Economic Trends

ISSN 0013-0400
ISBN 1-4039-9541-9
© Crown copyright 2005
Published with the permission of the Controller of Her Majesty's Stationery Office (HMSO).
You may re-use this publication (excluding logos) free of charge in any format for research, private study or internal circulation within an organisation. You must re-use it accurately and not use it in misleading context. The material must be acknowledged as Crown copyright and you must give the title of the source publication. Where we have identified any third party copyright material you will need to obtain permission from the copyright holders concerned.

This publication is also available at the National Statistics website: ww w.statistics.gov.uk

For any other use of this material please apply for a Click-Use Licence for core material at www.opsi.gov.uk/click-use/system/online/ pLogin.asp or by writing to:
Office of Public Sector Information, Information Policy Team, St Clements House, 2-16 Colegate, Norwich NR3 1BQ

Fax: 01603 72300, E-mail: hmsolicensing@ cabinet-office.x.gsi.gov.uk

Contacts

For enquiries about this publication, contact the Editor, Paul Dickman.
Telephone: 02075335914
E-mail: paul.dickman@ons.gsi.gov.uk
For general enquiries, contact the National Statistics Customer Contact Centre on 08456013034 (minicom: 01633 812399)
E-mail: info@statistics.gsi.gov.uk
Facsimile: 01633652747
Letters: Customer Contact Centre, Room 1015, Government Buildings,
Cardiff Road,
Newport NP10 8XG
You can also find National Statistics on the Internet at http://www.statistics.gov.uk

About the Office for National Statistics The Office for National Statistics (ONS) is the government agency responsible for compiling, analysing and disseminating many of the United Kingdom's economic, social and demographic statistics, including the retail prices index, trade figures and labour market data, as well as the periodic census of the population and health statistics. It is also the agency that administers the statutory registration of births, marriages and deaths in England and Wales. The Director of ONS is also the National Statistician and the Registrar General for England and Wales.

A National Statistics Publication

National Statistics are produced to high professional standards set out in the National Statistics Code of Practice. They undergo regular quality assurance reviews to ensure that they meet customer needs. They are produced free from any political influence.

Regulars

2 In brief
Summary from last month's economic statistics releases
5 Economic update - December 2005
Anis Chowdhury
M onthly overview of latest economic statistics

14 Forecasts for the UK economy - November 2005
Monthly comparison of independent forecasts for the UK economy
15 Corporate services price index (experimental) - Quarter 32005
Michael Gibbs
Quarterly results of the CSPI

Features

34 Revisions to quarterly GDP growth and its production (output), expenditure and income components
Heather Robinson
The results of the latest GDP revisions analysis, updating the previous article published in January 2005

50 Advertising placement Corporate Services Price Index Anthony Luke
An account of the development and methodology of the new Corporate Services Price Index for the advertising placement industry

54 IT Investment, ICT use and UK firm productivity
Tony Clayton
An introduction to the following two articles
55 The role of IT in firm productivity; evidence from UK micro data Raffaella Sadun
An analysis of the productivity impact of IT in the UK economy both in manufacturing and services

65 Information and Communication Technology use and productivity Shikeb Farooqui
Results from research aimed at bringing together interdependent metrics on ICT use, to study the relationship between them and assess their impact on firm level productivity

Tables
75 List of Tables
76 Notes to Tables
77 Tables
Sources

Publications

162 Portfolio of ONS macro-economic publications

in brief

At a glance - economic summaries recently released on the National Statistics website.

GDP growth

Quarterly growth (per cent)

Growth in the third quarter of 2005 is driven by a rise of 0.6 per cent in the service sector, with strength within the business services and finance, government and other, and transport and communication sectors.

Manufacturing output increased by 0.4 per cent in the third quarter, with the largest growths in the output of the transport equipment and chemicals and man-made fibre industries.

Construction output rose by 0.5 per cent in the third quarter.
Household expenditure rose by 0.5 per cent, following 0.4 per cent growth in the second quarter of 2005. Growth in the third quarter of 2005 is driven by growth in expenditure on goods.

Government final consumption expenditure rose by 0.3 per cent in the third quarter and is now 1.6 per cent above the level seen in the third quarter of 2004.

Exports rose by 0.7 per cent over the third quarter, within which exports of goods rose by 1.4 per cent and exports of services fell by 0.7 per cent. Imports rose by 2.1 per cent as imports of goods rose by 3.3 per cent and imports of services fell by 1.8 per cent.

Compensation of employees, measured at current prices, rose by 1.1 per cent and the operating surplus of corporations fell by 0.5 per cent.

Released: 25 November 2005

Index of production

Index of manufacturing, 2002=100

Manufacturing output increased by 0.4 per cent in the third quarter of 2005 compared with the second quarter, with six out of the thirteen subsectors showing increases in output and seven showing decreases.

There were significant increases in output in the transport equipment industries, where output increased by 3.0 per cent, and in the chemicals and man-made fibres industries, where output increased by 1.8 per cent. There were no significant decreases in output in the quarter.

Overall production output decreased by 0.6 per cent in the third quarter of 2005. Within production the 0.4 per cent increase in manufacturing output was offset by decreases of 0.8 per cent in the energy supply sector and 7.7 per cent in the mining and quarrying sector. The decrease in mining and quarrying output was mainly due to annual routine maintenance in the oil and gas extraction industries. This maintenance, while expected, has reduced output slightly more than in previous years, and is entirely within quarter three this year. In 2004 the maintenance was delayed and so affected both quarter three and the early part of quarter four.

Between August and September, manufacturing output decreased by 0.3 per cent, with output falling in nine of the thirteen subsectors and rising in just four subsectors. The only significant decrease was in the chemicals and man-made fibres industries (1.6 per cent). There were no significant increases this month.

The overall Index of Production increased by 0.5 per cent between August and September. Mining and quarrying output increased by 6.8 per cent, with a recovery in output following the maintenance work which had reduced oil and gas extraction output in August. Energy supply output increased by 1.4 per cent in September with significant increases in both electricity and gas supply.

Public sector

Cumulative public sector surplus on current budget £ billion

Net debt (as a percentage of GDP)

In October 2005 the public sector showed a surplus on current budget of $£ 4.1$ billion, compared with a deficit of $£ 0.4$ billion in October 2004.

Concentrating on one month in isolation can give a distorted picture as movements can be erratic. Focusing on the financial year to date generally provides a better overview. Between A pril and October of the financial year 2005/6, the public sector recorded a deficit of $£ 10.8$ billion. At the same stage of the 2004/5 financial year a deficit of $£ 18.4$ billion had been recorded.

M ore generally the public sector recorded deficits between 1991/2 and 1997/8 before moving into surplus in 1998/9. Since 2002/3 deficits have been recorded.

