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1 Introduction

The real-time monitoring of economic and financial variables is now one of the main

interests of policy-makers, market practitioners and other economic agents. The

2007/2008 crisis highlighted the need of central banks and other major institutions

for a continuous assessment of current economic conditions. The main difficulty is

the publication delay of most key macroeconomic indicators but also fiscal variables,

regional/sectoral indicators and disaggregate data. For example, the main variable

in the economy, the GDP (and its components), is only available on a quarterly

basis. Moreover, preliminary data are often revised afterwards, in particular around

turning points of the business cycle. Also, it was recently announced that the Office

for National Statistics (ONS) in the UK has started producing monthly estimates

for the GDP, highlighting the need of using all available data for these estimates.

On the other hand, advancements of technology now allow to organise and store

a large variety of data which leads to variables that are available on a monthly,

weekly, daily or even higher frequency. For example, financial market transactions,

electronic payments data, internet data, etc. This has stimulated a vast amount of

statistical and econometric research on how to take advantage of the large, timely

and higher frequency but irregular information to provide estimates for key low

frequency economic indicators. A parallel, more empirical, literature has instead

focused specifically on the use of big data for nowcasting economic indicators, often

using rather simple econometric techniques and specific big data sources, mainly

Google Trends. Finally, a more theoretical literature has developed new, or adapted

old, statistical and econometric methods to handle large sets of explanatory variables,

such as those associated with big data.

In this research, we first provide a general introduction to big data classification

and discuss some issues which arise when handling very large datasets. Then, we offer

a detailed review of the existing literature in three areas: (i) big data and macroe-

conomics (in general), (ii) variable selection and dimensional reduction for big data

in macroeconomics, and (iii) nowcasting in macroeconomics. Finally, drawing from

the above three strands of the literature, we provide a discussion of the most widely

used econometric methodologies suitable to deal with big data in macroeconomic

nowcasting.
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Based on the surveyed papers, we can generally say that the use of internet

search data, particularly Google Trends, has been dominant in studies using big

data in macroeconomics. There exist some papers based on Twitter data but they

are mainly in finance. Webscrapping and collection of online prices also offer po-

tential, especially for nowcasting inflation. However, such datasets are difficult to

obtain, even more so when many countries and long enough samples are required. A

similar comment applies for credit card and financial transactions data, and for data

summaries resulting from textual analysis.

From the literature it also emerges that the advantages of using data like Google

Trends are: (a) more timely forecasts, not subject to data revision; (b) some im-

provements in forecast accuracy, even though these typically emerge with respect

to simple benchmarks (mostly purely autoregressive models; (c) ease of data access

and collection, (d) ease of data management and treatment; (e) expected good data

quality; (f) reasonable likelihood that similar data will be available on a continuous

basis and without major definitional changes. There are also some disadvantages

when using this data source, the main ones being: (a) a typical sole use of such data

can lead to biased results (commonly known as “big data hubris”); (b) the impos-

sibility to access the raw data, and the lack of knowledge of the precise algorithms

used to pre-treat and summarise them; (c) the possibility that free access will be

discontinued by the (private) data provider, or limited due to the introduction of

more stringent privacy laws.

In terms of statistics and econometrics, data analysis is typically broken down into

four categories: (1) pre-treatment and summarisation, (2) estimation, (3) hypothesis

testing and (4) prediction. Since a large amount of data is available, penalised re-

gressions such as LASSO, LARS, and elastic nets can be used instead of the standard

linear or logistic regression. Then, the choice of the final model should come from

forecasting cross-validation so that the researcher makes sure the model has good

out-of-sample predictive ability. It must be highlighted that in this review we focus

on univariate target variables. There are also multivariate forecasting with big data

which not considered in details here.

The rest of the paper is organised as follows. Section 2 provides a general intro-

duction to big data classification and discusses some issues which might arise when

working with very large datasets. Section 3 provides a review of the existing literature
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and Section 4 offers a discussion of the most widely used econometric methodologies

used in the academic literature. Finally, Section 5 summarises the conclusions.

2 Big Data Description

2.1 Types of Big Data

One possibility to obtain a general classification is to adopt the “4 Vs” classification,

originated by the IBM, which relates to: (i) Volume (Scale of data), (ii) Velocity

(Analysis of streaming data), (iii) Variety (Different forms of data) and (iv) Verac-

ity (Uncertainty of data). However, this classification seems too general to guide

empirical nowcasting applications.

Instead, we adopt Doornik and Hendry (2015) classifications who identify three

main types of big data:

• “Tall” (not so many variables, N, but many observations, T, with T� N). This

is for example the case with tick by tick data on selected financial transactions

or search queries. In this case T is indeed very large in the original time scale,

say seconds, but it should be considered whether it is also large enough in the

time scale of the target macroeconomic variable of the nowcasting exercise, say

quarters.

• “Fat” (many variables, but not so many observations, N � T). Large cross-

sectional databases fall into this category. Such datasets might be useful from

a nowcasting point of view if either T is large enough or the variables allow

proper model estimation (e.g., by means of panel methods).

• “Huge” (many variables and many observations, i.e., very large N and T). This

data type is ideal in the nowcasting context. The main disadvantage is that

big data collection started relatively recently (in the last decade) and does not

allow for a long nowcasting cross-validation. Google Trends, publicly available

summaries of a huge number of specific search queries in Google, are perhaps

the best example in this category, and not by chance the most commonly used

indicators in economic nowcasting exercises. .
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A third possibility to classify big data is to identify the data content. A partic-

ularly useful taxonomy is provided by the statistics division of the United Nations

Economic Commission for Europe (UNECE), which identifies three main types of

big data:

1. Social Networks (human-sourced information): this information is the record

of human experiences, by now almost entirely digitally stored in personal com-

puters or social networks. Data, typically, loosely structured and often un-

governed, include:

• Social Networks: Facebook, Twitter, Tumblr etc.

• Blogs and comments

• Personal documents

• Pictures: Instagram, Flickr, Picasa etc.

• Videos: Youtube etc.

• Internet searches

• Mobile data content: text messages

• User-generated maps

• E-mail

2. Traditional Business systems (process-mediated data): these processes

record and monitor business events of interest, such as registering a customer,

manufacturing a product, taking an order, etc. The process-mediated data thus

collected by either private or public institutions is highly structured and in-

cludes transactions, reference tables and relationships, as well as the metadata

that sets its context. Traditional business data is the vast majority of what IT

managed and processed, in both operational and BI systems. Usually struc-

tured and stored in relational database systems, including also ”Administrative

data”, it can be grouped into:

• Data produced by Public Agencies: medical records, social insurance, etc.
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• Data produced by businesses: commercial transactions, banking/stock

records, e-commerce, credit cards, etc.

3. Internet of Things (machine-generated data): derived from sensors and ma-

chines used to measure and record the events and situations in the physical

world. It is becoming an increasingly important component of the informa-

tion stored and processed by many businesses. Its well-structured nature is

suitable for computer processing, but its size and speed is beyond traditional

approaches.

• Data from sensors: Fixed sensors (Home automation, Weather/pollution

sensors, Traffic sensors/webcam, etc.) or Mobile sensors (tracking: Mobile

phone location, Cars, Satellite images, etc.)

• Data from computer systems: Logs, Web logs, etc.

From an economic nowcasting point of view, all the three types of big data are

potentially relevant. For example, selected internet searches and/or twits (Social

Networks), credit card transactions (Traditional business systems), or number of

navigating commercial vessels in a certain area (Internet of things) could all provide

useful leading indicators for the GDP growth of a country.

2.2 Issues with Big Data

There is an ongoing discussion regarding the advantages and disadvantages of big

data. Mainly, the main advantage is the timely nature of these sources which allow for

a high frequency analysis (in nowcasting or finance context). However, the researcher

must take extra care to avoid the big data hubris which states that ”the often implicit

assumption that big data are a substitute for, rather than a supplement to, traditional

data collection and analysis (Lazer et al., 2014). It must be noted that we think

of big data as complements rather than substitutes for more common coincident

and leading indicators. In this section, we distinguish data related issues and more

methodological potential problems with the use of big data.

A first issue concerns data availability. As it is clear from the data categorisation

described previously, most data pass through private providers and are related to
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personal aspects. Hence, continuity of data provision cannot be guaranteed. For

example, Google could stop providing Google Trends, or at least no longer make

them available for free. In particular, recently Google stop releasing Google Trends

at a weekly frequency when the sample spans more than 3 or 4 years. Another

concern related to data availability is the start date, which is often quite recent for

big data. For example, Google Trends data is available from 2004 onwards.

A second issue s that both the size and the quality of internet data keeps changing

over time, in general much faster than for standard data collection. For example,

applications such as Twitter or WhatsApp were not available just a few years ago,

and the number of their users increased exponentially, in particular in the first period

after their introduction. Similarly, other applications can be gradually dismissed or

used for different uses. For example, the fraction of goods sold by EBay through

proper auctions is progressively declining over time, being replaced by other price

formation mechanisms.

A third issue is that data could not be available in a numerical format, or not in

a directly usable numerical format. A similar issue emerges with standard surveys,

for example on economic conditions, where discrete answers from a large number of

respondents have to be somewhat summarised and transformed into a continuous

index. However, the problem is more common and relevant with internet data.

A final issue, again common also with standard data but more pervasive in inter-

net data due to their high sampling frequency and broad collection set, relates to data

irregularities (outliers, working days effects, missing observations, etc.) and presence

of seasonal / periodic patterns, which require properly de-noising and smoothing the

data.

Overall, our suggestion is to take a pragmatic approach that balances potential

gains and costs from the use of big data for nowcasting. Hence, for a specific target

variable of interest, such as GDP growth or unemployment, it is worth assessing

the marginal gains of big data based indicators that are rather promptly available

(such as Google Trends or other variables used in previous studies and made publicly

available) with respect to more standard indicators based on soft and hard data.
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3 Review of Existing Literature

3.1 Big Data in Macroeconomics

In this section we briefly review academic papers which employ big data for (i)

unemployment, (ii) GDP, (iii) inflation, (iv) surveys, (v) financial variables, and (iv)

other studies.

3.1.1 Unemployment

Choi and Varian (2009a) and Choi and Varian (2009b) illustrate the ability of Google

Trends to predict the present (nowcasting) using daily and weekly reports of Google

Trends. In particular, they claim that people who lose their jobs search the internet

for job ads. Therefore, the increasing volume of Google search queries for job-related

keywords potentially has an impact on forecasting/nowcasting the initial claims.

Askitas and Zimmermann (2009) suggest an innovative method of using data on

internet activity to predict economic behavior in a timely manner, which is difficult

at times of structural change. They show a strong correlation between keyword

searches and unemployment rates using monthly German data.

D’Amuri and Marcucci (2012) suggest the use of an index of Internet job-search

intensity (the Google Index, GI) as the best leading indicator to predict the US

monthly unemployment rate. They perform a deep out-of-sample forecasting com-

parison analyzing many models that adopt their leading indicator, the more standard

initial claims or combinations of both. They find that models augmented with the

GI outperform the traditional ones in predicting the unemployment rate for differ-

ent out-of-sample intervals that start before, during and after the Great Recession.

Google-based models also outperform standard ones in most state-level forecasts and

in comparison with the Survey of Professional Forecasters. These results survive a

falsification test and are also confirmed when employing different keywords.

Ross (2013) investigates the issues of identifying and extracting keywords from

Google Trends relevant to economic variables. He suggests the backward induction

method which identifies relevant keywords by extracting these from variable relevant

websites. This backward induction method was applied to nowcast UK unemploy-

ment growth using a small set of keywords. The majority of keywords identified
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using the backward induction method outperformed the competing models in terms

of in-sample and out-of-sample tests of predictability indicating that the backward

induction method is effective in identifying relevant keywords.

3.1.2 GDP and Components

Galbraith and Tkacz (2015) assess the usefulness of a large set of electronic pay-

ments data comprising debit and credit card transactions, as well as cheques that

clear through the banking system, as potential indicators of current GDP growth in

Canada. These variables capture a broad range of spending activity and are available

on a very timely basis, making them suitable current indicators. While every trans-

action made with these payment mechanisms is in principle observable, the data are

aggregated for macroeconomic forecasting. Controlling for the release dates of each

of a set of indicators, they generate nowcasts of GDP growth for a given quarter

over a span of five months, which is the period over which interest in nowcasts would

exist. They find that nowcast errors fall by about 65 per cent between the first and

final nowcast. Among the payments variables considered, debit card transactions

appear to produce the greatest improvements in forecast accuracy.

Schmidt and Vosen (2011) introduce an indicator for private consumption based

on search query time series provided by Google Trends. The indicator is based on

factors extracted from consumption-related search categories of the Google Trends

application Insights for Search. The forecasting performance of this indicator is as-

sessed relative to the two most common survey-based indicators - the University of

Michigan Consumer Sentiment Index and the Conference Board Consumer Confi-

dence Index. The results show that in almost all conducted in-sample and out-of-

sample forecasting experiments the Google indicator outperforms the survey-based

indicators.

Koop and Onorante (2013) suggest to nowcast using dynamic model selection

(DMS) methods which allow for model switching between time-varying parameter

regression models. This is potentially useful in an environment of coefficient in-

stability and over-parameterisation which can arise when forecasting with Google

variables. They allow for the model switching to be controlled by the Google vari-

ables through Google probabilities. That is, instead of using Google variables as
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regressors, they allow them to determine which nowcasting model should be used

at each point in time. In an empirical exercise involving nine major monthly US

macroeconomic variables, they find that DMS methods provide large improvements

in nowcasting; the variables are: inflation, industrial production, unemployment,

wage inflation, money, supply, financial conditions index (FCI), oil price inflation,

commodity price inflation and the term spread. The use of Google model probabili-

ties within DMS often performs better than conventional DMS. Also, Mitchell et al.

