by exiting firms,

the output share of entering firms will exceed the output share of exiting firms: sN
it > sX

i,t−1. In

this case, we get a positive contribution to overall productivity growth from net-creation of new

varieties.

The last two terms, labeled RWI and RBI , show the contribution from reallocation within

and between industries. Reallocation within industries depends on the covariance between firms’

input usage and the difference between the output (witf ) and input (θift) weights. If more in-

put usage is allocated to firms with higher revenue productivity, reallocation within industries

contributes positively to aggregate productivity growth. Correspondingly, reallocation between

industries depends on the covariance between input usage at the industry level and the differ-

ence between industry output (wif ) and input (θit) weights. Reallocation between industries

contributes positively to aggregate productivity growth if more input usage is allocated to in-

dustries with higher revenue productivity.

Most of the literature applies a framework based on a weighted average of productivity

levels to analyse the contribution to overall productivity growth from firm turnover; see e.g.

Griliches and Regev (1995), Baily et al. (1992), Foster et al. (2001, 2006, 2008), Diewert and Fox

(2010), and Acemoglu et al. (2017). Implicitly all these studies assume that products are perfect

substitutes. However, it is only within a framework that allows for imperfect substitutes that

5The approximation follows from applying ln(1 + z) ≈ z when z ≈ 0.

13



the extra gain in productivity growth from new firms producing new varieties can be identified.

The decomposition (12)-(14) thus generalises the framework currently used in the literature.

In Appendix B we compare and contrast our decomposition of productivity growth with the

frameworks often used in the literature.

3 Estimation of demand elasticities

In the literature on new goods, the key idea when estimating the demand elasticity has been to

overcome the simultaneity problem caused by an upward sloping supply curve by utilising the

panel structure of the data set and reformulating the model in terms of second order moments of

prices and expenditure shares. This approach was originally proposed by Feenstra (1994). Broda

and Weinstein (2006) and Soderbery (2015) extended this framework along several dimensions.

In particular, Soderbery (2015) created a hybrid estimator combining LIML with a restricted

nonlinear LIML routine which he showed to be more robust to outliers and less prone to weak

instrument bias, which is a prevalent problem using this methodology when the number of time

periods is small (see the discussion in Soderbery, 2015, p. 15). In this section, we supplement

the Feenstra-Soderbery estimator along two important dimensions: First, we create a two-stage

estimation framework that exploits the case when there is no simultaneity problem. Second, we

make the routine robust with respect to the choice of reference unit.

3.1 Structural econometric framework

To identify structural parameters in a system of demand and supply equations using panel data

on prices and market shares, we follow Broda and Weinstein (2006). The demand share at t of

the variety produced by firm f (in industry i), sft, is assumed to be given by:

ln sft = β ln pft + |β|(λD
t + uD

f + eD
ft), β < 0 (15)

where pft is the price, λD
t and uD

f represent fixed time and firm effects, eD
ft is an error term

(with mean zero and finite variance), and β = 1− σ. The industry subscript i has been dropped

for notational convenience. The scaling factor |β| ensures well-defined limits when β → −∞

14



(perfectly elastic demand). We will return to this limiting case below. The inverse supply

equation is assumed to be given by:

ln pft = α ln sft + λS
t + uS

f + eS
ft (16)

where α = ω/(1 + ω) and ω ≥ 0 is the inverse elasticity of supply. Hence 0 ≤ α ≤ 1. By

differencing Equation (15) and Equation (16):

Δln sft = βΔln pft + |β|(ΔλD
t + ΔeD

ft)

Δ ln pft = αΔln sft + ΔλS
t + ΔeS

ft.

Then, for any variable xft, we define:

Δ(k)xft = Δxft − Δxkt.

It follows that

Δ(k) ln sft = βΔ(k) ln pft + |β|Δ(k)eD
ft

Δ(k) ln pft = αΔ(k) ln sft + Δ(k)eS
ft. (17)

From Equation (17):

(Δ(k) ln pft)
2 = θ1(Δ

(k) ln sft)
2 + θ2(Δ

(k) ln pftΔ
(k) ln sft) + U

(k)
ft (18)

where

θ1 = −
α

β
, θ2 =

1
β

+ α and U
(k)
ft = Δ(k)eD

ftΔ
(k)eS

ft

Under the identifying assumptions of Feenstra (1994), the idiosyncratic error terms eD
ft and eS

ks

are assumed to be independent for any (f, t) and (k, s), implying:

E(U (k)
ft ) = 0.
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Figure 2: The parameter space. The boundary {θ : θ1 > 0 ∩ θ1 + θ2 = 1} corresponds to inelastic
supply, {θ : θ1 = 0 ∩ θ2 < 0} to elastic supply and {θ : θ1 = 0 ∩ 0 ≤ θ2 ≤ 1} to elastic demand.

Note that Equation (18) is not a valid regression equation for estimating θ, because the regressors

Δ(k) ln s2
ft and Δ(k) ln pftΔ(k) ln sft are correlated with U

(k)
ft , and must therefore be estimated us-

ing a method of moments estimator, such as Feenstra’s 2SLS estimator or the Feenstra-Soderbery

LIML estimator. Technically, both these estimators can be seen as instrumental variable esti-

mators, with variety indicators as instruments (see Feenstra, 1994, p. 164), and they suffer from

weak instruments bias when the number of observation periods is small or moderate (see the

Monte-Carlo results and discussions in Soderbery, 2015).

3.2 Parameter restrictions

The restrictions on the structural parameters α and β (0 ≤ α ≤ 1 and β < 0) , imply restrictions on θ.

First, since θ1 = −α/β, it follows that θ1 ≥ 0, whereas α ≤ 1 is equivalent to:6

θ1 + θ2 ≤ 1.

6To see this: α ≤ 1 ⇔
(
−θ2 +

√
θ2
2 + 4θ1

)
/2θ1 ≥ 1 ⇔

√
θ2
2 + 4θ1 ≥ 2θ1+θ2 ⇔ θ2

2 +4θ1 ≥ 4θ2
1 +θ2

2 +4θ1θ2 ⇔

θ1 − θ2
1 − θ1θ2 ≥ 0 ⇔ 1 − θ1 − θ2 ≥ 0.
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Table 2: Parameterisation

Parameter space of θ Elasticities (α, σ)

Θint = {θ : θ1 > 0 ∩ θ1 + θ2 < 1} α =

[
−θ2+

√
θ2
2+4θ1

2θ1

]−1

σ = 1 +
θ2+

√
θ2
2+4θ1

2θ1

Θ2 = {θ : θ1 > 0 ∩ θ1 + θ2 = 1} α = 1 σ = 1 + 1
θ1

Θ3 = {θ : θ1 = 0 ∩ θ2 < 0} α = 0 σ = 1 − 1
θ2

Θ4 = {θ : θ1 = 0 ∩ 0 ≤ θ2 ≤ 1} α = θ2 σ = ∞

Next, assume that θ1 > 0. Then α−1 and β are (real) solutions to θ1s
2 + θ2s − 1 = 0. That is

α−1 =
−θ2 +

√
θ2
2 + 4θ1

2θ1
> 0 (19)

β =
−θ2 −

√
θ2
2 + 4θ1

2θ1
< 0.