An alternative measure of the public sector fiscal position is public sector net borrowing. This additionally takes account of capital investment. In October 2005 there was net borrowing of $£-2.2$ billion, which compares with $£ 1.7$ billion in October 2004. The Budget Report forecast for 2005/6 is net borrowing of $£ 31.9$ billion.

Public sector net debt, expressed as a percentage of gross domestic product (GDP), was 35.0 per cent at the end of October, compared with 33.4 per cent at end of October 2004. Debt peaked at 44.0 per cent of GDP in 1997, its highest since the mid 1980s. The debt ratio then fell steadily as public sector finances improved, reaching a low of 29.5 per cent in February 2002. Since then it has risen. The Budget Report forecast for the end of M arch 2006 is 35.5 per cent.

Net debt was $£ 435.9$ billion at the end of October, compared with $£ 394.5$ billion a year earlier. The Budget Report 2005 forecast net debt at the end of March 2006 is $£ 452.0$ billion.

Natural resource and products use in the economy

The mass of natural resources and products used by the UK economy in 2004 rose by 11 million tonnes (1.6 per cent) to 693 million tonnes. The rise was driven by a greater deficit on the physical trade balance, which increased by 36 million tonnes to net imports of 89 million tonnes, as the mass of imports rose and the mass of exports fell. The rise in the deficit on the physical trade balance was partly offset by a 24 million tonne fall in the level of domestic extraction.

UK material consumption (domestic material consumption), amounted to 693 million tonnes in 2004 compared with 682 million tonnes in 2003 and 680 million tonnes in 2002. Recent rises in domestic material consumption are associated with the increasing mass of imports, which reached a record 273 million tonnes in 2004, an increase of 33 million tonnes (13.8 per cent) on the previous year. This is due to large increases in fossil fuel imports which, at 127 million tonnes, are at their highest level since 1974. In 2004, the mass of exports fell 1.6 per cent year on year due to lower exports of fossil fuels. Total exports amounted to 184 million tonnes compared with 187 million tonnes in 2003, as exports of fossil fuels fell to 98 million tonnes compared with 103 million tonnes in 2003.

Domestic extraction declined as a result of lower levels of extraction of North Sea oil and gas, which both fell approximately 10 per cent compared with the previous year.

The material productivity of the UK economy continues to rise suggesting domestic material consumption and economic growth have decoupled since 1990.

Economic update December 2005

Anis Chow dhury

Office for National Statistics

Overview

- The GDP growth in the third quarter of 2005 was 0.4 per cent, unchanged from the preliminary estimate and lower than the 0.5 per cent growth in the previous quarter.
- The slowdown in the growth rate was due to a decrease in industrial production. Manufacturing output rose but was partially offset by a sharp fall in mining and quarrying. Construction grew at a lower rate than the previousquarter. Servicesindustries output grew at the same rate in the previousquarter, and continuesto lead UK growth.
- Consumer spending remains subdued. It rose by 0.5 per cent in the third quarter, up from 0.4 per cent in the previous quarter. Retail sales increased marginally lower in quarter three after a pick up in quarter two.
- Total fixed business investment rose by 0.3 per cent in quarter three following growth of 1.5 per cent in 2005 quarter two.
- Government spending slowed in 2005 quarter three. It rose by 0.3 per cent compared to 0.5 per cent growth in quarter two but public sector finances showed an improvement last month.
- Labour market conditionsshow signs of stabilising after softening in recent months. The employment rate increased slightly whilst the unemployment rate remained unchanged in the three monthsto September. The claimant count increased for the ninth month running. Average earningsgrowth including bonuses fell, whilst average earnings growth excluding bonuses remained unchanged from the previous month.
- Producer annual output and input price inflation slowed in October.
- Consumer price inflation decreased in October, but still continuesto exceed the Government's 2 per cent target.

GDP activity - overview

TheGDP growth for the third quarter of 2005 is estimated to have grown by 0.4 per cent, unchanged from the preliminary estimate, after the release of the national accounts figures for that quarter. This is a slight deceleration from the 0.5 per cent growth in 2005 quarter two. The annual rate of growth rose to 1.7 per cent from 1.6 per cent in the previous quarter. This latest release contains more information than that contained in the preliminary one. It gives first estimates for the main expenditure categories and more completeinformation on the output side. It is still however, based on as yet incomplete information (Figure 1).

Preliminary data for 2005 quarter three are available for the other major OECD economies and shows a mixed picture of the world economy. US GDP growth for the third quarter of 2005 recorded an expansion of 0.9 per cent, up slightly from the previous quarter growth rate of 0.8 per cent.

Figure 1
GDP
Growth

Household demand continues to be a major contributor to GDP growth. Theacceleration in thethird quarter primarily reflected increases in personal consumption expenditure and federal government spending as well as a smaller decrease in private inventory investment. This was partially offset by a deceleration in exports and residential fixed investment. Japan's output slowed markedly in 2005 quarter three but still shows modest growth. Growth was 0.4 per cent compared to 0.8 per cent in 2005 quarter two. The deceleration was partly due to a slowdown in household consumption expenditure and partly due to a sharp decrease in corporate investment. There was also a negative contribution from net exports. This was partially offset by an increase in private residential investment. Government expenditure remained flat compared to the previous quarter.

Growth in the three biggest mainland EU economies - France, Germany and Italy - shows a mixed picture. Growth overall however, remains subdued. German GDP growth was 0.6 per cent in 2005 quarter threefollowing growth of 0.2 per cent in the previous quarter. Themain postive contribution came from net exports, with exports rising strongly on the quarter. There was also a strong rise in corporate investment, particularly in machinery and equipment. According to business surveys, this reflects increasing optimism of industry. On the downside, household consumption expenditure continues to make a negative contribution to growth, decreasing for thethird successive quarter. This partly reflects theflat growth in nominal disposable incomeand is partly due to the relatively weak labour market. France GDP growth showed a sharp rebound in 2005 quarter three. Growth was 0.7 per cent, compared to the 0.1 per cent growth rate in 2005 quarter two. The marked increase was mainly dueto a sharp rise in household final consumption expenditure and a rise in corporate investment. Net exports al so made a positive contribution to growth for the first time in two years. Italy, in contrast, recorded a much lower growth rate of 0.3 per cent following growth of 0.7 per cent in the previous quarter. Industrial output was the main contributor to thegrowth rate. Services output was flat whilst agricultural output continues to remain weak.

Financial M arket activity

Equity performance has been positive this year on the whole, although stock prices have been volatile. TheFTSE All - Share index was up by about 0.2 per cent in 2005 quarter two having risen by 5 per cent in the previous quarter. In 2005 quarter three, the index grew further, to around 7 per cent. The encouraging stock market performance in the latest quarter, may partly bea reflection of the increased profitability of blue chip companies, particularly those exposed to non-UK markets and is partly due to the increased merger activity in quarter three.