(2013) illustrate how big qualitative survey data might be used in nowcasting.

Recently, Bok et al. (2017) present in detail the methodology underlying the New

York Fed Staff Nowcast to produce early estimates of GDP growth, synthesising a

wide range of macroeconomic data as they become available.

3.1.3 Inflation

Cavallo and Rigobon (2016) examines ways to deal with price data. Potential sources

for micro price data include: Statistical Offices, Scanner Data (e.g. Nielsen), Online

data (e.g. Billion Prices Project) etc. CPI data is useful in measuring inflation

whereas Scanner and Online data can be used in marketing analytics (e.g. market

shares). The Billion Prices Project is an automated web-scraping software where

a robot downloads a public page, extracts the prices information and stores it in a

database. A direct outcome from the papers is that online data is also useful for

nowcasting inflation in the US, Latin America and Euro Area. Links between online

data and CPIs are tracked using VAR models and calculating the cumulative Impulse

Response Functions. The forecasting examples use predictive regressions.

Boettcher (2015) describes in detail technological, data security and legal re-

quirements of web crawlers focusing on Austria. The paper finds that web crawling

technology provides an opportunity to improve statistical data quality and reduce

the overall workload for data collection. Automatic price collection methods enable

statisticians to react better to the increasing amount of data sources on the internet.

Griffioen et al. (2014) discuss the usability of online apparel prices for CPI

analysis. This study falls in the web scraping category and reports the findings and

difficulties of online price collection during a two years period. The advantages of

web scraping clothing prices are: (i) online price collection is cheaper than price
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collection in physical stores, (ii) given the relatively low collection costs, there is

an incentive to rely on ‘big data’ and circumvent small sample problems (e.g. high

sampling variance), (iii) the quality of online data tends to be very good and (iv) some

item characteristics can be easily observed. The main disadvantages of conducting

a data collection of this type are: (i) website changes can lead to data problems,

(ii) the choice of web scraping strategy can affect the information collected and item

representativeness, (iii) weighting information is unavailable, and (iv) the available

information on characteristics may be insufficient, depending on the need for quality

adjustment.

Breton et al. (2015) provide an overview of ONS research into the potential

of using web scraped data for consumer price statistics. The research covers the

collection, manipulation and analysis of web scraped data. As before, the main

benefits of web scraped data are identified as follows: (i) reduced collection costs, (ii)

increased coverage (i.e. more basket items), (iii) increased frequency, (iv) production

of new or complimentary outputs/indices, and (v) improved ability to respond to new

challenges. ONS use web scraped data to calculate price indices which: (i) expand the

number of items used, (ii) expand the number of days considered, and (iii) expand

both the number of items and days considered. The construction of this sort of

indices can be useful to economists and policymakers.

3.1.4 Surveys

Nyman et al. (2014a) investigate ways to use big data in systemic risk management.

News and narratives are key drivers behind economic and financial activity. Their

news data consists of (i) daily comments on market events, (ii) weekly economic

research reports and (iii) Reuters news. Machine Learning and Principal Components

are included in the methodology in order to calculate the consensus indexes based

on the above sources. Their findings include that weekly economic research reports

could potentially forecast the Michigan Consumer Index and daily comments on

market events could potentially forecast market volatility.

Nyman et al. (2014b) introduce the Directed Algorithmic Text Analysis and show

that this methodology can improve considerably on consensus economic forecasts

of the Michigan Consumer Index Survey. The approach is based upon searching
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for particular terms in textual data bases. In contrast to econometric approaches,

their methodology is based upon a theory of human decision making under radical

uncertainty. The search is directed by the theory. This direction dramatically reduces

the dimensionality of the search. They look for words which convey a very limited

number of emotions. As in other approaches, they also use regression analysis, but

the choice of variables comes from the underlying theory of decision making.

3.1.5 Financial variables

Apart from Google Trends, economic and financial researchers have also started using

Twitter posts about various economics and financial news. Cerchiello and Giudici

(2014) investigate how the quality of financial tweets can be measured. They suggest

that a Google Scholar ‘h-index’ type measure allows for improved nowcasting of

financial variables using Twitter texts. The Twitter users are ranked according to

their ‘h-index’ and confidence intervals are constructed to decide whether top Twitter

users are significantly different. Twitter data are collected and R language’s TwitteR

package is adopted. Their methodology lies in the field of loss data modelling.

Heston and Sinha (2014), even though it is not a macroeconomics application,

use a dataset of over 900,000 news stories to test whether news can predict stock

returns. They find that firms with no news have distinctly different average future

returns than firms with news. Confirming previous research, daily news predicts

stock returns for only 1-2 days. But weekly news predicts stock returns for a quarter

year. Positive news stories increase stock returns quickly, but negative stories have

a long-delayed reaction.

3.1.6 Other studies

Big Data offers potential benefits for statistical modelling, but confronts problems

like an excess of false positives, mistaking correlations for causes, ignoring sampling

biases, and selecting by inappropriate methods. Doornik and Hendry (2015) consider

the many important requirements when searching for a data-based relationship us-

ing Big Data. Paramount considerations include embedding relationships in general

initial models, possibly restricting the number of variables to be selected over by non-

statistical criteria (the formulation problem), using good quality data on all variables,
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analyzed with tight significance levels by a powerful selection procedure, retaining

available theory insights (the selection problem) while testing for relationships being

well specified and invariant to shifts in explanatory variables (the evaluation prob-

lem), using a viable approach that resolves the computational problem of immense

numbers of possible models.

According to Bendler et al. (2014), people’s tweeting behavior can be attributed

to points of interest in their vicinity. This relationship can be used to identify the

veracity of a social media data set. Twitter patterns are recurrent and their stability

is an indicator for data certainty. Datasets with high stability estimates can be

reliably used in empirical analyses.

Schubert (2015) in a recent presentation highlights the effect of big data on eco-

nomic policy decision-making. In the future, macroeconomic indicators (such as

unemployment), economic sentiments, house indexes and consumer price dynamics

will be greatly influenced by the use of internet based data analysis.

Most of the above discussed papers are based on Google data. Lazer et al. (2014)

provide a set of warnings, discussing the large errors in flu prediction using Google

data, and how they could be reduced. Google Flu Trend overestimated the influenza-

like illnesses during 2012-2013. Given the way Google Trends are constructed, they

can be sometimes harmful in forecasting if not properly managed.

In the AAPOR (2015) report, the discussion on big data issues continues. Big

Data can have positive effect on timeliness. The effects on the other quality dimen-

sions will depend on the data source and the user needs. It is also mentioned that

some National Statistical Institutes in Europe are now using internet robots to collect

prices from the web or scanner data. Particularly, scanner data is used in the CPI

analysis in Sweden and internet robots are used in Netherlands (also see Griffioen, de

Haan and Willenborg (2015). The characteristics of big data are analysed including

volume, velocity and variety. Also, there is an extensive discussion on the benefits

(and the potential risks) of using big data in statistical analysis.

Baker at al. (2016) develop a new index of economic policy uncertainty (EPU)

based on newspaper coverage frequency. Several types of evidence – including human

readings of 12,000 newspaper articles – indicate that this index proxies for movements

in policy-related economic uncertainty. The index spikes near tight presidential elec-

tions, Gulf Wars I and II, the 9/11 attacks, the failure of Lehman Brothers, the 2011

15



debt-ceiling dispute and other major battles over fiscal policy. Using firm-level data,

they find that policy uncertainty raises stock price volatility and reduces investment

and employment in policy-sensitive sectors like defense, healthcare, and infrastruc-

ture construction. At the macro level, policy uncertainty innovations foreshadow

declines in investment, output, and employment in the United States and, in a panel

VAR setting, for 12 major economies. Extending the index back to 1900, EPU rose

dramatically in the 1930s (from late 1931) and has drifted upwards since the 1960s.

3.2 Econometric Methodologies for Big Data in Macroeco-

nomics

As we see in Doornik and Hendry (2015), big data offers benefits for statistical

modelling, but could lead to a bias result because of an excess of false positives,

mistaking correlations for causes, ignoring sampling biases, and selecting by inap-

propriate methods. When using big data in forecasting the research must be alert

that there might be embedding relationships in general initial models, poor quality

data on some of the variables, not enough theoretical insights and computational

problems due to the number of possible models.

Tibshirani (1996) proposes a new method for estimation in linear models. The

LASSO minimises the residual sum of squares subject to the sum of the absolute

value of the coefficients being less than a constant. Because of the nature of this

constraint it tends to produce some coefficients that are exactly 0 and hence gives

more interpretable models. Simulation studies suggest that the lasso enjoys some of

the favourable properties of both subset selection and ridge regression. It produces

interpretable models like subset selection and exhibits the stability of ridge regression.

Efron, Hastie, Johnstone and Tibshirani (2004) introduced Least Angle Regres-

sion (LARS), a useful and less greedy version of traditional forward selection meth-

ods. Three main properties are derived: (1) A simple modification of the LARS

algorithm implements the LASSO, an attractive version of ordinary least squares

that constrains the sum of the absolute regression coefficients; the LARS modifi-

cation calculates all possible Lasso estimates for a given problem. (2) A different

LARS modification efficiently implements Forward Stagewise linear regression. (3)

A simple approximation for the degrees of freedom of a LARS estimate is available.
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LARS and its variants are computationally efficient.

Bai and Ng (2008) suggest to estimate the factors used in the forecasting equa-

tion taking into account the goal of forecasting a specific series. Hence, principal

components are extracted from ”targeted predictors”, selected using hard and soft

thresholding rules. They consider the LASSO and the Elastic Net as soft-thresholding

rules, special cases as we said of the LARS algorithm developed in Efron et al. (2004).

Bai and Ng (2009) note that when it is necessary to select predictors from a large

feasible set with no natural ordering, evaluating all possible combinations of predic-

tors can be so computationally costly to become unfeasible. They suggest various

forms of ”boosting” to select the predictors in factor-augmented autoregressions, in-

cluding a componentwise approach that treats each lag as a separate variable, and a

block-wise approach that treats lags of the same variable jointly. Boosting is a pro-

cedure that estimates an unknown function, especially the conditional mean, using

M stage-wise regressions.

Buhlmann and Yu (2006) propose Sparse Boosting which is a variant on boost-

ing with the squared error loss. Sparse boosting yields sparser solutions than the

previously proposed boosting by minimizing some penalized `2-loss functions, the

FPE model selection criteria, through small step gradient descent. Although boost-

ing may give already relatively sparse solutions, for example corresponding to the

soft-thresholding estimator in orthogonal linear models, there is sometimes a desire

for more sparseness to increase prediction accuracy and ability for better variable

selection: such goals can be achieved with Sparse Boosting.

Candes and Tao (2007) suggest the Dantzig Selector to estimate β in y =

Xβ + ε which is the solution to the `1 regularization problem: min
∥∥∥β̃∥∥∥

`1
subject

to ‖X∗r‖`∞ ≤ (1 + t−1)
√

2 log pσ where r is the residual vector, t is a positive scalar,

p is the dimension of X and σ is the standard deviation of ε. They show that even

if the number of time series observations is much less than p, the estimator achieves

a loss within a logarithmic factor of the ideal mean squared error one would achieve

with an oracle which would supply perfect information about which coordinates are

nonzero, and which were above the noise level. However, Bickel (2009) shows that,

under a sparsity scenario, the LASSO estimator and the Dantzig selector exhibit

similar behavior.

Avalos, Grandvalet and Ambroise (2007) suggest a method for function estima-
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tion and variable selection, specifically designed for additive models fitted by cubic

splines. This method involves regularising additive models using the `1-norm, which

generalizes the lasso to the nonparametric setting. As in the linear case, it shrinks

coefficients and produces some coefficients that are exactly zero. It gives parsimo-

nious models, selects significant variables, and reveals nonlinearities in the effects of

predictors.

Khan (2007) considers the problem of building a linear prediction model when

the number of candidate predictors is large and the data possibly contains anomalies

that are difficult to visualise and clean. The aim of the study is to predict the non-

outlying cases. Therefore, a method that is robust and scalable at the same time

is necessary. They consider the stepwise algorithm LARS which is computationally

very efficient but sensitive to outliers. They introduce two different approaches to

robustify LARS. The plug-in approach replaces the classical correlations in LARS

by robust correlation estimates. The cleaning approach first transforms the dataset

by shrinking the outliers toward the bulk of the data and then applies LARS to the

transformed data.

Keerthi and Shevade (2007) provide an efficient algorithm for tracking the solu-

tion curve of sparse logistic regression with respect to the regularization parameter.

The algorithm is based on approximating the logistic regression loss by a piecewise

quadratic function and then applying a correction to get to the true path.

Haung, Ma and Zhang (2008) study the asymptotic properties of the adaptive

LASSO estimators in sparse, high-dimensional, linear regression models when the

number of covariates may increase with the sample size. They consider variable se-

lection using the adaptive LASSO, where the `1-norms in the penalty are re-weighted

by data dependent weights. They show that, if a reasonable initial estimator is avail-

able, under appropriate conditions, the adaptive Lasso correctly selects covariates

with nonzero coefficients with probability converging to one, and that the estimators

of nonzero coefficients have the same asymptotic distribution they would have if the

zero coefficients were known in advance.