Note that the sign restrictions on β and α are automatically fulfilled, since
√

θ2
2 + 4θ1 > |θ2|.

Finally, assume θ1 = 0. Then α = 0 or β = −∞ (σ = ∞). If α = 0 and |β| < ∞, σ = 1−1/θ2. If

β = −∞, α = θ2 ≥ 0. Figure 2 illustrates the parameter space and its boundaries. The relation

between θ and the elasticities α and β is summed up in Table 2.

Now define

g(θ) =
θ2 +

√
θ2
2 + 4θ1

2θ1
for θ1 > 0

and

σ(θ) =






1 + g(θ) if θ1 > 0

1 − 1
θ2

if θ ∈ Θ3

∞ if θ ∈ Θ4.

(20)

Since g(θ) = 1/θ1 when θ1 + θ2 = 1 (α = 1), σ(θ) expresses σ as a function of θ in accordance

with Table 2. By L’Hopital’s rule:

lim
θ1→0+

σ(θ1, θ2) = 1 −
1
θ2
if θ2 < 0

lim
θ1→0+

σ(θ1, θ2) = ∞ if θ2 ∈ [0, 1]

lim
θ2→0−

σ(0, θ2) = ∞.
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This shows that σ(θ) is a continuous function of θ for all θ ∈ Θ (but not differentiable at

θ1 = 0). Given an estimator (θ̂) of θ that satisfies all the constraints, the obvious estimator of σ

is σ̂ = σ(θ̂).

Below we first consider the Feenstra-Soderbery estimator of θ and then propose an (asymp-

totically) more efficient estimator than σ(θ̂) in the case θ̂ ∈ Θ2 (inelastic supply) or θ̂ ∈ Θ3 (elastic

supply). When supply is elastic or inelastic, there are no simultaneity problems, and a fixed ef-

fects regression estimator is more efficient than the Feenstra-Soderbery estimator, which is prone

to weak instruments bias when the number of time periods is small or moderate.

Of particular interest is inelastic supply (α = 1), which corresponds to monopolistic com-

petition with constant elasticity of scale (the markup does not depend on the quantity supplied).

In the existing literature, the properties of the estimator at the boundary of the parameter

space has not been examined. For example, when the unrestricted Feenstra-Soderbery estimator

θ̂(u) = (θ̂1

(u)
, θ̂2

(u)
) yields θ̂1

(u)
+ θ̂2

(u)
> 1 (in this case ω̂(u) < 0), the restricted Feenstra-

Soderbery estimator in most cases yields ω̂ = 0 (α̂ = 0). This is despite the fact that θ1 + θ2 = 1

implies (1 − α)/β = 1 − α, with α = 1 (ω = ∞) as the only solution. A potential problem

seems to be that the Feenstra-Soderbery estimation algorithm does not explore solutions at the

boundary where α = 1 – but only where θ1 = 0 and θ2 ≤ 0 (cf. Figure 1). Also the search

algorithm of Broda and Weinstein (2006) restricts ω to be finite, overlooking this boundary.

Below we propose a consistent estimator, σ̂, that investigates all boundary points in Figure 2.

As an extension of the existing literature, we provide closed form asymptotic standard errors of

σ̂ for any finite σ – including at the boundary of Θ.

3.3 Estimation of θ

In view of the above discussion, it is necessary to impose the constraints θ1 ≥ 0 and θ1 + θ2 ≤ 1

when estimating the model. If the unrestricted Feenstra-Soderbery estimator satisfies θ̂1

(u)
≥ 0

and θ̂1

(u)
+ θ̂2

(u)
≤ 1, all restrictions on α̂ and β̂ are automatically fulfilled (replacing θ with θ̂

in Equation (20)). However, if one or both constraints are violated, we need to identify possible

solutions at the boundary of the parameter space. To this end, we utilize that the unconstrained

Feenstra-Soderbery estimator θ̂(u) asymptotically has the following approximate log-density as
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the number of observations, n, tends to infinity:

ln(θ0) = −
1
2
(θ̂(u) − θ0)′Hn(θ̂(u) − θ0)

with Hn = V ar(θ̂(u))−1, where we have ignored a normalizing constant and terms of order

o(n−1). Following Feenstra (1994), we let n → ∞ by increasing the number of time periods and

keeping the number of varieties (firms) constant (see the discussion in Soderbery, 2015, p. 15).

Now consider the constrained optimum:

θ̂(c) = arg max
θ∈Θ

ln(θ)
P
→ θ0

where Θ = {θ : θ1 ≥ 0 ∩ θ1 + θ2 ≤ 1}. The possible boundary solutions are:

l(r1) = max
θ

ln(θ) s.t. θ1 + θ2 = 1

and

l(r2) = max
θ

ln(θ) s.t. θ1 = 0 and θ2 ≤ 1.

Let the corresponding argmax be denoted θ(r1) and θ(r2). Any solution to the first problem must

satisfy the first-order condition:

∂l(θ(r1)
1 , 1 − θ

(r1)
1 )

∂θ1
= 0.

That is, with Hn = [hij ]i,j=1,2:

θ
(r1)
1 =

h22 − h12

h11 − 2h12 + h22
(1 − θ̂2

(u)
) +

h11 − h12

h11 − 2h12 + h22
θ̂1

(u)
.

Note that θ
(r1)
1 is a weighted average of θ̂1

(u)
and 1 − θ̂2

(u)
. Next, consider l(r2) with θ(r2) =

(0, θ
(r2)
2 ) and θ

(r2)
2 ≤ 1. Then, if θ

(u)
2 ≤ 1,

(

0 1

)

Hn






θ
(r1)
1 − θ̂1

(u)

θ
(r1)
2 − θ̂2

(u)




 = 0
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which is equivalent to θ
(r2)
2 = θ̂2

(u)
. On the other hand, if θ

(u)
2 > 1, θ̂(r2) = (0, 1). Thus

θ(r2) = (0, min(θ̂2

(u)
, 1)).