Asfor currency markets, 2005 quarter two saw sterling's average value depreciate by 1.8 per cent against the dollar whileagainst theeuro, sterling's value appreciated by around 2 per cent. In 2005 quarter three, sterling's value against the dollar depreciated by around a further 4 per cent whilst against the euro, it depreciated by around 1.0 per cent. Overall, thequarterly effective exchange rate decreased by 1.3
per cent following a rise of 1.4 per cent in the previous quarter (Figure2). At thetime of writing this article the dollar/pound rate was 1.72 while the rate was 1.46 against the euro.

The recent movements in the exchange rate might be linked to a number of factors. The depreciation against theeuro and the dollar in the latest quarter may be due to expectations that the Bank of England may keep interest rates unchanged for a prolonged period or even cut them due to lower growth and lower inflation projections. This coincides with expectations of interest rate rises in the euro area. The recent hikes in interest rates in the US may have contributed to the rebound in the dollar. In the UK, interest rates were lowered in August 2005 by 0.25 per cent to stand at 4.50 per cent but arestill well above the rate in theeuro zone and slightly above the rate in the US, wherethe rate currently stands at 4.00 per cent. The depreciation of sterling against the dollar also partly reflects the strength of the US economy relative to theUK economy.

Figure 2
Exchange rates
£ equals

Output

GDP growth in 2005 quarter three is estimated to be 0.4 per cent, unchanged from the preliminary estimate. On an annual basis, it was 1.7 per cent, up from 1.6 per cent in 2005 quarter two. It is worth noting here that these estimates are based on partial information, which will be augmented later to produce the final GDP estimation for 2005 quarter three.

According to the 2005 quarter three GDP figures, the growth rate of 0.4 per cent in the UK economy was due to a combination of factors. Industrial production fell. Construction output grew at slower rate than the previous quarter. Service sector output however remains robust and continues to lead economic growth.

Construction is estimated to have grown by 0.5 per cent following 0.6 percent growth in the previous quarter (Figure3). As for external surveys of construction, theCIPS survey signalled a marginal increase in the rate of growth of the construction sector in thethird quarter. The headline index was 56.4 compared to 54.4 in the previous quarter. There was a slight improvement in commercial as well as housing activity which was offset by slowdown in civil engineering. Business optimism however decreased over the
quarter. According to the latest figures available, theCIPS survey report a slowdown in the rate of expansion in the construction sector. The headine index was 53.9, down from 57.2 in September. This was mainly due to a weakening in the rate of increase in new orders.

Figure 3
Construction output
Growth

The RICS third quarter construction survey shows a similar pattern to the CIPS survey. The RICS construction survey reports that construction workloads pick up slightly in the third quarter. Total workloads was 17 per cent in quarter three, up from 15 per cent in quarter two. The private housing sector saw the largest increase. There was also an increase in commercial activity but at a lower ratedue to a slowdown in business demand for commercial property. Confidence over the next year remains high.

Total output from the production industries fell by 0.6 in 2005 quarter three, compared to flat growth in 2005 quarter two. Themain contribution to the decrease camefrom mining and quarrying (including oil \& gas extraction) which fell by 7.7 per cent following growth of 0.3 per cent in the previous quarter, due largely to an extended maintenance shutdown in the North Sea. Within industrial production, there was a fall in the output of the electricity, gas and water supply industries of 0.8 per cent compared to growth of 1.0 per cent in 2005 quarter two. M anufacturing output rose by 0.4 per cent, after recording a fall of 0.2 per cent in 2005 quarter two (Figure 4). It is worth noting that production growth in the mining and quarrying industries and electricity, gas and water supply industries has been volatile in recent quarters. Agriculture, forestry and fishing fell by 0.5 per cent following growth of 1.1 per cent in 2005 quarter two.

Figure 4
Manufacturing output
Growth

External surveys of manufacturing for 2005 quarter three (Figure5) show a mixed picture for growth than in the previous quarter. The gap between external surveys and official data has narrowed recently as the external surveys have become more pessimistic. It is worth noting that it is not unusual for the path of business indicators and official data to diverge over the short term. These differences happen partly because the series are not measuring exactly the same thing. External surveys measure the direction rather than the magnitude of a change in output and often enquire into expectations rather than actual activity.

Figure 5
External manufacturing
Balances

TheCIPS headline index for manufacturing signalled an increase in activity in 2005 quarter three. The headline index was 50.5 in 2005 quarter three compared to 48.7 in quarter two. Both the orders and the output indicators followed the same trend as the headlinefigure. According to thelatest figures, there was a further improvement in October. The headline index was 51.7, up slightly from 51.5 in September. This moderate expansion was supported by strong gains in output and new orders. The 2005 quarterly three BCC survey in contrast reports a sharply worsening performance in the manufacturing sector. The survey reports that manufacturing balances for homesales \& orders, export sales \& orders and key confidence balances fell in quarter three. TheCBI also report a weakening manufacturing performance in 2005
quarter three. TheCBI in the quarter threeindustrial trends survey report that the balance for total orders was minus 25 , a further decrease from the minus 20 reported at theend of quarter two. The export balance and deliveries shows a similar trend. TheCBI attributethe weakness to consumer caution. According to the latest monthly industrial trends survey, the CBI report a continued weakness in manufacturing performance. The balance was minus 25 , unchanged from the previous quarter. Total order books remained unchanged, reflecting weak domestic demand. However, there was an improvement in export order books.

Overall, the service sector, by far the largest part of the UK economy and themain driver of UK growth recently, continues to grow but at a rate of 0.6 per cent, unchanged from the previous quarter. Within the sector, components to the growth rate appear broad based with financial and business services making a major contribution (Figure6).

Figure 6
Services output
Growth

The Index of Distribution is a monthly series reporting the output of the distribution industries - which constitute approximately one-fifth of the total Index of Services. According to the latest release, the distribution of output in the three months to September rose by 0.5 per cent compared with the three months to June. Wholesaling output increased by 0.8 per cent. The most significant increases were in clothing and footwear. Retail output increased by 0.6 per cent. The most significant rise was in non-food stores. This was offset by a decrease in motor trades output which decreased by 0.5 per cent in the three months to September. This was mainly due to the sale of motor vehicles.