Van De Greer (2008) considers high-dimensional generalized linear models with

Lipschitz loss functions, and proves a nonasymptotic oracle inequality for the empir-

ical risk minimizer with LASSO penalty. The penalty is based on the coefficients in

the linear predictor, after normalization with the empirical norm.
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Lv and Fan (2009) study the properties of regularization methods in model selec-

tion and sparse recovery problems under the unified framework of regularized least

squares with concave penalties. For model selection, they establish conditions under

which a regularized least squares estimator enjoys a nonasymptotic property, called

the weak oracle property, where the dimensionality can grow exponentially with

sample size. For sparse recovery, they present a sufficient condition that ensures the

recoverability of the sparsest solution.

Fraley and Hesterberg (2009) discuss formulations of LARS and LASSO algo-

rithms that extend to datasets in which the number of observations could be so

large that it would not be possible to access the matrix of predictors as a unit in

computations. Their methods require a single pass through the data for orthogonal

transformation, effectively reducing the dimension of the computations required to

obtain the regression coefficients and residual sum of squares to the number of pre-

dictors, rather than the number of observations. This method could be of particular

importance when dealing with big data.

Zhang (2010) proposes MC+, a fast, continuous, nearly unbiased and accurate

method of penalized variable selection in high-dimensional linear regression. The

MC+ has two elements: a minimax concave penalty (MCP) and a penalized linear

unbiased selection (PLUS) algorithm. The MCP provides the convexity of the penal-

ized loss in sparse regions to the greatest extent given certain thresholds for variable

selection and unbiasedness. The PLUS computes multiple exact local minimizers of

a possibly nonconvex penalized loss function in a certain main branch of the graph

of critical points of the penalized loss. Simulation results support their claim of su-

perior variable selection properties and demonstrate the computational efficiency of

the proposed method.

Finally, Hesterberg, Choi, Meier and Fraley (2008) offer a detailed review of the

least angle and `1-1 penalized regression.

From another, more econometric, perspective we also have the methods of Prin-

cipal Components, Partial Least Squares and Bayesian Regression. Factor methods

have been at the forefront of developments in forecasting with large data sets and in

fact started this literature with the influential work of Stock and Watson (2002a).

The defining characteristic of most factor methods is that relatively few summaries of

the large data sets are used in forecasting equations which thereby become standard
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forecasting equations as they only involve a few explanatory variables. The use of

principal components (PC) for the estimation of factor models is, by far, the most

popular factor extraction method. It has been popularised by Stock and Watson

(2002a) and Stock and Watson (2002b), in the context of large data sets, although

the idea had been well established in the traditional multivariate statistical literature.

One alternative is dynamic principal components, which, as a method of factor

extraction, has been suggested in a series of papers by Forni, Hallin, Lippi and

Reichlin (see, e.g., Forni, Hallin, Lippi and Reichlin (2000) among others). Dynamic

principal components are extracted in similar fashion to static principal components

but , instead of the second moment matrix, the spectral density matrices of the data

at various frequencies are used. The components are then used to construct estimates

of the common component of the data set, which is a function of the unobserved

factors. This method uses leads of the data and, as a result, its application to

forecasting has been slow for obvious reasons. Recent work by the developers of the

method has addressed this issue (see, e.g., Forni, Hallin, Lippi and Reichlin (2005)).

However, overall, empirical evidence suggests that static PC are a more effective and

robust technique for forecasting.

Ng (2013) reviews methods for selecting empirically relevant predictors from a set

of N potentially relevant ones for the purpose of forecasting a scalar time series. The

conventional case when N is smaller than the sample size T is discussed along with

the opposite case. Regularisation and dimension reduction methods are reviewed in

depth. Irrespective of the model size, there is an unavoidable tension between pre-

diction accuracy and consistent model determination. Ng shows via simulations the

improved forecasting performance of selected methods in a one step-ahead horizon.

Barigozzi and Brownless (2013) propose a novel network analysis techniques for

multivariate time series. They define the network of a multivariate time series as a

graph where nodes denote the components of the process and edges denote nonzero

long run partial correlation between two components. For estimation, they introduce

an algorithm called nets, based on a two step LASSO regression that allows to

estimate large sparse long run partial correlation matrices. The procedure is based

on a VAR approximation of the process and its spectral density. They analyze

the large sample properties of the estimator and establish conditions for consistent

selection and estimation of the nonzero long run partial correlations.
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Kim and Swanson (2016) examine whether big data are useful for modelling

low frequency macroeconomic variables such as unemployment, GDP and inflation.

Using Independent Component Analysis (ICA) and Sparse Principal Component

Analysis (SPCA) to reduce the dimension of the model, the authors find that various

of their standard benchmarks (including AR models and model averaging) do not

dominate more complicated nonlinear methods. Their findings suggest that SPCA

(applied using big data) yields Mean Squared Forecast Error-best prediction models

in many cases, particularly when coupled with shrinkage. This result provides strong

new evidence on the usefulness of sophisticated factor based forecasting and of big

data in macroeconometric forecasting.

Partial least squares (PLS) is a relatively new method for estimating regression

equations, introduced in order to facilitate the estimation of multiple regressions

when there is a large, but finite, amount of regressors. Herman Wold and co-workers

introduced PLS regression between 1975 and 1982, see, e.g., Wold (1980). Since then

it has received much attention in a variety of disciplines, especially in chemometrics,

outside of economics. The basic idea is similar to principal component analysis in

that factors or components, which are linear combinations of the original regression

variables, are used, instead of the original variables, as regressors. A major difference

between PC and PLS is that, whereas in PC regressions the factors are constructed

taking into account only the values of the independent variables, in PLS the rela-

tionship between the dependent and the independent variables is considered as well

in constructing the factors. PLS regression does not seem to have been explicitly

considered for data sets with a very large number of series.

Kelly and Pruitt (2015) also offer a discussion of PLS and a slight generalization,

labeled 3PRF, which can be easily implemented in three steps, each based on simple

OLS regression. Hepenstrick and Marcellino (2016) introduce the mixed frequency

version of 3PRF and show that it works quite well for nowcasting GDP growth in

many countries, based on datasets of over 800 indicators.

Bayesian regression (BR) is an alternative standard tool for estimation and in-

ference on the parameters of econometric models, and there exists a large variety

of approaches for implementing it. The starting point is the specification of a prior

distribution for the underlying parameters. Once this is in place, standard Bayesian

analysis proceeds by incorporating the likelihood from the observed data to obtain a
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posterior distribution for the model parameters, which can then be used for a variety

of inferential purposes and for forecasting. A special case of the BR is the shrink-

age estimator, which shrinks the OLS estimators towards zero, enabling a reduction

in variance at the cost of some bias. The variance reduction is a major feature of

Bayesian regression that makes it useful in forecasting when large data sets are avail-

able. BR can be implemented with Ridge or LASSO estimation; see De Mol et al.

(2006) and Groen and Kapetanios (2016) for a comparison of PLS and BR.

Braaksma and Zeelenberg (2015) discuss machine-learning techniques which could

be used alongside more traditional methods like Bayesian techniques in the analysis of

big data. Based on the experience at Statistics Netherlands they argue that National

Statistics Institutes should not be afraid to use these methods, provided that their

use is documented and made transparent to users.

3.3 Nowcasting in Macroeconomics

Nowcasting, which is coined by combining the terms ”Now” and ”Forecasting”, has

recently become popular in economics due to the increased demand of timely short-

term analysis and forecasts of the economy. Data on key measures, such as GDP

and its components, are only released after a long delay, and are then subject to

subsequent revisions. There is therefore the need to use available, timely and reliable

information to form preliminary estimates, i.e., nowcasts, for the key variables of

interest.

There is by now a vast literature on nowcasting in macroeconomics, see, e.g., the

detailed surveys by Bańbura, Giannone and Reichlin (2011), Bańbura, Giannone,

Modugno and Reichlin (2013) and Foroni and Marcellino (2013, 2014). Broadly

speaking, nowcasts rely either on regression based methods (Bridge, MIDAS, UMI-

DAS) or on the Kalman filter applied to handle mixed frequency, and other data

irregularities, in VAR and factor models. Both classical and Bayesian estimation

methods are available. In this Section we provide a rapid overview of the main

contributions and results.

Ghysels et al. (2004) introduced the Mixed Data Sampling (MIDAS) regres-

sion models, which are now commonly used in nowcasting applications. The regres-

sions involve time series data sampled at different frequencies. Technically speaking,
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MIDAS models specify conditional expectations as a distributed lag of regressors

recorded at some higher sampling frequencies.

Andreou et al. (2013) introduce easy-to-implement, regression-based methods for

predicting quarterly real economic activity that use daily financial data and rely on

forecast combinations of MIDAS regressions. They also extract a novel small set of

daily financial factors from a large panel of about 1000 daily financial assets. Their

analysis is designed to elucidate the value of daily financial information and provide

real-time forecast updates of the current (nowcasting) and future quarters of real

GDP growth.

Foroni, Marcellino and Schumacher (2015) discuss the pros and cons of unre-

stricted lag polynomials in MIDAS regressions. They derive unrestricted MIDAS

(U-MIDAS) regressions from linear high frequency models, discuss identification is-

sues and show that their parameters can be estimated by ordinary least squares.

In Monte Carlo experiments, they compare U-MIDAS with MIDAS with functional

distributed lags estimated by non-linear least squares. It is shown that U-MIDAS

performs better than MIDAS for small differences in sampling frequencies. How-

ever, with large differing sampling frequencies, distributed lag functions outperform

unrestricted polynomials. The good performance of U-MIDAS for small differences

in frequency is confirmed in empirical applications on nowcasting and short-term

forecasting euro area and US gross domestic product growth by using monthly indi-

cators.

Evans (2005) describes a method for calculating daily real-time estimates of the

current state of the U.S. economy. The estimates are computed from data on sched-

uled U.S. macroeconomic announcements using an econometric model that allows for

variable reporting lags, temporal aggregation, and other complications in the data.

The model can be applied to find real-time estimates of GDP, inflation, unemploy-

ment or any other macroeconomic variable of interest. Daily real-time estimates of

GDP are constructed that incorporate public information known on the day in ques-

tion. The real-time estimates produced by the model are uniquely-suited to studying

how perceived developments the macro economy are linked to asset prices over a wide

range of frequencies. The estimates also provide, for the first time, daily time series

that can be used in practical policy decisions.

Giannone, Reichlin and Small (2008) has shown that the process of nowcasting
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can be formalized in a statistical model which produces predictions without the need

for informal judgement. Their method tracks the real-time flow of the type of in-

formation monitored by central banks because it can handle large data sets with

staggered data-release dates. Each time new data are released, the nowcasts are up-

dated on the basis of progressively larger data sets that, reflecting the unsynchronized

data release dates, have a “jagged edge” across the most recent months.

Angelini, Bańbura and Runstler (2008) estimate and forecast growth in euro

area monthly GDP and its components from a dynamic factor model which han-

dles unbalanced data sets in an efficient way. They extend the model to integrate

interpolation and forecasting together with cross-equation accounting identities and

show its improved forecasting abilities.

Angelini, Camba-Mendez, Giannone and Reichlin (2011) evaluate models that

exploit timely monthly releases to compute early estimates of current quarter GDP

(nowcasting) in the euro area. Their method consists in bridging quarterly GDP with

monthly data via a regression on factors extracted from a large panel of monthly series

with different publication lags. They show that bridging via factors produces more

accurate estimates than traditional bridge equations. They also show that survey

data and other ‘soft’ information are valuable for nowcasting.

Giannone, Reichlin and Simonelli (2009) assess the role of qualitative surveys for

the early estimation of GDP in the Euro Area in a model-based automated procedure

which exploits the timeliness of their release. The analysis is conducted using both

a historical evaluation and a real-time case study on the current conjuncture.

Altissimo, Cristadoro, Forni, Lippi and Veronese (2010) develop a method to

obtain smoothing of a stationary time series by using only contemporaneous values

of a large data set, so that no end-of-sample deterioration occurs. Their method

is applied to the construction of New Eurocoin, an indicator of economic activity

for the euro area, which is an estimate, in real time, of the medium- to long-run

component of GDP growth. As their data set is monthly and most of the series are

updated with a short delay, they are able to produce a monthly real-time indicator

with good out-of-sample forecasting properties.

Rossiter (2010) constructs simple mixed-frequency forecasting equations for quar-

terly global output, imports, and inflation using the monthly global Purchasing Man-

agers Index (PMI). When compared against two benchmark models, the results show
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that the PMIs are useful for forecasting developments in the global economy. As the

forecasts are updated throughout the quarter with the monthly release of the PMI,

forecasting performance generally improves.

Yiu and Chow (2010) apply the factor model proposed by Giannone et al. (2008)

on a large data set to nowcast (i.e. current-quarter forecast) the annual growth rate

of China’s quarterly GDP. The identified model generates out-of-sample nowcasts for

China’s GDP with smaller mean-squared forecast errors than those of the random

walk benchmark. Moreover, using the factor model, they find that interest rate data

is the single most important block of information to improve estimates of current-

quarter GDP in China. Other important blocks are consumer and retail prices data

and fixed asset investment indicators

Bańbura and Runstler (2011) derive forecast weights and uncertainty measures

for assessing the roles of individual series in a dynamic factor model for forecasting

the euro area GDP from monthly indicators. The use of the Kalman smoother

allows to deal with publication lags when calculating the above measures. They find

that surveys and financial data contain important information for the GDP forecasts

beyond the monthly real activity measures. However, this is discovered only if their

more timely publication is taken into account properly. Differences in publication

lags play a very important role and should be considered in forecast evaluation.