Combining all the above cases, we arrive at the following constrained estimator, θ̂(c), which we

henceforth will refer to as the first-stage estimator:

θ̂(c) =






θ̂(u) if θ̂u ∈ Θint

(θ(r1)
1 , 1 − θ

(r1)
1 ) if θ̂u /∈ Θint, θ

(r1)
1 > 0 and l(θ(r1)) > l(θ(r2)

2 )

(0, min(θ̂2

(u)
, 1)) otherwise

3.4 Estimation of σ when supply is inelastic (α = 1)

The estimator σ(θ̂) is not optimal if θ1 + θ2 = 1. To see this, rewrite the system (15)-(16) on

reduced form:






ln sft

ln pft




 =






β
1−αβ (λS

t − λD
t + uS

f − uD
f + eS

ft − eD
ft)

−αβ
1−αβ (λD

t + uD
f + eD

ft) + 1
1−αβ (λS

t + uS
f + eS

ft)




 . (21)

Since θ1 + θ2 = 1 is equivalent to α = 1, we obtain:

ln pft − ln sft = λS
t + uS

f + eS
ft. (22)

Moreover, from Equation (15):

ln pft = τ(ln pft − ln sft) −
|β|

β − 1
(λD

t + uD
f + eD

ft) (23)

where

τ =






1
σ if σ < ∞

0 if σ = ∞
.
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Table 3: Two-stage estimator

First stage estimator of θ ( θ̂(c)) Second stage estimator of σ and θ (σ̂, θ̂)

θ̂(c) ∈ Θint σ̂ = 1 + g(θ̂(c)) θ̂ = θ̂(c)

θ̂
(c)
1 + θ̂

(c)
2 = 1 σ̂ =






1
τ̂ if τ̂ > 0

∞ if τ̂ = 0
(θ̂1, θ̂2) =

(
1

σ̂−1 , 1 − 1
σ̂−1

)

θ̂
(c)
1 = 0 and θ̂

(c)
2 < 0 σ̂ =






1 − ψ̂ if ψ̂ < 0

1 − 1

θ̂
(c)
2

if ψ̂ ≥ 0
θ̂ = (0, 1

1−σ̂ )

θ̂
(c)
1 = 0 and 0 ≤ θ̂

(c)
2 < 1 σ̂ = ∞ θ̂ = θ̂(c)

In this case, we estimate the fixed-effects regression equation:

ln pft = τ(ln pft − ln sft) + λt + uf + eft s.t. τ ≥ 0

where the unobserved components λt, uf and eft are defined in accordance with Equation (23).

Since the regressor, ln pft − ln sft, is uncorrelated with the error term when α = 1 (see Equation

(22) and Equation (23)), τ̂−1 P
→ σ if σ < ∞, and τ̂

P
→ 0 if σ = ∞, in which case there is no need

for instruments.

3.5 Estimation of σ when supply is elastic (α = 0)

In this case

ln pft = λS
t + uS

f + eS
ft

and we estimate the fixed-effects regression equation:

ln sft = ψ ln pft + λt + uf + eft. (24)

Since the regressor, ln pft, is uncorrelated with the error term when α = 0 (see Equation (15) and

Equation (24)), ψ̂
P
→ 1 − σ < 0 if 1 < σ < ∞. In finite samples, it is possible that ψ̂ ≥ 0, which

has no interpretation. In this case, σ̂ = 1 − 1/θ̂
(c)
2 is an admissible estimator. Our two-stage

estimators of σ and θ are listed in Table 3.
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3.6 Standard error of estimation

We will now derive expressions for the asymptotic standard error of the two-stage estimator σ̂.

First, we note that regardless of θ0 we have, asymptotically:

√
n(θ̂(u) − θ0)

D
⇒ N(0, Σ)

with

Σ =






σ11 σ12

σ12 σ22




 .

If θ0 ∈ Θint, then V ar(σ̂) follows from a Taylor expansion of σ(θ) around θ0:

σ(θ̂u) − σ(θ0)
D
' g(θ0)h(θ0)′(θ̂u − θ0)

where
D
' means that the error is of order op(n−1/2) and

h(θ) =

[

a(θ) + b(θ), b(θ)

]′

with

a(θ) + b(θ) =
2
[
θ2
2 + 4θ1

]− 1
2

(
θ2 + [θ2

2 + 4θ1]
1
2

) −
1
θ1

b(θ) =
1 + θ2

[
θ2
2 + 4θ1

]− 1
2

(
θ2 + [θ2

2 + 4θ1]
1
2

) .

Hence

V ar(σ̂) '
1
n

g(θ0)2h(θ0)′Σh(θ0) if θ0 ∈ Θint.

If θ0 ∈ Θ4, the variance of σ̂ is not finite (σ = ∞). The formulas for the variance of σ̂

when θ0 ∈ Θ2 and θ0 ∈ Θ3 are presented in Proposition 1 below.
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Proposition 1. If θ0 ∈ Θ2, the asymptotic mean and variance of σ̂ are given by

E(σ̂) = σ −
1

√
2nπ

g(θ0)

[

a(θ0)
σ11 + σ12

σ11 + σ22 + 2σ12
+ b(θ0)

]
√

σ11 + σ22 + 2σ12 + o(n−1/2)

and

V ar(σ̂) =
g(θ0)2

2n

{

a(θ0)2
[

σ11 −
(σ11 + σ12)2

σ11 + σ22 + 2σ12

]

+

[

a(θ0)
σ11 + σ12

σ11 + σ22 + 2σ12
+ b(θ0)

]2
(σ11 + σ22 + 2σ12)

(

1 −
1
π

)}

+
V ar(τ̂−1)

2
+ o(n−1)

If θ0 ∈ Θ3, define

θ∗1 ≡ E(θ̂(u)
1 |θ̂(u)

1 > 0) = n−1/2

√
2σ11

π
+ o(n−1/2)

and

θ∗2 ≡ E(θ̂(u)
2 |θ̂(u)

1 > 0) = θ0
2 + n−1/2σ12

√
2

πσ11
+ o(n−1/2)

Then

E(σ̂) = σ +
1
2

[

g(θ∗) +
1
θ0
2

]

+ o(n−1/2)

and

V ar(σ̂) =
g(θ∗)2

2n

{

b(θ∗)2
(

σ22 −
σ2

12

σ11

)

+

[

a(θ∗) + b(θ∗)(1 +
σ12

σ11
)

]2
σ11(1 −

2
π

)

}

+
V ar(ψ̂)

2
+

1
4

[

g(θ∗) +
1
θ0
2

]2
+ o(n−1)

See Appendix A for a proof. Note that lim θ∗ = θ0 and lim g(θ∗) = −1/θ0
2 (although g(θ0) is not

defined when θ0
1 = 0). Hence plim σ̂ = σ.