The external surveys on services show a somewhat weaker picture of the service sector compared to 2005 quarter two. The CIPS Report on Services indicate a marginal weakening in the headline index in 2005 quarter three, mirroring the trend in official figures, but is still consistent with solid service sector growth. The business activity index was 54.8 , down from 57.5 in quarter two. Theorders index al so fell slightly. H owever, business confidence remains robust. According to the latest figures available, CIPS report an improvement in service activity growth in October. The headl ine index was 56.1 compared to 55.0 in September. The increase in the index
was fuelled by new orders. TheCBI Survey of Services report that business volume growth slowed further in 2005 quarter three. Theslowdown was most pronounced for consumer services firms, although professional services also noted tougher conditions. The BCC report a mixed performance for the service sector. H ome sales \& orders and employment wereup. But export sales \& orders, plant \& machinery investment and confidence balances all declined in quarter three(Figure 7).

Figure 7
External services
Balances

Household demand

H ousehold demand was 0.5 per cent in 2005 quarter three, up from 0.4 per cent in 2005 quarter two. Although this does represent a pick up, it is still subdued when compared to the first two quarters of 2004. Growth compared with the same quarter a year ago was 1.6 per cent, slightly up from the 1.5 per cent growth rate in the previous quarter (Figure8).

Figure 8
Household demand

This slowdown can largely be attributed to lower spending on durable and semi-durable goods which includes clothing and footwear.

The relative weakness of consumer spending might be connected to the lagged effect of the three interest rises in the summer of 2004. Indeed reports indicate that saving has increased recently with inflow of funds into savings accounts being at their highest for a number of years.The savings ratio was 5.0 per cent in 2005 quarter two, up from 4.5 per cent in 2005 quarter one. In addition there is little evidence of a sustained recovery from the relatively weak housing market during the first three quarters of 2005.

Ashousehold consumption has risen faster than disposable income in recent years the household sector has become a considerable net borrower. It is likely, that due to relatively high debt levels, consumer expenditure growth will be more tied to the growth of personal disposable income in the near future. Also, consumer fears about the possibility of higher taxes in order to plug the supposed hole in the public finances may also have been another factor behind the slowdown. Increasing tax bills in the last couple of years may also explain the consumer slowdown. Higher oil prices could also becontributing to the consumer slowdown by displacing expenditure on certain durablegoods.

However, there are some factors that are supportive. The labour market is relativley buoyant, which might generate moderategrowth in wages and thus personal disposable income increases. Low unemployment ensures that consumers are not overly concerned about their long-term job prospects, and are therefore less cautious about purchases of big-ticket items. Also, the recovery in equity prices from the beginning of 2005 might be expected to have a positive effect. Finally, the reduction in the repo rate by 0.25 per cent to 4.50 per cent in August 2005 by the Bank of Englands monetary policy committee (M PC) is expected to help support consumer spending.

The GfK index in 2005 quarter three showed a negative balance for the second successive quarter. The balance deteriorated in quarter threeto minus threefrom minus one in quarter two. The drop was driven by declines in the perception of the general economic situation in the last and next twelve months measure. According to the latest figures, the balancewas minus 27 in November, an improvement from the minus 32 in October. This was partly driven by an improvement in the index for major purchases measure, partly offset by a decrease in the index for the perception of the general economic situation in the last twelve months. The M ORI index shows a similar picture. The M ORI average economic optimism index (EOI) was minus 26 in 2005 quarter three down from minus 15 in 2005 quarter two, the largest negative balance since 2003 quarter one. In October there was a slight improvement in the balance to minus 32 from minus 35 in September. According to the latest monthly figures, the balance was minus 8 in November, unchanged from October.

Retail sales figures are published on a monthly basis and the latest available figures arefor October 2005 (Figure 9). It should be noted that household consumption accounts for a much broader range of spending than just retail sales. For instance, household purchases of services, motor vehicles, and housing (imputed rents) are not included in retail sales.

Figure 9
Retail sales
Growth

During the final quarter of 2004 the evidence suggests that the growth in retail sales weakened and this seems to have continued in the first quarter of 2005. In 2005 quarter two and three, there are somesigns of a modest pick up. According to the latest figures, the volume of retail sales in the three months to October was 0.7 per cent, a higher rate than in the three months to September, when growth was 0.4 per cent. This may partly bean effect of the discounting done by retailers in the latest quarter.

On a monthly basis, total sales volume increased by 0.2 per cent compared to 0.6 per cent in September. Compared with the same period a year ago, sales volumein the three months to O ctober was 1.1 per cent, up from 1.0 per cent in the three months to September, but still a relatively weak underlying rate of growth.

At a dis-aggregated level, during the three months to the end of October, growth in sales volumefor food stores was 0.4 per cent compared with 1.2 per cent for non-food stores. Within non-food stores, three monthly growth was positive for all sectors except clothing stores where growth was flat. The three-monthly growth ratefor thenon-storesector showed a decrease of 3.1 per cent, reflecting reduced sales by catalogue mail order companies.

External surveys show signs of growth slowing in recent months. Thelatest CBI monthly Distributive Trades Survey reports that trading conditions remained tough in October. The bal ance was minus 18 , a modest improvement from the minus 24 reported in September. This is in line with the official retail statistics. The CBI survey reports that the hardest hit sectors related to big ticket electrical products, DIY, hardware, furniture and flooring items. The motor trade suffered its worst sales performance since December 1999. The reasons for the negative balance is attributed to concerns over the housing market, the level of interest rates and consumer caution. It is worth noting that the CBI surveys 125 retailers accounting for about half the jobs on the high street whereas ONS surveys 10,000 retailers, including on-line and mail order businesses.

The British Retail Consortium (BRC) also report a slight improvement although trading conditions werestill described
as tough. They report that like-for-like retail salesfell by 0.2 per cent in October compared with October 2004. This follows a decrease of 0.8 per cent in September 2005 when compared with September 2004. The BRC report that clothing and footwear showed larger declines than in September due to the unseasonably mild weather. However, food sales improved. Big-ticket and housing related items continue to be affected by consumer caution (Figure 10).

In a seperate survey (the CBI and Grant Thornton service sector survey), it was reported that the slowdown hitting high street sales is al so affecting the service sector. The survey showed the rate of growth in both consumer (hotel, cinemas and tour operators) and business \& professional services (telecommunications, marketing and legal companies) slowing, with firms being increasingly pessimistic about the future, due to the impact of theeconomic slowdown.

Figure 10
External retailing
Balances, 3 month moving average

Business demand

The provisional estimate of business investment for the third quarter of 2005 was 0.3 per cent higher than the previous quarter, representing a downward movement on the second quarter growth of 1.5 per cent. Business investment was 1.9 per cent higher than the third quarter of 2004, compared with growth of 4.2 per cent in 2005 quarter two (Figure 11).