Mariano and Murasawa (2003) introduce a small scale mixed-frequency factor

model, developed in a state space framework and estimated by means of the Kalman

filer, to extend the Stock–Watson coincident index for the US economy, by combining

quarterly real GDP and monthly coincident business cycle indicators.

Mariano and Murasawa (2010) estimate mixed frequency Gaussian vector autore-

gression (VAR) and factor models for latent monthly real GDP and other coincident

indicators. For maximum likelihood estimation of the VAR model, the expectation-

maximization (EM) algorithm helps in finding a good starting value for a quasi-

Newton method. The smoothed estimate of latent monthly real GDP is a natural

extension of the Stock-Watson coincident index.

Frale, Marcellino and Mazzi (2011) propose the EUROMIND, a new monthly

indicator of the euro area economic conditions, based on tracking real gross do-

mestic product monthly, relying on information provided in the Eurostat Euro-IND

database. EUROMIND, whose underlying methodology extends to the large dataset
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case the model by Mariano and Murasawa (2003), has several original economic and

statistical features. First, it considers both the output and the expenditure sides of

the economy, as it provides a monthly estimate of the value added of the six branches

of economic activity and of the main gross domestic product components by type of

expenditure (final consumption, gross capital formation and net exports), and com-

bines the estimates with optimal weights reflecting their relative precision. Second,

the indicator is based on information at both the monthly and the quarterly level,

modelled with a dynamic factor specification cast in state space form. Third, since

estimation of the multivariate dynamic factor model with mixed frequency data can

be numerically complex, computational efficiency is achieved by implementing uni-

variate filtering and smoothing procedures. Finally, special attention is paid to chain

linking and its implications, via a multistep procedure that exploits the additivity of

the volume measures expressed at the prices of the previous year.

Aastveit and Trovik (2012) find that asset prices on Oslo Stock Exchange is the

single most important block of data to improve estimates of current quarter GDP in

Norway. They use an approximate dynamic factor model that is able to handle new

information as it is released, thus the marginal impact on mean square nowcasting

error can be studied for a large number of variables. The high informational content

in asset prices is explained by reference to the small size of companies on Oslo Stock

Exchange and the small and open nature of the Norwegian economy.

Modugno (2013) proposes a methodology for now-casting and forecasting inflation

using data with a sampling frequency which is higher than monthly. The data are

modeled as a trading day frequency factor model, with missing observations in a state

space representation. In contrast to other existing approaches, the methodology used

in this paper has the advantage of modeling all data within a single unified framework

which allows one to disentangle the model-based news from each data release and

subsequently to assess its impact on the forecast revision. The results show that the

inclusion of high frequency data on energy and raw material prices in their data set

contributes considerably to the gradual improvement of the model performance. As

long as these data sources are included in their data set, the inclusion of financial

variables does not make any considerable improvement to the now-casting accuracy.

Lahiri and Monokroussos (2013) study the role of the well-known monthly diffu-

sion indices produced by the Institute for Supply Management (ISM) in nowcasting
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current quarter US GDP growth. They investigate their marginal impact on the

nowcasts when large unbalanced (jagged edge) macroeconomic data sets are used

to generate them in real time. They find evidence that the ISM indices are help-

ful in improving the nowcasts when new ISM information becomes available at the

beginning of the month, ahead of other monthly indicators. Furthermore, while the

existing literature has focused almost exclusively on manufacturing information, they

establish the increasingly significant role of the recently created non-manufacturing

ISM diffusion indices in such nowcasting contexts.

Foroni and Marcellino (2014) focus on the different methods which have been

proposed in the literature to deal with mixed-frequency and ragged-edge datasets:

bridge equations, MIDAS, and mixed-frequency VAR (MF-VAR) models. They find

that MIDAS with an AR component performs quite well, and outperforms MFVAR at

most horizons. Bridge equations perform well overall. Forecast pooling is superior to

most of the single indicator models overall. Pooling information using factor models

gives even better results. The best results are obtained for the components for

which more economically related monthly indicators are available. Nowcasts of GDP

components can then be combined to obtain nowcasts for the total GDP growth.

Kuzin, Marcellino and Schumacher (2013) also find that pooling nowcasts from

a large set of small mixed frequency models often outperforms nowcasts from single

large models when the target is GDP growth in several industrialised countries.

Aastveit, Gerdrup, Jore and Thorsrud (2014) use U.S. real-time data to produce

combined density nowcasts of quarterly GDP growth, using a system of three com-

monly used model classes: (i) Bridge, (ii) Factor Models and (iii) Mixed-Frequency

VAR. They update the density nowcast for every new data release throughout the

quarter, and highlight the importance of new information for nowcasting. The re-

sults show that the logarithmic score of the predictive densities for U.S. GDP growth

increase almost monotonically, as new information arrives during the quarter. While

the ranking of the model classes changes during the quarter, the combined density

nowcasts always perform well relative to the model classes in terms of both logarith-

mic scores and calibration tests. The density combination approach is superior to a

simple model selection strategy and also performs better in terms of point forecast

evaluation than standard point forecast combinations.

Carriero, Clark and Marcellino (2015) develop a method for producing current
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quarter nowcasts of GDP growth with a (possibly large) range of available within-

the-quarter monthly observations of economic indicators, such as employment and

industrial production, and financial indicators, such as stock prices and interest rates.

In light of existing evidence of time variation in the variances of shocks to gross

domestic product, they consider versions of the model with both constant variances

and stochastic volatility. They use Bayesian methods to estimate the model, to

facilitate providing shrinkage on the (possibly large) set of model parameters and

conveniently generate predictive densities. Their method improves significantly on

auto-regressive models and performs comparably with survey forecasts. In addition,

it provides reliable density forecasts, for which the stochastic volatility specification

is quite useful.

Bragoli, Metelli and Modugno (2014) investigate predictions updates. For ex-

ample, GDP, which belongs to the Unit C1 set of variables, is a quarterly variable

but many other macroeconomic indicators (which most of the times are used in the

prediction of the GDP) are released with a higher frequency, and financial markets

react very strongly to them. However, most of the professional forecasters, includ-

ing the IMF, the OECD, and most central banks, tend to update their forecasts of

economic activity only two to four times a year. The main exception is the Central

Bank of Brazil which is responsible for collecting and publishing a daily survey on

GDP and other variables. The authors try to evaluate the forecasting performance

of the Central Bank of Brazil Survey and compare it with the mechanical forecasts

based on state-of-the-art nowcasting techniques. Results indicate that institutional

forecasts perform as well as model-based forecasts. The latter finding suggests that,

on the one hand, judgmental forecasters do not have computational limitations and

are able to incorporate very quickly new information in a way that is as efficient as

a machine. On the other hand, it confirms what has been found in other studies,

namely that a linear time invariant model does a good job and hence that eventual

nonlinearities, time variations and soft information (such as weather conditions or

government decisions) that could be incorporated by judgment, do not provide new

important information.
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4 Econometric Methodologies for Big Data

In this section, we provide a discussion of available econometric and statistical meth-

ods to exploit big datasets of indicators for nowcasting or forecasting one or more

macroeconomic variables of interest. As it clearly emerged from the previous sections,

this is a complex duty, as standard approaches for variable selection or combination

are no longer computationally feasible in a big data context.

To set the scene, let yt, t = 1, ..., T, be the target variable and xt = (x1t, ..., xNt)
′

be a set of potential predictors, with N very large. We do not assume a particular

data generating process for yt but simply posit the existence of a representation of

the form

yt = a+ g(x1t, ..., xNt) + ut, (1)

which implies that E(ut|x1t, ..., xNt) = 0. We consider an approximating linear rep-

resentation of the form,

yt = a+
N∑
i=1

βixit + ut, (2)

with ut denoting a martingale difference process and where the set of xits can also

contain products of the original indicators in order to provide a better approximation

to (1).

Our main aim is to provide estimates for current and future values of yt. To do

so, we can rely on many approaches, which can be categorised in three main strands.

The first strand aims to provide estimates for β = (β1, ..., βN)′. While ordinary least

squares (OLS) is the benchmark method for doing so, it is clear that if N is large

this is not optimal or even feasible (when N > T ). Therefore, other methods need

to be used. We consider two classes of methods. The first one is sparse regression,

with origins in the machine learning literature, which is discussed in Section 4.1. A

main aim there is to stabilise the variability of the estimated βi. The second class

considers the use of a variety of information criteria such as AIC or BIC to select a

smaller subset of all the available predictors. As the number of possible permutations

of predictors is too large for all permutations to be considered, one needs to consider

efficient algorithms for this selection. This is discussed in Section 4.2.

The second strand consists of reducing the dimension of xt by producing a much
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smaller set of generated regressors, which can then be used to produce nowcasts

and forecasts in standard ways. There are many ways to carry out dimensionality

reduction, and the main ones are discussed in Section 4.31.

The third strand suggests the use of a (possibly very large) set of small models,

one for each available indicator or small subset of them, and then the combination of

the resulting many nowcasts or forecasts. Section 4.4 considers standard methods for

forecast combination, focusing on those that are more promising in a big data context,

and more recent proposals based on either Bayesian or classical model averaging2.

To conclude, it is important to stress that our setup already makes a very crucial

assumption, which is that the available big data are structured as time series. This

is by no means a given since big data can be unstructured timewise.

4.1 Machine Learning

Machine learning is a subfield of computer science that evolved from the study of

pattern recognition and computational learning theory in artificial intelligence. Ma-

chine learning explores the study and construction of algorithms that can learn from

and make predictions on data. This field has pioneered many methods that are

applicable to large datasets. They include penalised regression and boosting that

are discussed in this section but also methods such as principal components that

we discuss later (as they have also been analysed extensively outside the machine

learning literature). One important issue with machine learning analysis relates to

the fact that most work in this field assumes that observations are iid, thereby posing

questions on the validity and applicability of the analysis in a time series context.

4.1.1 Penalised Regression

Penalised regression is one of the most popular ways for sparse regression in the

literature. Various penalties have been suggested in order to effectively estimate

the βi parameters assigning zeros to the variables which should not be used in the

1The above categorisations are not absolute. Some methods have elements that would categorise
them as, e.g., either sparse regression or dimensionality reduction ones. One such example is partial
least squares, discussed in Section 4.3.2.

2The analysis of Bayesian methods is rather limited here, however we refer the reader to Korobilis
(2017) and Koop (2018) for more information.
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regression (meaning that these are not part of the true model) and consequently in

the forecasting exercise. In what follows we denote βN = (β1, ..., βN)′ and xN =

(x1, ..., xN)′.

Ridge Regression

Basic Concept Ridge Regression creates a linear regression model that is pe-

nalised with the L2-norm which is the sum of the squared coefficients. This has the

effect of shrinking the coefficient values (and the complexity of the model) allowing

some coefficients with minor contribution to the response to get close to zero (but

not exactly equal to zero). The parameter estimators, β̂Ridge, are then computed by

solving the following optimisation problem:

min
βN

{
T∑
t=1

(
yt − a− β

′

Nxt,N

)2

+ λ
N∑
i=1

β2
i

}
, (3)

for given values of a and λ. λ is the penalty parameter. OLS corresponds to the

no penalty case, where β̂Ridge → β̂OLS as λ → 0. Also, it can be easily seen that

β̂Ridge → 0 as λ→∞. By centering the columns of x, the intercept becomes α̂ = y.

Therefore, we typically center y, xN and do not include the intercept term.

The variance and bias of the ridge regression estimator can be shown to be

V ar
(
β̂Ridge

)
= σ2Wx

′

NxNW

Bias
(
β̂Ridge

)
= −λWβ

where W =
(
x
′
NxN + λI

)−1
. It can be shown that the total variance (

∑
j V ar

(
β̂j

)
)

is a monotone decreasing sequence with respect to λ, while the total squared bias

(
∑

j Bias
2
(
β̂j

)
) is a monotone increasing sequence with respect to λ.

Relationship with Bayesian Shrinkage Ridge regression shares many com-

mon elements with Bayesian shrinkage. Bayesian regression/shrinkage is a standard

tool for providing inference for β in (2) and there exist a large variety of approaches

for implementing Bayesian regression. We will provide a brief exposition of this
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method. A starting point is the specification of a prior distribution for β. Once this

is in place, standard Bayesian analysis proceeds by incorporating the likelihood from

the observed data to obtain a posterior distribution for β, which can then be used

for a variety of inferential purposes, including, of course, forecasting.

A popular and simple implementation of Bayesian regression results in a shrinkage

estimator for β in (2) given by

β̂BRR = (X ′X + λI)−1X ′y (4)

which is equivalent to that obtained in (3), where X = (x1, ..., xT )′, y = (y1, .., yT )′

and λ is a shrinkage scalar parameter, see e.g. Kapetanios, Marcellino and Venditti

(2015) for details. This shrinkage estimator shrinks the OLS estimator, given by

(X ′X)−1X ′y towards zero, thus enabling a reduction in the variance of the resulting

estimator. This is a major feature of Bayesian regression that makes it useful in

forecasting when large data sets are available. This particular implementation of

Bayesian regression implies that elements of β are small but different from zero

ensuring that all variables in xt are used for forecasting. In this sense, Bayesian

regression can be linked to other data-rich approaches.

It is also worth mentioning that, when N increases, the determinant of X ′X tends

to decrease, and this is particularly true in macroeconomic applications, where the

indicators tend to be correlated. In turn, this creates problems with the inversion of

X ′X and increases the variance of the OLS estimator. Ridge and Bayesian methods

address this issue by replacing X ′X with (X ′X + λI)−1, where the added term λI

regularizes the matrix, making it invertible also when X ′X is close to non-invertible.