3.7 Pooling of estimates across reference firms

The Feenstra-Soderbery estimator requires that a fixed firm is chosen as the reference firm.

This makes the estimator dependent on this ad hoc choice. A simple modification would be to

generate a sequence of unrestricted Feenstra-Soderbery estimators, {θ̂(s)}N
s=1, for each possible
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reference firm, s ∈ {1, ..., N}, and then choose as a final estimator some pooled estimator, θ̂(P ).

The simplest approach is to choose θ̂(P ) as the arithmetic mean. Then

θ̂(P ) =
1
N

N∑

s=1

θ̂(u,s).

To estimate V ar(θ̂(P )) we use that:

V ar(θ̂(P )) =
1

N2

N∑

j=1

N∑

k=1

Cov(θ̂(u,j), θ̂(u,k))

where, for random vectors x and y, Cov(x, y) = E(xy′) − E(x)E(y)′ and V ar(x) = Cov(x, x).

While estimates of Hns = V ar(θ̂(u,s))−1 are simple by-products of the Fenstra-Soderbery es-

timator (see above), the challenge is to estimate Cov(θ̂(u,j), θ̂(u,k)) for j 6= k. Obviously, the

estimates of θ using different reference firms from the same sample are not independent. For-

tunately, resampling methods can be applied. Due to its computational simplicity, we use the

jackknife (resampling without replacement). Our method is the following: Let θ̂
(u,s)
−i denote the

unconstrained Fenstra-Soderbery estimate of θ in i′ the resample, i.e. when firm i ∈ {1, ..., N}

is excluded from the sample and s is the reference firm. Then define

θ̂
(u,s)
∙ =

1
N − 1

∑

i/∈s

θ̂
(u,s)
−i .

Our jackknife estimator of Cov(θ̂(u,j), θ̂(u,k)) is then:

Ĉov(θ̂(u,j), θ̂(u,k)) =
1

N − 2

∑

i/∈{j,k}

(θ̂(u,j)
−i − θ̂

(u,j)
∙ )(θ̂(u,k)

−i − θ̂
(u,k)
∙ )′ for all j, k ∈ {1, ..., N}.

When N is large, it may be necessary to estimate V ar(θ̂(P )) based on a (randomized) subset

of the N reference firms. In our sample (with N is less than 100), the above estimator is

computationally feasible.
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Table 4: Number of firm-year observations in the productivity decomposition

Industry NACE Continuing firms Entering firms Exiting firms Total

Food prod. 10 4888 344 324 5566

Wood prod. 16 3400 207 185 3808

Mineral prod. 23 1876 86 87 2072

Metal prod. 25 5119 338 284 5766

Machinery 28 3128 185 186 3527

Other 32 1681 99 100 1912

All industries 20092 1259 1166 22517

4 Empirical application

4.1 Data and operationalisations

Our population is limited to incorporated firms (including publicly owned) in the six largest

manufacturing industries observed during 1995–2016. A list of the industries, with the number

of firm-year observations per industry, is given in Table 4.

We define (labour) productivity as value added per employee in real prices. Value added is

defined as gross value of production minus the value of intermediate inputs. Intermediate input is

not directly available in the statistics, but is calculated residually as total operating costs minus

the sum of labor costs and capital costs (including depreciation). Value added can be interpreted

as the contribution of labor and capital inputs to operating income (before taxes) during the

year. Our data source regarding labour input is Statistics Norway’s Employer-Employee Register,

which is a matched employer-employee data set.

We deflate value added in current prices using firm-specific price indices of value added for

the population of firms covered by the Producer Price Index (PPI7). The PPI measures the price

development of first hand sales of products to the Norwegian market and to export markets. The

sample in the PPI consists of about 630 commodity groups and 6000 firms, of which about half

7See https://www.ssb.no/en/ppi/.
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are in the six manufacturing industries listed in Table 4. Only firms in the PPI sample are used

to estimate σ (see below). For the productivity decomposition, we include all limited liability

firms in the industries, and apply aggregate producer price indices at the lowest NACE level to

firms with missing firm-level indices.

Our general model does not specify the time unit, but refers to t as period t. In practice,

the shortest possible periodicity is one year. To reduce timeliness problems, we consider a peri-

odicity of 3 years and "aggregate" variables within each period as described below. Timeliness

problems may be particularly important for start-up firms, since a newly registered firm is typi-

cally only partially active during its first year of operation, which may also be later than its year

of registration. If s denotes the calendar year (s = 1995 is the first observation year) and t is the

period number, the relation between them is as follows:

t =

[
s − 1995

3

]

, s = 1995, 1996, ..., 2016

where [x] is the integer value of x (e.g. [1.5] = 1). The set of continuing, exiting and entering

firms in period t are defined as follows:

Ct: Firms operative in year 1995 + 3(t − 1) and 1995 + 3t

Nt: Firms operative in year 1995 + 3t but not 1995 + 3(t − 1)

Xt: Firms operative in 1995 + 3(t − 1) but not 1995 + 3t

This means that a firm is entering in period t if its first date of operation is during the interval

(1995 + 3(t − 1), 1995 + 3t)], it is exiting in period t if its last date of operation is during

[1995 + 3(t− 1), 1995 + 3t), and it is continuing in period t if it is operating throughout [1995 +

3(t − 1), 1995 + 3t].

4.2 Empirical results

The first two columns of Table 5 show the pooled estimator θ̂(P ) (i.e. after pooling θ̂(u,s) across

all possible reference firms, as explained in Section 3). We see that the pooled estimator satisfies

the parameter constraints only for NACE 25. In all other industries, θ̂
(P )
1 < 0 or θ̂

(P )
1 + θ̂

(P )
2 > 1.
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Table 5: Estimates of parameters

Two-stage estimatora Feenstra-Soderbery est.