Looking at business investment on a moredis-aggregated level shows the increase on the quarter was due to increases in investment from 'other' services,'other' production, and construction This was offset by a decrease in investment from the distribution services and manufacturing industries. This somewhat reverses the picture in the previous quarter where there was a revival in investment in private sector manufacturing and a fall in 'other' production industries (mainly due to fall in investment by themining and quarrying industries).

Investment in private sector services is the most important component representing around threequarters of total business investment. Private sector services investment rose by 2.7 per cent in 2005 quarter three, compared with the second quarter growth rate of 0.1 per cent. Thequarterly rise is partly due to increased capital spending by thetransport and communications industries.

Figure 11
Total fixed business investment
Growth

M anufacturing investment according to the provisional estimate for the third quarter shows a decrease compared to quarter two. The manufacturing sector accounts for a little over onetenth of total business investment. This has tended to befairly volatile, but since 1999 manufacturing investment has undergonea persistent contraction. In 2005 quarter two there was a recovery in investment by the private and public sector manufacturing industries following a fall in the previous quarter.

According to the latest figures, total manufacturing investment fell by 1.6 per cent. However, compared with the third quarter of 2004, total manufacturing investment rose by 4.6 per cent. Private sector manufacturing investment fell by 1.5 per cent on thequarter and rose 4.7 per cent on a year ago.The quarterly fall is mainly from lower capital expenditure by the engineering and vehicles industries (-10.7 per cent), the chemicals and man made fibreindustries (-8.7 per cent) and the metals and metal goods industries (-6.5 per cent).

Construction investment rose 6.7 per cent on the quarter and 6.1 per cent on theyear. 'Other' production rose by 2.4 per cent on the quarter and rose by 3.0 per cent compared with the third quarter of 2004.

Despitethe rise in spending over the last two quarters, the environment still remains a mixed one for investment. Low interest rates by historical standards might be one possible explanation accounting for the recent growth, meaning that the cost of capital is relatively cheap. H owever, this may not be the case with the most recent quarter. According to the latest figures there appears to be a slowdown in investment, particularly for manufactured goods. This may partly reflect a continued weakness and uncertainty of demand.

Profitability though is likely to be an important factor determining investment.

High profitability is an indicator of high returns from investing in the capital stock and is likely to buoy business confidence. In addition, retained profits are a cheap source of investment funds, which will lower the cost of capital expenditures. Profitability can be defined as the net rate of return on capital employed. This is essentially the value of profits (allowing for depreciation) divided by the value of fixed assets (again allowing for depreciation) and inventories.

The overall profitability of UK private non- financial corporations in the second quarter of 2005 was 13.7 per cent, higher than the estimate of 13.3 per cent recorded in the previous quarter. M anufacturing companies' net rate of return was estimated at 7.5 per cent in the second quarter. This is higher than the average of 7.0 per cent for 2004 . The higher rate of return may be partly a reflection of the pick up in global demand, particularly from the non-EU and partly may be a result of lower rises in manufacturing unit labour costs.The profitability of service companies was 16.8 per cent, lower than the 17.5 per cent recorded in 2005 quarter one. It is however, higher than the average for 2004 of 16.4 per cent. Generally, service sector profitability is higher than that of the manufacturing sector, reflecting the more capital-intensive nature of the manufacturing sector.

Evidence on investment intentions from the latest BCC and CBI surveys shows a not inconsistent picture. According to the quarterly BCC survey, the balance of manufacturing firms planning to increase investment in plant and machinery remained unchanged in quarter three from quarter two at plus nine. However, the CBI in its 2005 quarter three Industrial Survey report a further deterioration in manufacturing investment plans in both plant and machinery from minus 15 in quarter two to minus 19 in quarter three, reflecting deteriorating confidence and uncertainty about futuredemand.

Government demand

Government final consumption expenditurein real terms grew by 0.3 per cent in the third quarter of 2005, a lower rate of growth than the 0.5 per cent rate in the previous quarter. Growth compared with the same quarter a year ago was 1.6 per cent, compared with a 1.5 per cent rise in the previous quarter (Figure 12).

Figure 12
Government spending
Growth

The latest figures on the public sector finances report up to October and show an improvement from September and a year ago. The current budget surplus (excluding net capital investment), was $£ 4.1$ billion compared with a deficit of $£ 0.4$ billion in October 2004. Public sector net borrowing (government's preferred measure) and which takes account of capital spending registered a deficit of $£ 2.2$ billion compared with a net borrowing of $£ 1.7$ billion in October 2004.
The public sector net cash requirement (cash based measure),
was - $£ 5.0$ billion compared to a net cash requirement of $-£ 1.5$ billion in October 2004. These figures reflect buoyant receipts from income and corporation taxes, mainly from higher oil revenues and moderate public expenditure.

However, it is worth noting that monthly data can be volatile. The financial year to date may providea better picture. The figures for the current financial year to date (April 2005 to October 2005) net borrowing presently stands at $£ 20.9$ billion compared to $£ 25.6$ billion in the same period in 2004/05. The current budget deficit stands at $£ 10.8$ billion, a lower deficit compared to the $£ 18.4$ billion deficit in the same period of 2004/05. Since net borrowing became positive in 2002, following the current budget moving from surplus into deficit, net debt as a proportion of annual GDP has risen steadily.

At the end of 2001 public sector net debt was 30.2 per cent of GDP; by the end of October 2005, this had risen to 35.0 per cent of GDP.

Trade and the Balance of Payments

The publication of the quarterly Balance of Payments shows that the current account deficit narrowed in 2005 quarter two to $£ 3.1$ billion from a revised deficit of $£ 7.3$ billion recorded in the previous quarter (Figure 13). As a proportion of GDP the deficit improved to minus 1.0 per cent from minus 2.5 per cent in 2005 quarter one. The lower deficit is accounted for by a combination of a lower transfers deficit, higher investment income surplus and a lower tradedeficit.

The transfers deficit was down $£ 1.0$ billion to $£ 2.5$ billion, with net contributions to EU institutions returning to more normal levels after the high payments recorded in the first quarter. The income surplus widened to $£ 9.2$ billion, from $£ 7.3$ billion in the first quarter. This is partly a result of lower dividends paid to non-resident holders of UK equity and partly due to a strong rise on interest receipts and payments on debt and deposits/lending, possibly a result of higher US interest rates together with increased cross-border investment.

The run of current account deficits since 1998 reflects the sustained deterioration in the tradebalance. TheUK has traditionally run a surplus on the trade in services, but this has been morethan offset by the growing deficit in trade in goods. The long run deterioration in the UK's trade deficit is due to exports growing more slowly than world trade due possibly to the high value of sterling and weak demand from Continental Europe, whilst imports have grown strongly due to high domestic spending.