Finally, it is worth noting that other implementations of Bayesian shrinkage with

alternative priors lead to estimators that share common elements with other regu-

larisation/sparse regression methods, such as Lasso, as discussed, e.g., in De Mol et

al. (2006).

Main Assumptions The standard OLS assumptions are also required for

Ridge regression.
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Implementation Nowcasting using Ridge regression is straightforward and

easy, in particular when implemented in a direct rather than iterated way (e.g.,

Marcellino, Stock and Watson (2006)). The algorithm can be described in three

steps.

1. Replace the loss function with minβN,h

{∑T
t=1

(
yt − a− β

′

N,hxt−h,N
)2

+ λ
∑N

i=1 |βi,h|
}

,

where h is the forecast horizon of interest, and compute β̂h
Ridge

for each of a

set of values of the tuning parameter λ.

2. Use a cross-validation (CV) scheme to select the preferred tuning parameter,

λ̂, by minimising the cross-validated squared error risk (or directly the MSE

over a rolling window, see e.g. Kapetanios, Marcellino and Venditti (2015)).

3. Using the β̂h
Ridge

associated with λ̂, produce the h − step ahead forecasts as

β̂h
Ridge

xT,N (+α̂).

The above procedure is then recursively repeated in order to obtain the R out-

of-sample forecasts, ŷT+h, ..., ŷT+R+h .

It must be noted here that the above nowcasting implementation algorithm can

be applied in all variable selection methods. Therefore, all the sparse regression

methods which follow can produce nowcast estimates in the same fashion.

Since Ridge regression does not set coefficients exactly to zero (unless λ→∞, in

which case they are all zero), ridge regression cannot perform variable selection and,

even though it might perform well in terms of prediction accuracy, it does not offer

a clear interpretation of the resulting forecasts.

LASSO Regression

Basic Concept Least Absolute Shrinkage and Selection Operator (LASSO)

creates a regression model that is penalised with the L1-norm which is the sum of

the absolute coefficients. Because of the nature of this constraint, it tends to produce

some coefficients that are exactly 0 and hence gives more interpretable models. Sim-

ulation studies suggest that the LASSO enjoys some of the favourable properties of

both subset selection and ridge regression. As originally noted by Tibshirani (1996),
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the lasso regression is better suited for predictor selection compared to the Ridge

regression because the former method performs model/predictors selection keeping

those variables which are more suitable for forecasting. The optimisation problem

now becomes:

min
βN

{
T∑
t=1

(
yt − a− β

′

Nxt,N

)2

+ λ

N∑
i=1

|βi|

}
. (5)

Although we cannot write the explicit formulas for the bias and variance of the

LASSO estimator, the general trend is that the bias increases as λ increases and the

variance decreases as λ increases.

Main Assumptions Following Bühlmann and van de Geer (2011), we sum-

marise the key properties and corresponding assumptions for the LASSO. Consider-

ing the true model in Equation (2), it is:

1

T

T∑
t=1

(
xt,N

(
β̂LASSO − β

))2

= OP

(
N∑
i=1

|βi|
√

log (N) /T

)
, (6)

whereOP (·) is with respect toN ≥ T →∞. This implies that we achieve consistency

of prediction if
∑N

i=1 |βi| �
√
T/ log (N).

Faster convergence rate and estimation error bounds with respect to the L1- or

L2-norm can be achieved using the so-called oracle optimality condition:

1

T

T∑
t=1

(
xt,N

(
β̂LASSO − β

))2

= OP

(
s0φ

−2 log (N) /T
)
,

N∑
i=1

∣∣∣β̂iLASSO − βi∣∣∣q = OP

(
s

1/q
0 φ−2

√
log (N) /T

)
, q = {1, 2} , (7)

where s0 equals the true number of non-zero regression coefficients and φ2 is the

compatibility constant or restricted eigenvalue which is a number depending on the

compatibility between the design and the L1-norm of the regression coefficient. The

above rate is optimal up to the log (N) factor and the restricted eigenvalue φ2.
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Additionally to the oracle optimality and assuming the beta-min condition

min
i∈Sc

0

|βi| � φ−2
√
s0 log (N) /T ,

we obtain the screening variable property

P
[
Ŝ ⊇ S

]
→ 1 (N ≥ T →∞) , (8)

where Ŝ = {i; β̂i
LASSO

6= 0, i = 1, .., N} and S = {i; βi 6= 0, i = 1, .., N}. Consistent

variable selection then means

P
[
Ŝ = S

]
→ 1 (N ≥ T →∞) . (9)

The above facts are summarized in the table below.
Property Design Condition Size of non-zero coef.

Slow Convergence Rate (Eq. (6)) No requirement No requirement

Fast Convergence Rate (Eq. (7)) Compatibility No requirement

Variable Screening (Eq. (8)) Restricted eigenvalue beta-min condition

Variable Selection (Eq. (9)) Neighborhood Stability beta-min condition

Adaptive LASSO

Basic Concept Zou (2006) introduces the adaptive LASSO (A-LASSO) es-

timator where the L1-norms in the penalty are re-weighted. He shows that, if a

reasonable initial estimator is available, under appropriate conditions, the A-LASSO

correctly selects covariates with nonzero coefficients with probability converging to

one, and that the estimators of nonzero coefficients have the same asymptotic distri-

bution they would have if the zero coefficients were known in advance.

The optimisation problem now is:

min
βN

{
T∑
t=1

(
yt − a− β

′

Nxt,N

)2

+ λ
N∑
i=1

ŵi |βi|

}
, (10)

where ŵi = 1/| β̂init,i|γ, β̂init is an initial estimator and γ > 0. Usually, the initial

35



estimator is the LASSO estimator with the constraint parameter tuned in the usual

way with CV scheme as discussed earlier. Then, in the second stage CV is again

used to select the λ parameter in Equation (10).

Main Assumptions Following Haung, Ma and Zhang (2008) we consider the

following conditions to hold for the variable selection and asymptotic normality of

the A-LASSO in large samples.

1. The errors are iid.

2. The initial estimators β̂init,i are rT -consistent for the estimation of certain ηT i:

rT max
i≤N

∣∣∣β̂init,i − ηT,i∣∣∣ = OP (1) , rT →∞

where ηT i are unknown constants depending on βN and satisfy

max
i/∈JT1

|ηT,i| ≤MT2,

{∑
i∈JT1

(
1

|ηT i|
+
MT2

|ηT i|2

)2
}1/2

≤MT1 = o (rT ) .

3. Adaptive irrepresentable condition. For sT1 =
(
|ηT i|−1 sgn (βi) , i ∈ JT1

)′
and

some κ < 1
1

T

∣∣∣∣∣x′iX1

−1∑
T11

sT1

∣∣∣∣∣ ≤ κ

|ηT i|
,∀i /∈ JT1.

4. The constants {kT ,mT , λT ,MT1,MT2, bT1} satisfy

(log T )I{d=1}

{
(log kT )1/d

T 1/2bT1

+ (logmT )1/d T
1/2

λT

(
MT2 +

1

rT

)}
+
MT1λT
bT1T

→ 0.

5. There exists a constant τ1 > 0 such that τT1 ≥ τ1 for all T .

Following Haung et al. (2008), Condition 1 is standard for variable selection in

linear regression. Condition 2 assumes that the initial β̂init,i actually estimates some

proxy ηT,i of βi so that the weights are not too large for β0i 6= 0 and not too small for

β0i = 0. The adaptive irrepresentable condition becomes the strong irrepresentable
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condition for the sign-consistency of the Lasso if the |ηT,i| are identical for all i ≤ N .

Condition 4 restricts the numbers of covariates with zero and nonzero coefficients,

the penalty parameter, and the smallest non-zero coefficient. Condition 5 assumes

that the eigenvalues of ΣT11 are bounded away from zero, which is reasonable since

the number of nonzero covariates is small in a sparse model. If the above conditions

hold, then P
[
β̂A−LASSO = β

]
→ 1 .

Elastic Net

Basic Concept Elastic Net (EN) creates a regression model that is penalised

with both the L1-norm and L2-norm. Introduced by Zou and Hastie (2005), the

elastic net has the effect of effectively shrinking coefficients (as in ridge regression)

and setting some coefficients to zero (as in LASSO). The optimisation problem now

is:

β̂naiveEN = min
βN

{
T∑
t=1

(
yt − a− β

′

Nxt,N

)2

+ λ1

N∑
i=1

|βi|+ λ2

N∑
i=1

β2
i

}
. (11)

The above is called the naive elastic net. A correction which leads to the elastic net

is then

β̂EN = (1 + λ2) β̂naiveEN .

The correction factor (1 + λ2) is best motivated from the orthonormal design where
1
T
x
′
NxN = I. The main advantage of the elastic net is its usefulness when the number

of predictors is much bigger than the number of observations, which is usually the

case in our big data context.

The reason for adding an additional squared L2-norm penalty is motivated by

Zou and Hastie (2005) as follows. For strongly correlated covariates, the LASSO may

select one but typically not both of them (and the non-selected variable can then be

approximated as a linear function of the selected one). From the point of view of

sparsity, this is what we would like to do. However, in terms of interpretation, we

may want to have two even strongly correlated variables among the selected variables:

this is motivated by the idea that we do not want to miss a “true” variable due to

selection of a “non-true” which is highly correlated with the true one.
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SICA

Basic Concept Smooth Integration of Counting and Absolute Deviation (SICA)

was introduced by Lv and Fan (2009). The optimisation problem now is:

β̂SICA = min
βN


T∑
t=1

(
yt − a− β

′

Nxt,N

)2

+ λ
(α + 1)

∑N
i=1 |βi|(

α +
∑N

i=1 |βi|
)
 , (12)

with α = 10−4. With α varying from 0 to∞, this family provides a smooth homotopy

between the L0- and L1-penalties. Each penalty function starts with slope 1 + α−1

at the origin, passes through the point (1,1), and decreases its slope toward zero over

the interval b0,∞).

The above family of penalties satisfy the following condition:

ρ (t) is increasing and concave in t ∈ [0,∞) and has a continuous derivative ρ′ (t)

with ρ′ (0+) ∈ (0,∞). If ρ (t) is dependent on λ, ρ′ (t;λ) is increasing in λ ∈ (0,∞)

and ρ′ (0+) is independent of λ.

The penalties which satisfy the above condition enjoy the unbiasedness, continuity

and sparsity; see Lv and Fan (2009) for more information. The method is attractive

to big data modelling as it avoids the single use of L0-norm which is impractical in

high dimensions.

Hard Thresholding

Basic Concept Zheng, Fan and Lv (2014) consider sparse regression with a

hard thresholding penalty. This approach is motivated by its close connection with

in-line image-regularisation, which can be unrealistic to implement in practice but of

appealing for its sampling properties and computational advantages. The function

to be optimised now is:

QTH(β) =
T∑
t=1

(
yt − a− β

′

Nxt,N

)2

+
1

2
λ2 −

(
λ−

N∑
i=1

|βi|

)2

+

. (13)

In a similar fashion to the restricted eigenvalue condition, Zheng, Fan and Lv

(2014) consider the robust spark condition s < M/2. The robust spark M =
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rsparkc (X) of a T × N design matrix X with bound c is defined as the smallest

number τ such that there exists a subgroup of τ columns from T−1/2X such that

the corresponding submatrix has a singular value less than the given positive con-

stant c. To ensure model identifiability and reduce the instability in the estimated

model we consider the regularised estimator on the union of co-ordinate subspaces

SM/2 =
{
β ∈ RN : β0 ≤M/2

}
(where β0 = # (i|βi 6= 0) denotes the number of non-

zero coefficients) as:

β̂SICA = min
β∈SM/2

QTH(β). (14)

When the size of sparse models exceeds M/2 there is generally no guarantee for model

identifiability. Therefore, three regularity conditions must hold:

1. ut ∼ N (0, σ2IT ) for some positive σ.

2. It holds that s < M/2, s = o(T ) and b = minj∈supβ0 |β0,j| > {
√

16/c2 ∨

1}c−1c2

√
{(2s+ 1) log(Ñ/T )} where M is the robust spark of X with bound

c (as defined above), c2 ≥ σ
√

10 for some positive constant and Ñ = T ∨N .

3.
∑N

i=1 β
2
i is bounded from below by some positive constant and

max#(i|δi 6=0)<M/2,
∑N

i=1 δ
2
i =1 T

−1/2
∑N

i=1 (Xiδi)
2 ≤ c3 for some positive constant c3.

4.1.2 Spike and Slab Regressions

Spike and Slab regressions were originally proposed by Mitchell and Beauchamp

(1988) and recently used by Scott and Varian (2013). The idea is to include an

indicator variable γi = 1 if βi 6= 0 (i.e. the corresponding regressor is included in the

model), and γi = 0 if βi = 0. Denoting the nonzero elements of β by βγ, the spike

and slab prior for β and γ can be written as

p(β, γ, σ2) = p(βγ|γ, σ2)p
(
σ2|γ

)
p (γ)

The vector of indicator variables γ is assumed to have a Bernoulli prior (inde-

pendent across elements)

p (γ) =
∏N

i=1
πγii (1− πi)(1−γi) ,
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so it represents a spike as it places positive probability mass at zero . Conditional

on a particular variable being in the equation (that is, conditional on a posterior

draw for γ), a standard Normal-Gamma conjugate (typically diffuse) prior for the

regression parameters can be used, of the form:

βγ|σ2, γ ∼ N (βγ0, σ
2Ψγ0),

(
σ2
)−1 ∼ Ga(α0/2, δ0/2)

where Ψγ denotes the rows and columns of Ψ for which γi = 1. Then, the conditional

posterior of βγ and σ2 is also Normal-Gamma with closed form parameters

βγ|σ2, γ, y,X ∼ N(β̂γ, σ
2Ψ̂γ),

(
σ2
)−1 |y,X ∼ Ga(α̂/2, δ̂/2) (15)

with

Ψ̂γ =
(
X ′X + Ψ−1

γ0

)−1

β̂γ = Ψ̂γ

(
X ′y + Ψ−1

γ0 βγ0

)
α̂ = α0 +N

δ̂ = δ0 + y′y + β′γ0Ψ−1
γ0 βγ0 + β̂′γΨ̂γβ̂γ.