Industry Pooled estimator Second-stage Unrestricted Restricted

θ̂P
1 θ̂P

2 θ̂1 θ̂2 σ̂ SE(σ̂) 95% CIb θ̂
(u)
1 θ̂

(u)
2 σ̂

10 0.19 0.90 0.14 0.86 7.93 1.54 [5.5, 11.8] 0.16 0.90 7.55

16 -0.17 1.08 0.22 0.78 5.56 0.69 [4.4, 7.2] -0.25 1.42 1.66

23 -1.08 2.08 0.78 0.22 2.28 0.36 [1.6, 3.1] 0.28 0.76 4.69

25 0.35 0.42 0.35 0.42 3.39 0.24 [3.0, 3.8] -0.32 -1.20 1.33

28 -0.49 1.50 0.17 0.87 8.92 4.12 [4.2, 12.4] 0.35 1.81 6.67

32 -0.46 1.70 0.27 0.73 4.67 0.91 [3.2, 7.0] -0.64 1.72 1.74

a See Table 3 for definition of the two stages
b Transformed from symmetric confidence interval (CI) of û where û ≡ ln(σ̂ − 1) and SE(û) ' SE(σ̂)/(σ̂ − 1)

The unrestricted estimates of θ using the Feenstra-Soderbery estimator are also shown in Table

5 (any differences between these unrestricted estimates and our pooled estimates are due to

pooling). In three of the industries (NACE 23, 25 and 28), the estimates differ significantly.

These results are clear evidence that the Feenstra-Soderbery estimator is not robust with respect

to the choice of reference firm.

The final (second-stage) estimates of θ using our method are depicted in columns 4 and 5.

We see that in all cases where θ̂(P ) is an inadmissible value, the second-stage estimator satisfies

θ̂1 + θ̂2 = 1. In these cases, σ̂ = 1/τ̂ , where τ̂ is the (positive) fixed effects regression estimate

of τ from Equation (23). The estimates of σ depicted in column 5 of Table 5 lie in the range of

2.3 – 8.9. It is interesting to compare our σ-estimates with the (restricted) Feenstra-Soderbery

estimator of σ depicted in the last column of Table 5 (this estimator does not provide standard

errors when θ̂(u) is at the boundary of the parameter space). The two sets of σ-estimates differ

significantly: in only one industry does σ̂ from the Feenstra-Soderbery method lie within the 95

per cent confidence interval of our method. The most striking difference is that while the three

lowest Feenstra-Soderbery estimates of σ are well below 2 in three of the industries (NACE 16,

25 and 32), implying a large impact of new varieties on the output growth index, the lowest

estimate with our method is 2.3 (in NACE 23). The standard errors and confidence intervals in
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Figure 3: Contributions to aggregate productivity growth. Average annual growth rate in per cent
across the sample 1996-2016

Table 5 show that σ is precisely estimated when σ̂ is small or moderate (less than 6), but more

imprecisely estimated for higher values of σ̂.

Table 6 depicts average annual productivity growth rates over the observation period 1996-

2016 for the six industries, and for aggregate manufacturing (all six industries). When showing

the results, we have split the whole observation period into seven intervals (t = 1, 2, ..., 7), each

covering three years, as explained above. For each 3-year interval we present average annual

growth rates in per cent corresponding to σ = ∞ (no impact of new varieties) and σ = σ̂ (the

estimated demand elasticity for each industry). The results for all industries then involve a

weighted average of all the industry-specific estimates of σ.

We first note that there are two distinct 3-year periods marked by negative or near-zero

aggregate productivity growth: 1999-2001 and 2014-2016, respectively, and one 3-year period

with very high productivity growth: 2002-2004. From 2002 to 2010 productivity growth was

persistently high: between 3.4–4.7 per cent annually. This period overlaps with the height of the

oil-fueled boom-period that lasted from 2001 until the financial crisis of 2008 (when oil prices

28



Table 6: Productivity growth rates. By industry and aggregate for all industries,
in per cent

NACE σa Period (t)

96-98b 99-01 02-04 05-07 08-10 11-13 14-16 Mean

10 ∞ 2.1 -1.4 4.7 3.0 3.1 0.5 0.6 1.8

σ̂ 3.2 -0.7 5.2 3.3 3.4 0.7 0.4 2.2

16 ∞ 1.0 0.7 0.5 0.3 0.2 0.2 -0.2 0.4

σ̂ -0.5 -0.6 6.2 -0.5 6.3 -0.8 3.5 1.9

23 ∞ -1.7 -3.5 2.7 5.0 1.2 3.7 3.3 1.5

σ̂ -1.2 -2.1 3.7 5.5 1.4 4.1 2.9 2.0

25 ∞ 8.2 -1.6 2.4 4.6 2.0 2.8 -3.4 2.1

σ̂ 10.8 -0.6 3.2 5.1 2.7 3.2 -3.7 3.0

28 ∞ 5.2 -4.3 6.3 4.8 3.7 -2.6 -4.2 1.3

σ̂ 5.4 -4.2 6.7 5.1 3.8 -2.5 -4.2 1.4

32 ∞ 4.0 4.1 6.5 -3.0 9.9 1.1 5.4 4.0

σ̂ 4.4 5.8 6.9 -2.7 10.0 1.3 5.1 4.4

All industries ∞ 2.8 -1.2 4.2 3.1 3.5 1.1 0.1 1.9

σ̂ 3.8 -0.5 4.7 3.4 3.7 1.2 -0.1 2.3

a σ̂ refers to the estimated value of σ in Table 5
b Average annual rates during 3-year interval

surged from $20 to more than $100 per barrel). This period is followed by a clear downward

trend i productivity growth after 2010: Annual productivity growth, including the contribution

from net creation of new varieties, was 3.7 per cent during 2008-2010, it fell to 1.2 per cent during

2011-2013, and then further to practically zero (0.1 per cent) during 2014-2016.

New varieties contribute significantly to total productivity growth. If we average across

the whole observation period, annual productivity growth is 1.9 per cent with no allowance for

new varieties and 2.3 per cent when new varieties are taken into account. Thus, on average, the

estimated contribution form new varieties to total productivity growth is 0.4 percentage points

annually, which is both statistically and economically significant.
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Table 7: Sources of aggregate productivity growth.a Growth rates in per cent

Source 96-98 99-01 02-04 05-07 08-10 11-13 14-16 Mean

Continuing firms 2.7 -1.3 5.1 3.0 3.2 0.8 -0.8 1.8

Entering firms (σ = ∞) -0.6 -0.2 -0.5 -0.2 -0.2 -0.4 -0.0 -0.3

Exiting firms (σ = ∞) 0.0 0.1 0.1 0.1 0.1 0.1 1.4 0.3

RWI 0.8 0.2 -0.5 -0.0 0.3 0.4 -0.4 0.1

RBI -0.1 -0.0 0.0 0.2 0.1 0.1 -0.2 0.0

New varieties (σ = σ̂)b 1.0 0.7 0.5 0.3 0.2 0.2 -0.2 0.4

(0.08) (0.08) (0.06) (0.04) (0.03) (0.03) (0.03) (0.05)

Total productivity growth 3.8 -0.5 4.7 3.4 3.7 1.2 -0.1 2.3

a Decomposed according to Equation (14)

b Standard error in the estimated contribution from new varieties (due to σ̂) in parentheses

Table 7 depicts the results of the decomposition of aggregate productivity growth into six

sources: i) within-firm productivity growth, ii) entering firms when all products are assumed

perfect substitutes (σ = ∞), iii) exiting firms when σ = ∞, iv) reallocation between continuing

firms in the same industries (RWI), v) reallocation between continuing firms in different industries

(RBI), and vi) net creation of new varieties (with σ = σ̂ – the estimated industry-specific demand

elasticities). The terms i)-iii) correspond to the first three terms within the squared bracket in

Equation (12), whereas iv) corresponds to the last term in the squared bracket (which is zero if

σ = ∞). The decomposition of labor productivity growth into its various sources – and over time

— is also depicted in Figures 3 – 4, with 95 per cent confidence intervals for the contribution

from net creation of new varieties indicated by markers.