According to the latest monthly trade figures, the UK's deficit on trade on goods and services is estimated to have narrowed in September to $£ 3.9$ billion from a deficit of $£ 5.6$ billion in August. TheAugust estimate was afffected by a downward adjustment to services data of $£ 1.4$ billion to account for the estimated payment of claims by Lloyds of London arising from the effects of Hurricane Katrina.

The goods trade deficit with the European Union widened to $£ 3.1$ billion in September from $£ 2.8$ billion in August. The trade gap with countries outside the EU narrowed to $£ 2.3$ billion in September from $£ 3.1$ billion in the previous month.

Figure 13
Balance of Payments

The surplus in the tradein services recovered to $£ 1.6$ billion in September from $£ 0.3$ billion in August as the downward adjustmemt due to the payment claims as a result of HurricaneKatrina was no longer a major factor in September.

The deficit in thethird quarter on trade in goods and services widened to $£ 13.3$ billion from $£ 9.8$ billion in the previous quarter.

The monthly figures, it would appear to suggest that theUK is starting to benefit from a pick up in world trade, aided by a boost from a slightly lower pound. However, recent export figures need to be treated with caution as they may have been distorted by VAT M issing Trader Intra- Community (M TIC) Fraud. The effect of this fraud would lead to an over recording of exports and under recording of imports. For instance, traders import goods, mainly on high value and eaily transportable goods such as mobile phones and computer chipsVAT free, sell them on for a sum including VAT, and then disappear before passing theVAT to Customs and Revenue. A more sophisticated version of the fraud known as'carousel fraud' enables goods to be imported and passed through a series of companies before being exported out of the UK. The same goods arethen re-imported, replicating the fraud. There are some indications that this type of fraud is now taking place to non- EU destinations and may be partially responsible for inflating recent non-EU export figures.

External surveys on exports show mixed conditions for the third quarter of 2005. Thequarter three BCC survey reports there was an improvement in the manufacturing sector's export performance both in terms of orders and deliveries. In contrast, the latest quarterly CBI Industrial Trends Survey report a deterioration in export orders

Labour M arket

In recent years the strength of the UK economy has been clearly reflected in the labour market statistics. The latest figures from the Labour Force Survey (LFS) pertain to the three month period up to September 2005 and show a mixed picture. Overall however, there appears to besigns of stabilisation in activity following signs of softening in the previous recent quarters, with theemployment rate
rising slightly further and the unemployment rate remaining unchanged from the previous quarter. The claimant count increased. Average earnings growth, including bonuses fell, whilst average earnings growth excluding bonuses was unchanged.

The current working age employment rate stands at 74.9 per cent, up 0.2 percentage point from the previous three months to June. The number of people in employment rose by 123,000 over the quarter. The unemployment rate was 4.7 per cent, unchanged from the previous quarter. (Figure 14). The number of unemployed declined by 1,000 over the quarter. The working age inactivity rate fell by 0.1 percentage point to stand at 21.3 per cent. The claimant count measures the number of people receiving thejob-seekers allowance. Thelatest figures for October show the claimant count level at 890,000, up 12,100 on the month, and up 53,700 on a year earlier. It has shown an average monthly increase of 8,000 over the last six months.

As job vacancies areoften filled from the pool of inactive workers rather than the unemployed, the softening of labour market activity recently may have been partly due to the rise in the inactivity rate. H owever, this seems to beless of a case in quarter three according to the latest figures than was the case in the second quarter, where the inactivity rate and level actually fell over the quarter. The economically inactive are those that are of working age but areeither not looking for work or are not available for work. The main groups classed as economically inactive are those looking after the family or home, the long term sick, students and the retired.

O verall, inactivity decreased in the threemonths to September 2005, continuing the trend from the threemonths to August. The number of economically inactive people of working age was down 36,000 over the quarter to stand at 7.89 million. O ver the year the number decreased by 16,000 . Those looking after thefamily/home had thelargest fall of 42,000 followed by the long-term sick at 38,000.
According to the LFS, in the period July to September 2005, 123,000 jobs were created. Employee jobs increased by 101,000 . Self employment increased by 38,000. This reverses the trend of previous recent quarters where there was a fall in self employment. There was a partially offsetting effect on thoseon government supported training \& employment programmes, which fell by 9,000 followed by unpaid family workers at 8,000.

The'workforce jobs' (employer based survey) is available for the three months up to June 2005. Workforce jobs decreased by 49,000 on thequarter but increased overall by 150,000 on the year. Figures show that manufacturing continues to shed jobs, with a loss of 47,000 in the latest quarter, compared with the previousquarter, followed by construction on 38,000 . This was partially offset by increases in finance \& business services of 21,000 and in 'other' services' of 17,000 .

After steadily rising throughout most of 2004, headline average earnings growth stabilised at the beginning of 2005 and this has continued in the latest figures. Figures based on the average over a three month period show that in the year

Figure 14
Unemployment and economically inactive Per cent

to September 2005, average earnings including bonuses was 4.1 per cent, down 0.1 percentage point from the previous month, slightly down on the average of quarter two, and lower than the 4.5 per cent average of 2005 quarter one. This may partly be a reflection of a loosening in the labour market due to an increase in the workforce. Average earnings growth (excluding bonuses) has been more stable. It has increased at a lesser rate in the three quarters up to September of 2005 than in most of 2004. The latest figures for September, show theAEI (excluding bonuses), unchanged from the previous month at 4.0 per cent.

Wage growth in the public sector, (excluding bonuses), has been oustripping the private sector throughout 2005. In August, the gap narrowed. H owever, acccording to the latest figures for September, wage growth of the public and private sector achieved parity with both growing by 0.4 percentage points. If bonuses are included, the latest figure shows the public sector continuing to out-strip the private sector for the fifth month running. The three month average wage growth in September for the public sector was 4.2 per cent compared to 4.0 per cent in the private sector. The overall picture is one of strong but steady earnings growth.

Prices

The first two quarters of 2005 saw a fall in output price inflation, although it still remained at levels substantially above thoseat the beginning of 2004. In September there was a significant pick up in producer output prices to 3.3 per cent from 3.0 per cent in August due mainly to the effects of higher oil prices (Figure 15). The latest figures for October, however, show producer output priceinflation falling sharply to 2.6 per cent. This mainly reflected falls in other manufactured product (particularly scrap metal) and food prices. This may suggest firms have not passed fully on high oil and raw material prices to the consumer and instead have absorbed them into their profit margins. Theoverall input index rose by 7.7 per cent in the year to October, compared with a rise of 10.2 per cent in the year to September. Thefall mainly reflected price falls in crude oil. The fall in petroleum prices is also feeding through to consumer prices as we shall see below.