Because of conjugacy, the marginal distribution of γ can be analytically derived

(up to a proportionality constant ):

p(γ|y,X) ∝ |Ψγ0|−
1
2 p (γ)∣∣∣Ψ̂γ

∣∣∣− 1
2
δ̂N/2−1

. (16)

Standard Monte Carlo algorithms can be used to approximate the joint posterior

density of the parameters and corresponding probabilities.

4.1.3 Boosting

As an alternative to penalised regression, a number of researchers have developed

methods that focus on the predictive power of individual regressors instead of consid-

ering all the N covariates together. This approach has led to a variety of alternative

specification methods sometimes referred to collectively as “greedy methods”. In
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this context, regressors are chosen sequentially based on their individual ability to

explain the dependent variable. Perhaps the most widely known of such methods,

developed in the machine learning literature, is “boosting” whose statistical prop-

erties have received considerable attention (Friedman, Hastie and Tibshirani (2000)

and Friedman (2001)). Boosting constructs a regression function by considering all

regressors one by one in a simple regression setting, and successively selecting the

best fitting ones. More details on boosting algorithms for linear models, and their

theoretical properties can be found in Bühlmann (2006).

Bühlmann (2006) proves that boosting with the squared error loss, L2Boosting,

is consistent for very high-dimensional linear models, where the number of predictor

variables is allowed to grow essentially as fast as O
(
eT
)
, assuming that the true

underlying regression function is sparse in terms of the L1-norm of the regression

coefficients. The use of an AIC-based method for tuning makes boosting compu-

tationally attractive since it is not required to run the algorithm multiple times for

cross-validation. We closely follow the same algorithm as in Bühlmann (2006), which

can be described as follows.

1. (Initialisation). Let xt = (x1t, ..., xNt)
′, X = (x1, ..., xN) and e = (e1, ..., eT ).

Define the least squares base procedure:

ĝX,e (xt) = δ̂ŝxŝt, δ̂i =
e′xi
x
′
ixi

, ŝ = min
1≤i≤N

(
e− δ̂ixi

)′ (
e− δ̂ixi

)

2. Given data X and y = (y1, ..., yt)
′, apply the base procedure to obtain ĝ

(1)
X,y (xt).

Set F̂ (1) (xt) = υĝ
(1)
X,y (xt), for some υ > 0. Set ŝ(1) = ŝ and m = 1.

3. Compute residuals e = y−F̂ (m) (X) where F̂ (m) (X) = (F̂ (m) (x1) , ..., F̂ (m) (xT ))′

and fit the base procedure to the current residuals to obtain the fit ĝ
(m+1)
X,e (xt)

and ŝ(m). Update

F̂ (m+1) (xt) = F̂ (m) (xt) + υĝ
(m+1)
X,e (xt) .

4. Increase the iteration index m by one and repeat step 3 until the stopping
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iteration M is achieved. The stopping iteration is given by

M = min
1≤m≤mmax

AICc (m) ,

for some predetermined large mmax where

AICc (m) = log
(
σ2
)

+
1 + tr (Bm) /T

1− (tr (Bm) + 2) /T

σ2 =
1

T
(y − Bmy)′ (y − Bmy)

Bm = I − (I − υH(ŝm))(I − υH(ŝm−1))...(I − υH(ŝ1))

H(j) =
xjx

′
j

x
′
jxj

mmax = 500 and υ = {0.1, 1} values can be used as suggested in the literature.

4.1.4 Boosting-type methods

A related approach that has a number of common elements with boosting and com-

bines penalised regression with greedy algorithms has been put forward by Fan and

Lv (2008) and analysed further by, among others, Fan and Song (2010) and Fan,

Samworth and Yu (2009). This approach considers marginal correlations between

each of the potential regressors and yt, and selects either a fixed proportion of the

regressors based on a ranking of the absolute correlations, or those regressors whose

absolute correlation with yt exceeds a threshold. The latter variant requires select-

ing a threshold and so in practice the former variant is used. As this approach is

mainly an initial screening device, it selects too many regressors but enables dimen-

sion reduction in the case of ultra large datasets. As a result, a second step usually

is considered, where penalised regression is applied to the regressors selected at the

first stage.

4.1.5 One-Covariate at a Time, Multiple Testing Approach

A new approach that is related to those above has recently been proposed by Chudik,

Kapetanios and Pesaran (2017). The main idea is to examine the net impact of
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each potential predictor (θi) on the target variable. In a second step, all covariates

with statistically significant net impact are included as joint determinants of yt in a

multiple regression setting. The ideal cases are: βi = 0 when θi = 0 and βi 6= 0 when

θi 6= 0. However, it might be the case when βi 6= 0 when θi = 0 and βi = 0 when

θi 6= 0. In these cases, it is required to iteratively test the statistical contribution of

non-selected covariates (again one at a time) to the unexplained part of yt. While the

initial regressions of this procedure is similar to the approach of Fan and Lv (2008),

the multiple testing element provides additional value to the approach.

The proposed method, which is referred to as One-Covariate at a Time Multiple

Testing (OCMT) approach, is computationally simple and fast even for extremely

large datasets. It is based on statistical inference and is easier to interpret, relates

to the classical statistical analysis, allows working under more general assumptions,

and performs equally well in small and large samples.

4.1.6 Cluster Analysis

A further method in the machine learning literature which has not yet been dis-

cussed is cluster analysis. Cluster analysis is the assignment of a set of observations

into subsets (i.e. clusters) so that observations within the same cluster are simi-

lar according to some predesignated criterion or criteria, while observations drawn

from different clusters are dissimilar. Different clustering techniques make different

assumptions on the structure of the data, often defined by some similarity metric

and evaluated for example by internal compactness (similarity between members of

the same cluster) and separation between different clusters. Some indicative papers

in the literature include Gershenfeld, Schoner and Metois (1999) who introduced

the cluster-weighted modelling for time series analysis, McCallum, Nigam and Un-

gar (2000) analysing the canopy clustering algorithm and Dhillon and Modha (2001)

who deal with categorical series clustering in big text data. Finally, it is worth noting

the work of Dablemont, Simon, Lendasse, Ruttiens, Blayo and Verleysen (2003) and

Martinez Alvarez, Troncoso, Riquelme and Riquelme (2007) who provide discussions

of clustering in relation to forecasting time series.

Cluster analysis, as mentioned above, can be applied to various small and big

datasets. In what we are concerned, clustering could have two applications: (i)
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grouping the unbalanced big data into time series, and (ii) grouping the actual time

series of the predictors. The goals in clustering time series are: (i) to capture global

trends, (ii) to identify signals which may or may not be periodical, and (iii) to discover

possibly unknown patterns. There are four major categories of time series clustering

methods: (i) the relocation clustering, (ii) the Agglomerative hierarchical clustering,

(iii) k-Means and fuzzy c-means and (iv) Self-organising maps. A detailed review of

these methods can be found in Liao (2005).

The clustering output depends on the function used to measure the similarity

between the data. These functions could be a combination of simple statistics like

the minimum/maximum, the mean/median/mode, the first/third quartile, the inter-

quartile range, the standard deviation, etc., or a distance-based measure such as

the Euclidean distance, Kullback-Leibler distance, etc. Some examples of clustering

with real data are: (i) clustering seasonality patterns in retail data (see Moller-Levet,

Klawonn, Cho and Woklenhauer, 2003), (ii) discovery patterns from stock time series

(see Fu, Chung, Ng, and Luk, 2001), and (iii) clustering personal income series (see

Kalpakis, Gada and Puttagunta, 2001).

In order to forecast time series using clustering one could adopt the approach

as in Hyndman, Ahmed, Athanasopoulos and Shang (2011). The researcher could

forecast each time series independently and then combine the forecasts to obtain

the predictions in clusters. Subsequently, the clustered forecasts are combined, or

averaged using estimated regression coefficients, to estimate the predictions for the

dependent variable.

4.1.7 Other machine learning methods

In this last section we briefly mention other machine learning approaches that might

be useful although their usefulness is curtailed for a variety of reasons. These include

bagging (see Breiman (1996)), random forest (see Breiman (2001), Shi and Horvath

(2006)), logistic regression and artificial neural networks. The last one deserves spe-

cial mention. Artificial neural networks (ANNs) are a family of models inspired by

biological neural networks and are used to approximate functions that can depend

on a large number of inputs and are unknown. They are generally presented as sys-

tems of interconnected components which exchange messages between each other.
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The connections have weights that can be tuned based on experience, making neural

nets adaptive to inputs and capable of learning; see Blake and Kapetanios (2010) for

more detailed information. While their application to econometric nowcasting has

produced mixed results, we note them as they have recently given rise to methods

collectively known as deep learning. Deep learning is essentially a multilayered ANN

model, which has been shown to have good pattern recognition properties; see Hin-

ton and Salakhutdinov (2006). While this set of methods might be worth further

investigation, they rely on a large T and not so large N , which is not suited for the

nowcasting problems under consideration. The need for a large T arises due to the

fact that the multilayered ANN model has a considerable number of parameters that

need to be estimated.

4.2 Heuristic Optimisation

Another approach to variable selection is the direct use of a model selection criterion

(such as Akaike (1974) (AIC), Bayesian (Schwarz (1978)) (BIC) , Hannan and Quinn

(1979) (HQ) etc.). For example, consider the generalised model in Equation (2). Let

I = (I1, . . . ,IN)′ denote a vector of zeros and ones (which we will refer to as

string). Let I i = 1, if xit belongs to the true model and zero otherwise. We wish to

estimate I. We could start by selecting some of the predictors, estimate the model

and calculate the criterion value. Then, we could repeat the same procedure for all

possible models and select the one which optimises the selection function.

The generic form of such criteria is usually,

IC(I) = −2L(I) + CT (I) (17)

where L(I) is the log-likelihood of the model associated with string I and CT (I)

is the penalty term associated with the string I. The three most usual penalty

terms are 2m̃(I), ln(T )m̃(I) and 2ln(ln(T ))m̃(I) associated with AIC, BIC and

HQ information criteria. m̃(I) is the number of free parameters associated with the

modelling of the dataset associated with I. Note that, in this case, m̃(I) = I ′I.

It is straightforward under relatively weak conditions on xjt and ujt, and using the

results of, say, Sin and White (1996), to show that the string which minimises IC(.)

will converge to the true string with probability approaching one as T →∞ as long
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as (i) CT (I)→∞ and (ii) CT (I)/T → 0.

More specifically, the assumptions needed for the results of Sin and White (1996)

to hold are mild and can be summarised as follows, assuming estimation of the models

is undertaken in the context of Gaussian or pseudo maximum likelihood (which in

the simplest case, of spherical errors, is equivalent to OLS): (i) Assumption A of

Sin and White (1996) requires measurability, continuity and twice differentiability of

the log-likelihood function and a standard identifiability assumption; (ii) A uniform

weak law of large numbers for the log-likelihood of each observation and its second

derivative; (iii) A central limit theorem for the first derivative of the log-likelihood

of each observation. (ii) and (iii) above can be obtained by assuming, e.g., that xjt

are weakly dependent, say, near epoch dependent, processes and ujt are martingale

difference processes. Hence, it is clear that consistency of model selection as long as

the penalty related conditions hold is straightforwardly obtained. Note that unlike

BIC and HQ which consistently estimate the true model in the sense of Sin and White

(1996), AIC is inconsistent, in this sense, since CT remains bounded, as T → ∞,

contravening the first penalty related condition given in the preceding paragraph.

The problem is of course how to minimise the information criterion. For small

dimensional xt, evaluating the information criterion for all strings may be feasible,

as, e.g., in lag order selection. In the case of lag selection the problem is made easier

by the fact that there exists a natural ordering of the variables, although in many

cases such an ordering may not be the optimal basis for a search algorithm. In the

general variable selection case, as soon as N exceeds say 50 or 60 units, this strategy

is bound to fail. Since I is a binary sequence there exist 2N strings to be evaluated.

For example, when N = 50 and optimistically assuming that 100000 strings can be

evaluated per second, we still need about 357 years for an evaluation of all strings.

Clearly this is infeasible.

Although this is a maximisation problem, standard maximisation algorithms do

not apply due to the discreteness of the domain over which the objective function

(information criterion) needs to be optimised. To overcome this difficulty, several

heuristic optimisation approaches have been suggested, including among the main

ones: simulated annealing, genetic algorithm, MC3 and sequential testing.
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4.2.1 Simulated Annealing (SA)

This algorithm provides a local search for the minimum (or maximum) of a function,

in our case is Equation (17). The concept is originally based on the manner in which

liquids freeze or metals recrystalize in the process of annealing. In an annealing

process a melt, initially at high temperature and disordered, is slowly cooled so

that the system at any time is approximately in thermodynamic equilibrium. As

cooling proceeds, the system becomes more ordered and approaches a ‘frozen’ ground

state. The analogy to an optimisation problem is as follows: the current state of

the thermodynamic system is analogous to the current solution to the optimisation

problem, the energy equation for the thermodynamic system is analogous to the

objective function, and the ground state is analogous to the global optimum. An

early application of simulated annealing in econometrics is the work of Goffe, Ferrier

and Rogers (1994), who suggested that simulated annealing could be used to optimise

the objective function of various econometric estimators.