We see that the within-firm productivity growth among continuing firms is the most impor-

tant source of aggregate productivity growth (contributing with 1.8 percentage points annually

to the total annual average productivity growth of 2.3 per cent). Net creation of new varieties

contributes 0.4 percentage point to the average productivity growth. This contribution is sta-

tistically highly significant, as seen from the estimated standard error of 0.05 and the indicated

95 per cent confidence interval (see Figure 3). Disregarding the impact of new varieties, exiting
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Figure 4: Contributions to aggregate productivity growth during 1996 – 2016. Average annual growth
rate in per cent

firms contributed positively to productivity growth (0.3 percentage point), reflecting the fact

that exiting firms on average have lower productivity levels than survivors. This effect is excep-

tionally strong in 2014-2016, where closures contribute 1.4 percentage point annually during a

period where total productivity growth was almost zero. Figure 3 shows that reallocation of labor

within and – in particular – between industries is of minor importance to aggregate productivity

growth.

The finding that entry of new firms contributes negatively to productivity growth (disre-

garding the impact from new varieties) may seem to contradict conventional wisdom that entry-

and exit dynamics contributes to "creative destruction", whereby inefficient old firms are re-

placed by new and more efficient firms. However, our finding is not surprising in view of the

high exit rates among young firms, and is consistent with the results in Golombek and Raknerud

(2018), who document strong selection based on productivity among start-up firms. Moreover,

our results are in line with conventional decompositions of aggregate productivity growth for the

whole mainland Norwegian economy (Iancu and Raknerud, 2017).
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Figure 5: Output shares of entering and exiting firms

Figure 5 shows that the (gross) output share of entering firms and the net share of entering

firms (share of entering firms less that of exiting firms), have been monotonically decreasing since

1998. The net share even became negative in 2016, leading to negative (value-weighted) net

creation of new varieties during 2014–2016. The strong increase in the output share of exiting

firms from 2014 to 2016 explains the exceptionally high positive contribution to productivity

growth from closures in this period (as commented on above), whereas all other components

contributed negatively, almost exactly offsetting the first effect.

5 Conclusion

The contribution of this paper is twofold. First, based on the economic approach to index

numbers, we have provided a fully consistent decomposition of aggregate productivity growth

that identifies the contribution from new firms producing new varieties. The novelty of this

decomposition lies in the way we have reconciled the literature on how new goods impact prices

and the literature on aggregate productivity growth and firm turnover. The decomposition

provided in this paper encompasses many of the frameworks currently adopted in the literature.

Second, we have extended the Limited Information Maximum Likelihood (LIML) estimator

of Soderbery (2015), which is a refinement of Feenstra (1994) and Broda and Weinstein (2006),

and is currently the most advanced method in the literature to estimate demand elasticities.
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To overcome the simultaneity problem, this literature uses the second order moments of prices

and expenditure shares in combination with sign restrictions to identify demand elasticities.

We have created a two-stage estimation framework that exploits the cases when there are no

simultaneity problems, i.e. when supply is elastic or inelastic. Elastic or inelastic supply occur

at the boundary of the parameter space. Hence, if the first-stage estimate is located at the

boundary of the parameter space, we switch in the second stage to an estimator that utilises first

order moments of prices and expenditure shares to improve efficiency. In particular, the case

of inelastic supply is both empirically and theoretically important. We also derive closed form

asymptotic variance formulas of the two-stage estimator. Another refinement in our estimation

procedure relates to the choice of reference unit. Instead of choosing one particular firm as a

reference firm, which involves ad hoc elements and raises robustness issues, we extend current

practice by generating a sequence of estimates for each possible reference firm and create a

“pooled” estimator across all possible choices.

Our results indicate that the effect from new varieties on aggregate productivity growth is

both statistically and economically significant and amounts to about one-half percentage point

annually for some major manufacturing industries in Norway during the period from 1996 to

2016. This result is based on estimates of the demand elasticity ranging from 2.3 to about

9. Our estimates of demand elasticities at the industry level differ in many cases significantly

from those of the Feenstra-Soderbery estimator, and are typically higher. Moreover, we have

empirically demonstrated that the need to choose a reference firm makes the Feenstra-Soderbery

estimator non-robust.
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A Proof of Proposition 1

Below we will expand g(θ̂u) around g(θ∗) for two different values of θ∗ satisfying:

g(θ̂u) − g(θ∗)
D
' g(θ∗)








 2
[
θ∗22 + 4θ∗1

]− 1
2

(
θ∗2 + [θ∗22 + 4θ∗1 ]

1
2

) −
1
θ∗1



 (θ̂u
1 − θ∗1) +



1 + θ∗2
[
θ∗22 + 4θ∗1

]− 1
2

(
θ∗2 + [θ∗22 + 4θ∗1 ]

1
2

)



 (θ̂u
2 − θ∗2)






= g(θ∗)
{

(a(θ∗) + b(θ∗))(θ̂u
1 − θ∗1) + b(θ∗)(θ̂u

2 − θ∗2)
}

(see Section 3.6 for explanations of notation).

Case 1: θ0 ∈ Θ2. Here we set

θ∗ = θ0

Asymptotically, with probability one, either θ̂ = θr1 or θ̂ = θ̂u ∈ Φint. To examine the behavior

of θ̂u given that θ̂u ∈ Φint, define

Δ = θ̂1

(u)
− θ0

1 + θ̂2

(u)
− θ0

2

= θ̂1

(u)
+ θ̂2

(u)
− 1

Then θ̂ ∈ Φint is equivalent to θ̂1

(u)
> 0 and Δ < 0 and θ̂ = θr1 ∈ Φ2 is equivalent to θ̂1

(u)
> 0

and Δ ≥ 0 . Moreover,

Δ
D
' n−1/2σΔZ, where σΔ =

√
σ11 + σ22 + 2σ12 and Z ∼ N(0, 1).