Figure 15
Oil prices
Brent crude per barrel

Growth in the consumer priceindex (CPI) - thegovernment's target measure of inflation - fell to 2.3 per cent in October, from 2.5 per cent in September but still continued to exceed the Chancellor's 2.0 per cent target (Figure 16). The largest downward effect came from financial services, particularly from bank overdrafts where increases in charges were not as steep as a year ago. Another large downward contribution came from food and non-alcoholic beverages as prices for some fresh vegetables, fell this year dueto increased supplies, but rose a year ago. A large downward contribution came from fuels and lubricants dueto falling petrol prices in October. This was offset by a large upward contribution from air fares and small upward contributions from tobacco and cultural services. The RPI inflation rate was 2.5 per cent in O ctober, down from 2.7 per cent in September mainly due to lower housing costs, particularly depreciation. The RPIX inflation rate rose in October by 2.4 per cent, down from 2.5 per cent in September.

Figure 16
Inflation
Growth, month on month a year ago

Forecasts for the UK economy

A comparison of independent forecasts, November 2005
The tables below are extracted from HM Treasury's Forecasts for the UK Economy and summarise the average and range of independent forecasts for 2005 and 2006, updated monthly.

Independent forecasts for 2005

	Average	Lowest	Highest
GDP growth (per cent)	1.7	1.5	1.9
Inflation rate (Q4 per cent) CPI RPI			
Claimant unemployment (Q4, million)	2.4	1.9	2.7
Current account (£ billion)	-22.8	2.0	3.4
Public Sector Net Borrowing			
(2004-05, $£$ billion)			

Independent forecasts for 2006

	Average	Lowest	Highest
GDP growth (per cent)	2.1	0.2	2.9
Inflation rate (Q4 per cent)			
CPI	1.9	1.3	2.8
RPI	2.3	0.7	3.6
Claimant unemployment (Q4, million)	0.95	0.81	1.15
Current account ($£$ billion)	-26.0	-38.0	-15.0
Public Sector Net Borrowing (2005-06, £ billion)	39.2	30.0	51.8

NOTE Forecasts for the UK Economy gives more detailed forecasts, covering 27 variables and is published monthly by HM Treasury, available on annual subscription, price $£ 75$. Subscription enquiries should be addressed to Claire Coast-Smith, Public Enquiry Unit 2/S2, HM Treasury, 1 Horse Guards Road, London, SW1A 2HQ (Tel 0207270 4558). It is also available at the Treasury's internet site: http://www.hm-treasury.gov.uk under 'Economic Data and Tools'.
*PSNB: Public Sector Net Borrowing.

Corporate services price index (experimental) Quarter 3, 2005

What is the CSPI?

The experimental Corporate Services PriceIndex (CSPI) measures movements in prices charged for services supplied by businesses to other businesses, local and national government. The data produced are used internally by the Office for National Statistics (ONS) as a deflator for the Index of Services and the quarterly measurement of Gross Domestic Product (GDP). It is also used by the Treasury and Bank of England to help monitor inflation in the economy.

Results for Quarter 3, 2005

Prices of business-to-business services rose by 3.8 per cent in theyear to the third quarter 2005. This is based on a comparison of the changein the top-level CSPI on the net sector basis.

Figure 1 shows how the percentage changefor the top-level CSPI (net sector) compares with the Retail Price Index (RPI) and the Producer Price Index (PPI) for all manufactured goods (net sector).

The top-level results, on both gross and net sector bases, are shown in Table 1. In 2005 Q 3, the top-level CSPI (net sector) rose by 0.8 per cent compared to the previous quarter.

Figure 1
Experimental top-level CSPI compared with the Retail Price Index (RPI) for services and the Producer Price Index (PPI)

Percentage change on the same quarter a year ago
United Kingdom

Table 1
CSPI results

		CSPI Quarterly Index Values 2000=100		Percentage change on same quarter in previous year (per cent)	
		Gross sector	Net sector	Gross sector	Net sector
2000	Q1	99.8	99.5	-0.6	1.3
	Q2	99.6	99.5	-0.3	1.5
	Q3	100.2	100.3	0.9	2.2
	Q4	100.4	100.7	1.0	2.1
2001	Q1	101.4	101.8	1.5	2.3
	Q2	102.9	103.4	3.3	3.9
	Q3	103.5	103.7	3.2	3.3
	Q4	103.8	104.1	3.4	3.3
2002	Q1	103.8	104.1	2.4	2.2
	Q2	104.7	105.0	1.8	1.5
	Q3	105.6	105.6	2.0	1.9
	Q4	106.1	106.4	2.2	2.3
2003	Q1	106.6	107.2	2.7	3.0
	Q2	108.1	108.8	3.2	3.6
	Q3	108.7	109.3	3.0	3.6
	Q4	109.2	109.9	2.9	3.3
2004	Q1	109.3	110.1	2.5	2.6
	Q2	110.6	111.4	2.4	2.4
	Q3	111.0	111.8	2.1	2.2
	Q4	111.6	112.5	2.3	2.3
2005	Q1	112.3	113.4	2.7	3.0
	Q2	113.6	115.1	2.7	3.4
	Q3	114.5	116.0	3.2	3.8

Figure 2 depicts theCSPI annual growths for both thenet and gross sector time series. The net CSPI growth shows an increaseto 3.8 per cent for 2005 Q3 from 3.4 per cent in 2005 Q 2. The annual growth for the CSPI gross series shows an increaseto a value of 3.2 per cent in 2005 Q3 from a value of 2.7 per cent in 2005 Q2. The difference in annual growth between the gross sector and net sector CSPI is 0.6 per cent this quarter.

Industry-specific indices

The tables attached at the end of this rel ease contain the data for the thirty-two industries for which indices of corporate services prices are currently available. The weights for each industry index are shown at both gross and net sector levels. Some key points to note are:

- waste disposal prices rose by 3.7 per cent on the previous quarter, reportedly due to general price increases across the industry
- sea and coastal prices rose by 3.5 per cent on the previous quarter, reportedly due to an increase in fuel prices

Figure 2
Experimental top-level CSPI (Gross and net sector)
Percentage change on the same quarter in previous year United Kingdom

- real estate prices rose by 2.6 per cent on the previous quarter as reported by the Investment Property Databank
- freight forwarding prices rose by 1.8 per cent on the previous quarter, reportedly due to an increase in fuel prices
- employment agencies prices rose by 1.7 per cent on the previous quarter, reportedly dueto general price increases across theindustry
- canteens and catering prices rose by 1.4 per cent on the previous quarter, reportedly dueto general price increases across the industry
- freight transport by road prices rose by 1.2 per cent on the previous quarter reportedly due to an increase in fuel prices
- banking prices fell by 2.9 per cent on the previous quarter as reported by the Bank of England