Below, we give a description of the algorithm together with the necessary argu-

ments that illustrate its validity in our context. We describe the operation of the

algorithm when the domain of the function (information criterion) is the set of binary

strings i.e. {I = (I1, . . . , IN)′|Ii ∈ {0, 1}}.
Each step of the algorithm works as follows, starting from an initial string I0.

1. Using I i choose a neighboring string at random, denoted I∗i+1. We discuss the

definition of a neighborhood below.

2. If IC(I i) > IC(I∗i+1), set I i+1 = I∗i+1. Else, set I i+1 = I∗i+1 with probability

e(IC(I∗i )−IC(Ii+1))/Ti or set I i+1 = I i with probability 1− e(IC(I∗i )−IC(Ii+1))/Ti .

Heuristically, the term Ti gets smaller making it more difficult, as the algorithm

proceeds, to choose a point that does not decrease IC(.). The issue of the neighbor-

hood is extremely relevant. What is the neighborhood? Intuitively, the neighborhood

could be the set of strings that differ from the current string by one element of the

string. But this may be too restrictive. We can allow the algorithm to choose at

random, up to some maximum integer (say h), the number of string elements at

which the string at steps i and i + 1 will differ. So the neighborhood is all strings

with up to h different bits from the current string. Another issue is when to stop
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the algorithm. There are a number of alternatives in the literature. We have chosen

to stop the algorithm if it has not visited a string with lower IC(.) than the current

minimum for a prespecified number of steps (Bυ) (Steps which stay at the same

string do not count) or if the number of overall steps exceeds some other prespecified

number (Bs). All strings visited by the algorithm are stored and the best chosen at

the end rather than the final one.

The simulated annealing algorithm has been proven by Hajek (1998) to converge

asymptotically, i.e. as i → ∞, to the maximum of the function as long as Ti =

T0/ln(i + 1) for some T0 for sufficiently large T0. In particular, for almost sure

convergence to the minimum it is required that T0 > d∗. d∗ denotes the maximum

depth of all local minima of the function IC(.). Heuristically, the depth of a local

minimum, I1, is defined as the smallest number E > 0 such that the function exceeds

IC(I1) + E during its trajectory3 from this minimum to any other local minimum,

I2, for which IC(I1) > IC(I2).

This condition needs to be made specific for the problem at hand. We thus need

to discuss possible strategies for determining d∗ for model searches using information

criteria. It is reasonable to assume that the space of models searched via information

criteria only includes models with a prespecified maximum number of variables, oth-

erwise problems caused by the lack of degrees of freedom will arise. Then, a possible

upper limit for d∗ is 2L(IB)−2L(IA) where L(IA) is the likelihood associated with

a regression containing just a constant term and L(IB) is the likelihood associated

with a regression containing the maximum allowable number of variables. Of course,

there are many possible sets of variables that contain the maximum allowable number

of variables. For this reason we remove the penalty terms and focus on likelihoods.

This make it more likely that −2L(IB), for some random IB that specifies use of

the maximum allowable number of variables, is a lower bound for the optimum value

taken by the information criterion.

3A trajectory from I1 to I2 is a set of strings, I11,I12, . . . ,I1p, such that (i) I11 ∈ N(I1), (ii)
I1p ∈ N(I2) and (iii) I1i+1 ∈ N(I1i) for all i = 1, . . . , p, where N(I) denotes the set of strings
that make up the neighborhood of I.
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4.2.2 Genetic Algorithms (GA)

The motivating idea of genetic algorithms is to start with a population of binary

strings which then evolve and recombine to produce new populations with ‘better’

characteristics, i.e. lower values for the information criterion. We start with an

initial population represented by an N ×m matrix made up of 0’s and 1’s. Columns

represent strings. m is the chosen size of the population. The theory of genetic

algorithms suggests that the composition of the initial population does not matter.

Hence, this is generated randomly. Denote this population matrix by P0. The genetic

algorithm involves defining a transition from Pi to Pi+1. Following Kapetanios

(2007), the algorithm could be described in the following steps:

1. For Pi create a m× 1 ‘fitness’ vector, pi, by calculating for each column of Pi

its ‘fitness’. The choice of the ‘fitness’ function is completely open and depends

on the problem. For our purposes it is the opposite of the information criterion.

Normalise pi, such that its elements lie in (0, 1) and add up to 1. Denote this

vector by p∗i . Treat p∗i as a vector of probabilities and resample m times out of

Pi with replacement, using the vector p∗i as the probabilities with which each

string with be sampled. So ‘fit’ strings are more likely to be chosen. Denote

the resampled population matrix by P1
i+1.

2. Perform cross over on P1
i+1. For cross over we do the following: Arrange

all strings in P1
i+1, in pairs (assume that m is even) where the pairings are

randomly drawn. Denote a generic pair by (aα1 , a
α
2 , . . . , a

α
N), (aβ1 , a

β
2 , . . . , a

β
N).

Choose a random integer between 2 and N − 1. Denote this by j. Replace the

pair by the following pair: (aα1 , a
α
2 , . . . , a

α
j , a

β
j+1, . . . , a

β
N), (aβ1 , a

β
2 , . . . , a

β
j , a

α
j+1, . . . , a

α
N).

Perform cross over on each pair with probability pc. Denote the new population

by P2
i+1. Usually pc is set to some number around 0.5-0.6.

3. Perform mutation on P2
i+1. This amounts to flipping the bits (0 or 1) of P2

i+1

with probability pm. pm is usually set to a small number, say 0.01. After

mutation the resulting population is Pi+1.

These steps are repeated a prespecified number of times (Bg). Each set of steps

is referred to as generation in the genetic literature. If a string is to be chosen this is

49



the one with maximum fitness. For every generation, the identity of the string with

maximum ‘fitness’ is stored. Further, this string is allowed to remain intact for that

generation. So it gets chosen with probability one in step 1 of the algorithm and does

not undergo neither cross-over nor mutation. At the end of the algorithm the string

with the lowest information criterion value over all members of the populations and

all generations is chosen. One can think of the transition from one string of maximum

fitness to another as a Markov Chain. So this is a Markov Chain algorithm. In fact,

the Markov chain defined over all possible strings is time invariant but not irreducible

as at least the m − 1 least fit strings will never be picked. To see this note that in

any population there will be a string with more fitness than that of the m− 1 worst

strings.

There has been considerable work on the theoretical properties of genetic algo-

rithms. Hartl and Belew (1990) have shown that with probability approaching one,

the population at the n-th generation will contain the global maximum as n → ∞.

Perhaps the most relevant result from that work is Theorem 4.1 of Hartl and Belew

(1990). This theorem states that as long as (i) the sequence of the maximum fit-

nesses in the population across generations is monotonically increasing, and (ii) any

point in the model space is reachable from any other point by means of mutation

and cross-over in a finite number of steps then the global maximum will be attained

as n → ∞. Both these conditions hold for the algorithm described above. The

first condition holds by the requirement that the string with the maximum fitness is

always kept intact in the population. The second condition holds since any string of

finite length can be obtained from another by cross-over and mutation with non-zero

probability in a finite number of steps. For more details on the theory of genetic

algorithms see also Morinaka, Yoshikawa and Amagasa (2001).

4.2.3 MC3

This algorithm is similar to simulated annealing for the construction of its steps.

This similarity is, in fact, the main reason why we consider Bayesian methods here.

The MC3 algorithm defines a search path in the model space just like the simulated

annealing algorithm we considered in the previous subsection. As a result, we refer

to the setup of the previous subsection to minimise duplication for the exposition.
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The difference between SA and MC3 is the criterion used to move from one string

to the other at step i. Here, the Bayes factor for string (model) i + 1 versus string

(model) i is used. This is denoted by Bi+1,i. The chain moves to the i + 1 string

with probability min(1, Bi+1,i). This is again a Metropolis-Hastings type algorithm.

Following Fernandez, Ley and Steel (2001), the Bayes factor is given by:

Bi+1,i =

(
g0i+1

g0i+1 + 1

)ki+1/2(g0i + 1

g0i

)ki/2( 1
g0i+1

RSSi + g0i
g0i+1

TSS
1

g0i+1+1
RSSi+1 + g0i+1

g0i+1+1
TSS

)(T−1)/2

,

(18)

where RSSi is the sum of squared residuals of the i-th model, TSS is the sum of

the squared deviations from the mean for the dependent variable, ki is the number

of variables in model i and g0i is a model specific constant relating to the prior

relative precision. The results of Fernandez et al. (2001) suggest that for consistent

model selection g0i should be set to 1/T . This is associated with prior ‘a’ in the

terminology of subsection 4.2 of Fernandez et al. (2001), to whom we refer for more

details. The chosen model is the one minimising the information criterion among all

models visited by the MC3 algorithm. This follows from the results of Appendix A.3

of Fernandez et al. (2001) concerning the asymptotic equivalence between consistent

information criteria and the Bayes factor in Equation (18).

4.2.4 Sequential Testing (ST )

A general regression specification is considered and tested for misspecification using

a battery of specification tests such as tests for residual autocorrelation and ARCH

and tests for structural breaks. Then, a sequential testing procedure is used to

remove insignificant regressors from this specification making sure that resulting

specifications are acceptable using misspecification tests. This algorithm provides a

tractable formalisation of the general-to-specific methodology advocated by David

Hendry and his co-authors, and discussed in some detail in a number of paper such as,

e.g., Hendry (1995) and Hendry (1997) (see also Brüggemann, Krolzig and Lütkepohl

(2003) for an application of this methodology to model reduction in VAR processes).

Also, recent work by Doornik and Hendry (2015) sheds some extra light on the use
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of Autometrics4 in statistical model selection with big data.

A detailed description of the algorithm we use is given in steps A-H of Hoover

and Perez (1999). The only modifications we suggest to this algorithm are as follows:

(i) All possible search paths, rather than only 10, are considered. (ii) In step B(d) we

use CUSUM2 instead of Chow as a stability test. (iii) No out-of-sample evaluation

is undertaken, since this would change the information set for the other algorithms

4.3 Dimensionality Reduction

Another set of methods for modelling with big data involves the adoption of dimen-

sion reduction via techniques which do not require or impose any iid assumptions.

In what follows we discuss Principal Components Analysis, Partial Least Squares,

and Sparse Principal Component Analysis.

4.3.1 Principal Component Analysis

The most widely used class of data-rich forecasting methods are factor methods.

Factor methods have been at the forefront of developments in forecasting with large

data sets and in fact started this literature with the influential work of Stock and

Watson (2002a). The defining characteristic of most factor methods is that relatively

few summaries of the large data sets are used in forecasting equations, which thereby

become standard forecasting equations as they only involve a few explanatory vari-

ables.

The main assumption is that the co-movements across the indicator variables xt,

where xt = (x1t · · ·xNt)′ is a vector of dimension N × 1, can be captured by a r × 1

vector of unobserved factors Ft = (F1t · · ·Frt)′, i.e.,

x̃t = Λ′Ft + et (19)

where x̃t may be equal to xt or may involve other variables, such as lags, leads or

products of the elements of xt, and Λ is an r×N matrix of parameters describing how

the individual indicator variables relate to each of the r factors, which we denote with

4Autometrics is a software developed by Hendry and Doornik which makes use of sequential
testing.
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the terms ‘loadings’. In (19) et is a zero-mean I(0) vector of errors that represent, for

each indicator variable, the fraction of dynamics unexplained by Ft, the ‘idiosyncratic

components’. The number of factors is assumed to be finite. So, implicitly, in

(2) α′ = α̃′Λx̃t, where Ft = Λx̃t, which means that a small, r, number of linear

combinations of x̃t represent the factors and act as the predictors for yt, the target

variable. The main difference between different factor methods relates to how Λ and

the factors are estimated.

The use of PCA for the estimation of factor models is, by far, the most popular

factor extraction method. It has been popularised by Stock and Watson (2002a,

2002b), in the context of large data sets, although the idea had been well estab-

lished in the traditional multivariate statistical literature. The method of principal

components is simple. Estimates of Λ and the factors Ft are obtained by solving:

V (r) = min
Λ,F

1

NT

N∑
i=1

T∑
t=1

(x̃it − λ′iFt)2, (20)

where λi is an r×1 vector of loadings that represent theN columns of Λ = (λ1 · · ·λN).

One, non-unique, solution of (20) can be found by taking the eigenvectors correspond-

ing to the r largest eigenvalues of the second moment matrix X ′X, which then are

assumed to represent the rows in Λ, and the resulting estimate of Λ provides the

forecaster with an estimate of the r factors F̂t = Λ̂x̃t. To identify the factors up to a

rotation, the data are usually normalized to have zero mean and unit variance prior

to the application of principal components; see Stock and Watson (2002a) and Bai

(2003). We note that factor estimates obtained via PC estimation are min(
√
N, T )-

consistent. Further, if
√
T/N = o(1), using estimated factors rather than true factors

in predictive regressions produces negligible estimation errors.