Furthermore

θ̂2

u
− θ0

2 = Δ − (θ̂1

(u)
− θ0

1)

where

θ̂1

(u)
− θ0

1

D
' χΔ + ε

with

χ =
Cov(Δ, θ̂1

(u)
)

V ar(Δ)
'

σ11 + σ12

σ2
Δ
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and

ε
D
= N(0, σ2

ε).

Then ε is conditionally independent of Δ with

σ2
ε = n−1

[

σ11 −
(σ11 + σ12)2

σ2
Δ

]

= n−1

[

σ11 −
(σ11 + σ12)2

σ11 + σ22 + 2σ12

]

A Taylor expansion θ̂u around θ∗ = θ0 gives:

g(θ̂u) − g(θ0)
D
' g(θ0)

{(
a(θ0) + b(θ0)

)
(θ̂u

1 − θ0
1) + b(θ∗)(θ̂u

2 − θ0
2)
}

= g(θ0)
{
a(θ0)ε +

[
a(θ0)χ + b(θ0)

]
Δ
}

It follows that

E(g(θ̂u)|Δ < 0) ' g(θ0) + g(θ0)
[
a(θ0)χ + b(θ0)

]
E(Δ|Δ < 0)

V ar(g(θ̂u)|Δ < 0) ' g(θ0)2
{

a(θ0)2σ2
ε +

[
a(θ0)χ + b(θ0)

]2
V ar(Δ|Δ < 0)

}

The well-known expressions for E(Z|Z > 0) and V ar(Z|Z > 0) are:

V ar(Z|Z > 0) = 1 − ψ(0)2

and

E(Z|Z > 0) = ψ(0)

where ψ(∙) is the inverse Mills ratio:

ψ(0) = φ(0)/Φ(0) = 2φ(0) =
2

√
2π

=

√
2
π

.
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Since Δ
D
' n−1/2σΔZ :

E(Δ|Δ < 0) = −E(−Δ| − Δ > 0) ' −n−1/2σΔE(Z|Z > 0) = −n−1/2σΔψ(0)

V ar(Δ|Δ < 0) ' n−1σ2
ΔV ar(Z|Z > 0) = n−1σ2

Δ(1 − ψ(0)2)

Hence

E(g(θ̂u)|Δ < 0) ' g(θ∗) − g(θ∗) [a(θ∗)χ + b(θ∗)] n−1/2σΔψ(0)

V ar(g(θ̂u)|Δ < 0) ' g(θ∗)2
{

a(θ∗)2σ2
ε + [a(θ∗)χ + b(θ∗)]2 n−1σ2

Δ(1 − ψ(0)2)
}

Thus, if θ0 ∈ Θ2, σ̂ has an asymptotic mixture distribution

σ̂ − σ
D
' 1(Δ < 0)(g(θ̂u) − g(θ0)) + (1 − 1(Δ < 0))(τ̂−1 − σ)

where

Pr(Δ < 0) ' Pr(n−1/2σΔZ < 0) =
1
2

Let D be a binary variable with Pr(D = 1) = P and Y = DY1 + (1 − D)Y0. By the rules of

double expectation and total variance:

E(Y ) = PE(Y1|D = 1) + (1 − P )E(Y0|D = 0)

and

V ar(Y ) = PV ar(Y1|D = 1) + (1 − P )V ar(Y0|D = 0)

+ P (1 − P ) [E(Y1|D = 1) − E(Y0|D = 0)]2
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Hence

E(σ̂) ' σ +
1
2
(E(g(θ̂u)|Δ < 0) − g(θ0)) +

1
2
E(τ̂−1 − σ)

= σ +
1
2
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V ar(σ̂) '
1
2
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2
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Case 2: θ0 ∈ Θ3. Here σ = 1 − (θ0
2)

−1. We define

θ∗1 = E(θ̂(u)
1 |θ̂(u)

1 > 0)

θ∗2 = E(θ̂(u)
2 |θ̂(u)

1 > 0)
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Asymptotically, with probability one, θ̂2 = θ̂2

u
< 0 and either θ̂1 = θ̂1

u
> 0 (θ̂ = θ̂u ∈ Θint) or

θ̂1

u
≤ 0 (θ̂ ∈ Θ3). In the first case, σ = 1 + g(θ̂u). We can write

θ̂2

(u)
− θ0

2 = Πθ̂
(u)
1 + η

with

Π =
Cov(θ̂2
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, θ̂1

(u)
)
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η).
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σ11

]

If follows that
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2σ11

π

θ∗2 = θ0
2 + ΠE(θ̂(u)

1 |θ̂(u)
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√
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We then get

g(θ̂u) − g(θ∗)
D
' g(θ∗)

{
(a(θ∗) + b(θ∗)) (θ̂u

1 − θ∗1) + b(θ∗)(θ̂u
2 − θ∗2)

}

= g(θ∗)
{

(a(θ∗) + b(θ∗)) (θ̂u
1 − θ∗1) + b(θ∗)(Π(θ̂(u)

1 − θ∗1) + η)
}

= g(θ∗)
{

b(θ∗)η + [a(θ∗) + b(θ∗)(1 + Π)] (θ̂(u)
1 − θ∗1)

}
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Hence

E(g(θ̂u)|θ̂(u)
1 > 0) ' g(θ∗)

V ar(g(θ̂u)|θ̂(u)
1 > 0) ' g(θ∗)2

{
b(θ∗)2σ2

η + [a(θ∗) + b(θ∗)(1 + Π)]2 n−1σ11(1 − ψ(0)2)
}

=
g(θ∗)2

n

{

b(θ∗)2
[

σ22 −
σ2

12

σ11

]

+

[

a(θ∗) + b(θ∗)(1 +
σ12

σ11
)

]2
σ11(1 −

2
π

)

}

where we used that

V ar(θ̂(u)
1 |θ̂(u)

1 > 0) ' n−1σ11(1 − ψ(0)2)

Now consider θ̂1

u
< 0. Then, asymptotically with probability one, θ̂1 = 0 and σ̂ = 1 − ψ̂.

Hence

σ̂ − σ = −ψ̂ + (θ0
2)

−1

and

E(σ̂|θ̂1

u
< 0) ' σ

V ar(σ̂|θ̂1

u
< 0) ' V ar(ψ̂)

Combining the two cases: If θ0 ∈ Θ3, σ̂ is asymptotically distributed as

σ̂ − σ
D
' 1(θ̂u

1 > 0)(g(θ̂u) + (θ0
2)

−1) + 1(θ̂u
1 < 0)(−ψ̂ + (θ0

2)
−1)]

where

Pr(θ̂u
1 > 0) ' Pr(n−1/2√σ11Z > 0) =

1
2

Hence

E(σ̂) ' σ +
1
2

[
g(θ∗) + (θ0

2)
−1
]

42



and

V ar(σ̂) '
1
2
V ar(g(θ̂u|θ̂u

1 > 0) +
1
2
V ar(σ̂|θ̂1

u
< 0)

+
1
4

[
g(θ∗) + (θ0

2)
−1
]2

=
1
2n

g(θ∗)2
{

b(θ∗)2
[

σ22 −
σ2

12

σ11

]

+

[

a(θ∗) + b(θ∗)(1 +
σ12

σ11
)

]2
σ11(1 −

2
π

)

}

+
1
2
V ar(ψ̂) +

1
4

[
g(θ∗) + (θ0

2)
−1
]2
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B Relation to existing literature

Much of the literature analyses the contribution to overall productivity growth from firm turnover

by applying a framework based on a weighted average of productivity levels; see e.g., Griliches

and Regev (1995); Baily et al. (1992); Foster et al. (2001, 2006) and Foster et al. (2008). In the

following we point out similarities and differences between the standard frameworks used in the

literature and the novel framework outlined in Equation (12). In particular, we show how the

framework outlined in Equation (12) generalises the frameworks typically used in the literature.

Following the notation used in the main text, the level of productivity in a firm is defined as

the ratio of outputs to inputs in real terms Yift/Lift. A weighted arithmetic average productivity

level across all firms can then be written

Πit =
∑

f∈Fit

πift(Yift/Lift), (25)

where the weights πift sum to unity and Fit denotes the set of all firms producing a variety

of good b. For this average to have a meaningful interpretation, all firms must be producing

identical or homogeneous products. For example, if one firm is producing 1000 cellular phones

per man hour and another firm is producing 50 tablets per man hour, it is not meaningful to

compare productivity levels across firms. In general, if firms are not producing homogeneous

products, one is comparing apples and oranges when taking the average in Equation (25). This

basic insight relates to the basic index number problem and it illustrates the restrictiveness in

using Equation (25) as a starting point for decomposing aggregate productivity growth.

The assumption of homogeneous products implicitly underlying Equation (25) can be made

explicit in terms of the framework outlined in Section 2.3. Consider the aggregation of varieties

in Equation (2):

Yit =




∑

f∈Fit

γifY
(σi−1)/σi

ift





σi/(σi−1)

.
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All of the varieties are homogeneous if the following assumptions hold

γif = 1 and σi → ∞ for all f ∈ Fit, i ∈ I.

Given these assumptions, aggregation of output is reduced to a summation across homogeneous

products, i.e. Yit =
∑

f∈Fit
Yift. One way to measure the average productivity level in Equation

(25) is by the ratio of outputs to inputs

Πit =
Yit

Lit
=

∑
f∈Fit

Yift
∑

f∈Fit
Lift

=
∑

f∈Fit

πift(Yift/Lift)

where the weights now are defined as input shares: πift = Lift∑
f∈Fit

Lift
. For example, Iancu and

Raknerud (2017) apply this weighting scheme. It is, however, more common to base the weights

πift on output shares.
8 After comparing productivity levels by industry (or product) one may

average the results across industries, i.e.

Πt =
∑

i∈I

πitΠit (26)

where aggregate output shares typically are used as weights. The change in average productivity,

as defined by Equation (25) and Equation (26), may be decomposed as

ΔΠt =
∑

i∈I

πit

[ ∑

f∈Cit

πiftΔ(Yift/Lift) +
∑

f∈Nit

πift

(
Yift

Lift
− Πi

)

−
∑

f∈Xit

πif,t−1

(
Yif,t−1

Lif,t−1
− Πi

)]

+ R̃WIt + R̃BIt. (27)

The first term within the square brackets represents a within component showing the weighted

average of productivity growth across continuing firms. The last two terms inside the square

bracket represent the contribution from entering and exiting plants, respectively. Note that the

impact from firm turnover on productivity growth depends on the productivity levels of entering

and exiting firms relative to the average productivity level: aggregate productivity increases if

8A rationale for doing this is to take the reciprocal of the aggregate inverse productivity measure, see Diewert
and Fox (2010).
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either entering firms are more productive than the average or exiting firms are less productive

than the average.

The two last terms represent reallocation effects within and between industries, respectively,

and they are given by

R̃WIt =
∑

i∈I

πit

∑

f∈Cit

(
Yift

Lift
− Πi

)

Δπift (28)

R̃BIt =
∑

i∈I

ΠiΔπit. (29)

Reallocation within industries (R̃WI) contributes positively to aggregate productivity if the

weight of high productivity firms increases. Reallocation between industries (R̃BI) contributes

positively to aggregate productivity if the weight of highly productive industries increases.

The framework outlined in Equation (27) is conceptually very similar to what is typically

found in the literature. For example, Foster et al. (2008) also starts out with a weighted average of

productivity levels across firms in the first stage of aggregation (Equation (25)). However, instead

of applying a weighted average of productivity levels at the second stage of aggregation (Equation

(26)), Foster et al. (2008) calculate a weighted average of changes in productivity levels at the

industry/product level, i.e. ΔΠt =
∑

i∈I πitΔΠit. The only difference between that approach and

Equation (27), is that Equation (27) also holds the impact from reallocation between industries.

Importantly, the underlying assumption that products are homogeneous within industries is

common to the decompositions typically applied in the literature and Equation (27).

There are both similarities and differences between the decomposition in Equation (27) and

the framework outlined in Equation (12). First, while Equation (12) decomposes the productivity

growth, measured by the difference between the log change of the output and the input index,

Equation (27) shows the absolute change in the weighted average of productivity levels. Second,

the weighting scheme may be somewhat different between the two decompositions depending on

how the weights πit and πift are defined.

The most important difference between the two decompositions is that Equation (12) gen-

eralises the framework underlying the decomposition in Equation (27), i.e. it allows for products
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being imperfect substitutes (σi < ∞). When products are imperfect substitutes the entry of a

new firm increases the number of varieties and the overall level of output. In Equation (12), the

net impact from new varieties on aggregate productivity growth is given by the term

(
1

1 − σi

)

ln

(
1 − sN

it

1 − sX
i,t−1

)

.

This effect on aggregate productivity growth is absent in Equation (27).
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