PC estimation of the factor structure is essentially a static exercise as no lags

or leads of xt are considered. One alternative is dynamic principal components,

which, as a method of factor extraction, has been suggested in a series of papers by

Forni, Hallin, Lippi and Reichlin (see, e.g., Forni, Hallin, Lippi and Reichlin (2000)

among others) and is designed to address this issue. Dynamic principal components

are extracted in a similar fashion to static principal components but, instead of the

second moment matrix, the spectral density matrix of the data at various frequencies
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is used. The dynamic PCs are then used to construct estimates of the common

component of the data set, which is a function of the unobserved factors. The basic

version of this method uses leads of the data, making it not suited in a forecasting

context, but later work by the developers of the method has addressed this issue

(see, e.g., Forni, Hallin, Lippi and Reichlin (2005)).

4.3.2 Partial Least Squares

Partial least squares (PLS) is a relatively new method for estimating regression equa-

tions, introduced in order to facilitate the estimation of multiple regressions when

there is a large, but finite, amount of regressors5. The basic idea is similar to Prin-

cipal Component Analysis (PCA) in that factors or components, which are linear

combinations of the original regression variables, are used, instead of the original

variables, as regressors. PLS regression does not seem to have been explicitly con-

sidered for data sets with a very large number of series, i.e., when N is assumed in

the limit to converge to infinity.

There are a variety of definitions for PLS and accompanying specific PLS algo-

rithms that inevitably have much in common. A conceptually powerful way of defin-

ing PLS is to note that the PLS factors are those linear combinations of xt, denoted

by Υxt, that give maximum covariance between yt and Υxt while being orthogonal

to each other. Of course, in analogy to PC factors, an identification assumption is

needed, to construct PLS factors, in the usual form of a normalization.

A simple algorithm to construct k PLS factors is discussed among others, in

detail, in Helland (1990). Assuming for simplicity that yt has been demeaned and xt

have been normalized to have zero mean and unit variance, a simplified version of

the algorithm is given below.

1. Set ut = yt and vi,t = xi,t, i = 1, ...N . Set j = 1.

2. Determine the N × 1 vector of indicator variable weights or loadings wj =

(w1j · · ·wNj)′ by computing individual covariances: wij = Cov(ut, vit), i =

5Herman Wold and co-workers introduced PLS regression between 1975 and 1982, see, e.g.,
Wold (1982). Since then it has received much attention in a variety of disciplines, especially in
chemometrics, outside of economics.
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1, ..., N . Construct the j-th PLS factor by taking the linear combination given

by w′jvt and denote this factor by fj,t.

3. Regress ut and vi,t, i = 1, ..., N on fj,t. Denote the residuals of these regressions

by ũt and ṽi,t respectively.

4. If j = k stop, else set ut = ũt, vi,t = ṽi,t i = 1, .., N and j = j + 1 and go to

step 2.

This algorithm makes clear that PLS is computationally tractable for very large

data sets. Once PLS factors are constructed yt can be modeled or forecast by regress-

ing yt on fj,t, j = 1, ..., k. Helland (1990) provides a general description of the partial

least squares (PLS) regression problem. Helland (1990) shows that the estimates of

the coefficients α in the regression of yt on xt, as in Equation (2), obtained implicitly

via PLS Algorithm and a regression of yt on fj,t j = 1, ..., k, are mathematically

equivalent to

β̂PLS = Vk(V
′
kX
′XVk)

−1V ′kX
′y (21)

with Vk1 = (X ′y X ′XX ′y · · · (X ′X)k−1X ′y), X = (x1 · · · xT )′ and y = (y1 · · · yT )′.

Thus, (21) suggests that the PLS factors that result from the PLS Algorithm span

the Krylov subspace generated by X ′X and X ′y, resulting in valid approximations

of the covariance between yt and xt.

A major difference between PC and PLS is that, whereas in PC regressions the

factors are constructed taking into account only the values of the xt variables, in

PLS, the relationship between yt and xt is considered as well in constructing the

factors.

Recently, Kelly and Pruit (2015) and Groen and Kapetanios (2016) have extended

and provided theoretical results on PLS, showing that it can be also applied in the

large N context, while Hepenstrick and Marcellino (2016) have introduced the mixed

frequency version and provided empirical evidence in favour of its use for nowcasting

with very large datasets.

4.3.3 Sparse Principal Component Analysis

Empirical studies in the literature support the argument that standard PC does a

good job in dimension reduction. A number of forecasting applications show that
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when the linear combinations of input variables is used (instead of the whole set of

variables) the forecast error is reduced. However, a disadvantage of standard PC is

that the principal components are combinations of all input variables. Sparse Prin-

cipal Component Analysis (Sparse PC), introduced by Zou, Hastie and Tibshirani

(2006), combines aspects of sparse regression and PC. In particular, the principal

components are derived using linear combinations of some of the variables.

Given an integer k with 1 ≤ k ≤ N Sparse PC is aiming to maximize the variance

along a vector υ while constraining its cardinality:

max υ′Συ

s.t.

N∑
i=1

υ2
i = 1

# (i|υi 6= 0) ≤ k

where Σ denotes the sample covariance matrix. The first constraint ensures that υ

is a unit vector and the second constraint is the L0-norm, i.e. the number of the

non-zero components in υ is less than k. If we take k = N then the above problem

reduces to the ordinary PC. After finding the optimal solution we deflate

S = Σ− (υ′Συ)υ′υ,

and iterate this process to obtain further principal components. Sparse PC can retain

consistency even if N � T which makes the method suitable for use with big data.

4.4 Forecast combination

Forecast combination has a long tradition, starting at least with Bates and Granger

(1969), and it tends to outperform even sophisticated forecasting models, see e.g.

Timmermann (2006) for a detailed overview of theoretical and empirical studies and

Kuzin, Marcellino and Schumacher (2013) for a recent application in a nowcasting

context. As discussed by Hendry and Clements (2004), possible reasons for the good

performance of forecast pooling may be model misspecification, model uncertainty

and parameter non-constancy that are attenuated by weighting. As these features are

56



likely present when modelling with big data, forecast combination could be helpful

also in this context.

A common finding in the literature is that simple weighting schemes, and even

equal weighting, often perform better than more sophisticated alternatives. Com-

putational efficiency of these simple procedures is an additional plus in a big data

context.

As an alternative, weighted averaging based on past performance in terms of

(inverted) mean-squared (MSE) or mean-absolute (MAE) forecast errors can be

adopted. Kuzin et al. (2013) suggest to use the MSE computed over a previous

rolling window, in line with Stock and Watson (2006). Finally, information-theoretic

averaging can be also considered, based on information criteria such as the AIC or

BIC.

4.4.1 Data-driven automated forecasting

We discuss a way to combine, in a data-dependent and, in some sense, optimal way,

some of the above methods. We suggest the use of a fully automated approach of

model selection and model averaging, which is similar in notion to the procedures

adopted by, e.g., Kuzin et al. (2013) and Stock and Watson (2006).

The idea is simple yet intuitive: the applied researcher could adopt a “model

rotation” strategy which chooses the best model or model(s) given a loss function or

some other user-defined criterion. The algorithm can be described as follows.

• Calculate the forecast error of K candidate models, Mj for j = 1, 2, .., K,

during the past L periods (look-back period).

• Then, rank the models using their Root Mean Squared Forecast Error (RMSFE)

or another loss function of interest.

• Select the first m models with the smallest RMSFE during the examined look-

back period. Then, calculate the h-step ahead forecasts for each model and

compute their average. In case where m = 1, the forecasts of one model are

computed.

This approach is based on the general principles underlying cross-validation,

which a powerful and very general approach to statistical decision making. The main
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idea is that models, or model variants, estimated over a given set of observations, are

evaluated using as a criterion their forecasting or fitting ability, in a different set of

observations and then ranked according to this criterion. This approach is powerful

as it has very wide applicability and can allow for data features such as structural

change, that other specification approaches do not allow for. We expect this method

to work well, due to its time-varying nature which means it adapts faster to the

changing dynamics of the dependent series (if any).

4.5 Textual Data

In recent years, there has been a considerable attention to textual data. Once the

text is transformed to numeric data and, possibly using aggregation, a structured

time series indicator has been created, all the previously discussed methodologies

can be employed as well. Here, we focus more on the methods which can be used to

transform the textual data to numeric.

Typical examples of textual data are: (i) corporate filings (see Li, 2006, Jegadeesh

and Wu, 2013 among others), (ii) media articles (see Baker et al., 2016, Garcia, 2013,

King et al., 2017, Casanova et al., 2017, among others), (iii) internet postings (see

Antweiler and Frank, 2004, Das and Chen, 2007, Chen et al., 2013, Levenberg et al.,

2014, O’Connor et al., 2010).

The Lexicon approach is one of the most common methods used in this context

(see, e.g., Tetlock, 2007, Garcia, 2013, Nyman et al., 2015, Baker et al., 2016, among

others). Consider the collection of M documents D = {d1, ..., dM}. The researcher

provides a pre-defined dictionary of V words of interest denoted by V = {w1, ..., wV }.
Let C be the M×V document-term matrix where cij is the frequency of j word in

document i. In the context of sentiment analysis, we can construct indicators which

are based on the balance of positive versus negative terms according to the dictionary

of the researcher. Following Nyman et al. (2015) we can construct the following

indicator:

si =

∑M
j=1 c

+
ij −

∑M
j=1 c

−
ij

M
(22)

where c+
ij and c−ij are the positive and negative terms. In the above, we assign

equal weights to all terms. Obviously, the result depends on the range of dictionary
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as well as the weighting scheme (e.g., some terms might be more important than

others).

Boolean techniques are another approach to text mining. These methods search

the main body of text in the pool of documents using expressions with logical op-

erators (OR, AND, NOT). From one hand, using boolean methods the researcher

is more flexible to combine a number of terms. However, these techniques do not

account for word density.

The most widely used dictionary is the Harvard-IV-dictionary. This is a good

choice for general text however it might be restrictive in the context of economics or

finance. Loughran and McDonald (2011) construct a more appropriate dictionary to

measure the sentiment in 10-K filings published by the SEC in the US. They suggest

that almost 75% of the negative words suggest by Harvard-IV are not related to

negativity in financial disclosures. For example, terms such as”liability”, ”tax”, etc.

As mentioned previously, we use an equal weighting scheme in our example of

Equation (22). However, less frequent words might also be of high importance which

could change the sentiment index. In the context of nowcasting, this is very important

especially at the beginning of some major news or incident which has not covered

extensively by the media yet. If the researcher excludes these terms decreases the

timeliness of the sentiment indicator. The most usual approach is the frequency-

inverse document frequency (tf.idf) where the weights are given by:

tf.idfij =

{
(1 + log(tfij) log(M

dfi
), if tfij ≥ 1

0, if tfij = 0

}
where dfi is the number of documents in which the word wi occurs, M is the

number of all documents and tfij denotes the frequency of word wi in document dj.

The first factor adds a penalty to the word which appears more frequently giving

less weights, whereas the second gives higher weight to infrequent words.

5 Conclusions

This paper is concerned with an introduction to big data which can be used for UK

nowcasting and a review of the machine learning and econometric techniques that
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could be potentially applied in macroeconomic nowcasting and forecasting using

temporally structured big data.

As it has been discussed in the text, big data prevents the use of standard econo-

metric methods. For example, when the number of regressors is larger than that of

observations (N > T , as in FAT datasets), OLS estimation cannot be used, as well as

OLS-based statistics, such as t-tests and F-tests to check the significance of regres-

sors. Moreover, selecting regressors by means of information criteria also becomes

not doable, as 2N models should be compared, a number larger than one million

already for N = 20 regressors. Furthermore, standard statistical theory to prove

econometric properties such as unbiased and consistency of the estimators typically

rely on fixed N and T diverging asymptotics (suited for TALL datasets). Instead,

with big (potentially HUGE) data both N and T diverging asymptotics is needed,

which is much more complex.

A first way to deal with these feature is to use machine learning methods, where

the starting point is to somewhat regularise OLS estimation to make it feasible also

when N is very large. This is typically achieved by adding a set of (nonlinear)

constraints on the model parameters, which are thus shrunk towards pre-specified

values, preferably towards zero in order to achieve a more parsimonious specifica-

tion. Within this class we have considered methods such as Penalised Regression,

Ridge Regression, LASSO Regression, Adaptive LASSO, Elastic Net, SICA, Hard

Thresholding, Boosting and Multiple Testing.

A second class of techniques goes under the name of Heuristic Optimisation. The

starting idea here is to use information criteria to reach a good balance between model

fit and parsimony by assigning a penalty dependent on the number of model param-

eters (which is equal to that of regressors in the linear context). We have reviewed

Simulated Annealing, Genetic Algorithms, and MC3. As the methods are iterative,

and sometimes simulation based, they can become computationally very demanding

when N is really large. As they should be applied recursively in a macroeconomic

forecasting context, not only for forecast evaluation but also for cross-validation, the

computational aspect can become prohibitive.

A third class of econometric methods to properly handle big data is based on

the idea of reducing the dimension of the dataset by producing a much smaller

set of generated regressors, which can then be used in a second step in standard
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econometric models to produce nowcasts and forecasts in common ways. There are

naturally many ways to carry out dimensionality reduction, and we have considered

in details Principal Component Analysis, Partial Least Squares and Sparse Principal

Component Analysis.

On top of the above methodologies, forecast combination should also be used by

the applied researchers as the literature indicates that even simple weighting schemes,

and in particular equal weighting, which can be implemented also with very large N ,

often perform well.

Hence, looking ahead at the empirical application which follows in the second

paper of this research, we aim to evaluate the nowcasting gains using of big data,

proxied by Google Trends, for the UK GDP growth. Our plan is to employ data

reduction techniques, PCA and PLS, as well as sparse regression techniques. More-

over, the various resulting models will be combined using the data-driven automated

forecasting methodology.
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