Background notes

1. The experimental Corporate Services PriceIndex (CSPI) was rebased to the year 2000 and released on 20 February 2004. M any aspects of the methods and sources used to compile theCSPI have been reviewed and updated in the rebasing. For more information on the methodology and associated impact of the rebasing see www.statistics.gov.uk/downloads/ experimental/CSPI_ Rebasing_M ethodology_and_Impact.pdf.
2. The February 2004 release of the rebased CSPI also introduced a redeveloped business telecommunications index and new banking (loans and interest bearing deposits) index. ONS has also expanded substantially the survey of businesses on which the CSPI is based. We now survey 1,500 businesses, seeking price quotes for 5,000 service-products. For further information on the redeveloped business telecommunications CSPI see www.statistics.gov .uk/downloads/experimental/ Redeveloped_Business_Telecommunications.pdf. For further information on thenew banking CSPI see www.statistics.gov.uk/downloads/experimental/New_ Banking_CSPI.pdf.
3. The CSPI is shown in this release as both net and gross sector time series, aligning with the PPI rel ease format. The net series is scoped to monitor the corporate-service activity provided to other businesses and government organisations, outside the corporate services sector. The gross series is scoped to monitor the provision of corporate services to all businesses and government organisations.
4. Indices relateto average prices for a quarter. Thefull effect of a price change, occurring partway through any quarter, will only be reflected in the following quarter's index. All index numbers excludeVAT.
5. Someback data for a few industry specific indices have been revised. Thefigures previously published arenow
found to have included transcription errors. M any of the revisions are very small, either 0.1 or 0.2 index points, although some arelarger. Thelargest revisions are to the 2003 index number level and growth rate for hotels and technical testing (around oneindex point). The largest revisions to quarterly growth rates are for bus and coach hire growth in quarter 32000 (revision of 1 index point) and to banking services in quarter 32002 (revision of two index points). There were no errors in thetop-level CSPI index number levels or growth rates. Theindex numbers in this publication have now been subject to a further quality assessment and improvements to operational procedures are being put in place as a result.

Note: M easurement of service sector prices is inherently difficult and challenging. When viewing the results, it should beborne in mind that the indices shown are regarded as experimental. This is particularly true of those that have been added to the series most recently. Therefore, some of the results will besubject to revision beforethe completion of the CSPI development project. The top-level index should also be viewed as experimental.
6. Review of car contract hire. ONS contract a private agency to provide price information on the car contract hire industry for inclusion in the experimental CSPI. In the first quarter of 2005, the agency made changes to their weighting patterns which has led to a significant jump in the level of their index. ON S has reviewed the way in which this index is calculated and has decided to withdraw it from the CSPI until further notice. This has increased theindustry weights for the remaining components of the index and has caused slight revisions to thenet and gross top-level CSPI back to 2000 Q1. For the first, second and third quarters of 2005, the removal of the car contract hire index has reduced the net and gross annual growth by around 0.2 per cent.
7. Index weighting methodology. Enhancements have been made to the CSPI weighting calculations and are now ready to be implemented into the series. This follows research into the $2000=100$ rebasing exercise and will incorporateimprovements to the way in which the experimental index is compiled. At the request of ONS National Accountants, this methodological change will not now beintroduced until mid 2006 in order to fit in with the publication of the 2006 Blue Book.
8. Presentation of futureexperimental releases. Following the withdrawal of the car contract hire index from the CSPI, improvements to the way in which CSPI results are presented will now be introduced in February 2006, alongside the existing publication. These will include additional commentary on index movements together with accompanying charts and theintroduction of industry family grouping to aid interpretation.
9. Employment agencies. TheCSPI for employment agencies has been revised over the last six quarters to take account of updated salary information from the ONSAnnual Survey of Household Expenditure(ASH E).

Note to the main table:

There are external sources for the indices denoted by an asterisk, as follows:

Index	
Banking Services	Bank of England
Property rental payments	Investment Property Databank (IPD)
Maintenance and repair of motor vehicles	Yewtree.com Ltd
Construction plant hire	Construction Plant-hire Association (CPA) up to Quarter 2 of 2002
Business telecommunications	Ofcom (Office of Communications)
Sewerage services	Ofwat (Office of Water Services)
National post parcels	Parcelforce
Business rail fares	Strategic Rail Authority (SRA)

Next results

The next set of CSPI results will beissued on 17 February 2006 via the National Statistics website: www.statistics.gov.uk/ cspi.

Further information

- Articles on the methodology and impact of rebasing the CSPI, the re-development of an index for business telecommunications and theintroduction of an index for banking services (together with moregeneral information on the CSPI) are available at www.statistics.gov.uk/cspi
- Survey contact:

Tim Clode
Office for National Statistics
Tel: (01633) 813493
E-mail: cspi@ons.gsi.gov.uk

Table 2
Corporate Services Price Indices (Experimental) (2000=100)

Table 2 - continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \& Maintenance and repair of motor vehicles* \& Hotels \& Canteens and catering \& Business rail fares* \& Rail Freight \& Bus and coach hire \& Freight tra

Total \& | sport by road |
| :--- |
| International component |

\hline SIC(2003) \& 50.2 \& 55.1 \& 55.50 \& 60.10/1 \& 60.10/9 \& 60.23/1 \& 60.24/9 \&

\hline \multicolumn{9}{|l|}{Percentage change, latest quarter on previous quarter}

\hline 2000 Q1 \& 0.3 \& 1.7 \& -0.4 \& 4.5 \& 0.5 \& 1.6 \& 1.3 \& 2.2

\hline Q2 \& 0.5 \& 1.3 \& 1.1 \& 0.0 \& -2.3 \& 1.9 \& 0.5 \& 0.0

\hline Q3 \& 0.6 \& 0.6 \& 0.0 \& 0.0 \& 0.0 \& 0.7 \& 0.9 \& 0.5

\hline Q4 \& 1.0 \& -0.2 \& 0.5 \& 0.0 \& 0.0 \& 0.8 \& 1.4 \& 0.9

\hline 2001 Q1 \& 0.8 \& 2.4 \& 2.5 \& 3.1 \& 0.9 \& 1.9 \& 0.9 \& -0.1

\hline Q2 \& 0.8 \& 1.8 \& 1.2 \& 0.0 \& 0.8 \& 1.7 \& 0.5 \& -0.6

\hline Q3 \& 0.6 \& -0.2 \& 0.1 \& 0.0 \& -0.6 \& 2.8 \& 0.1 \& -0.4

\hline Q4 \& -0.2 \& 0.3 \& 0.1 \& 0.0 \& -0.4 \& 2.5 \& 0.0 \& 0.3

\hline 2002 Q1 \& 1.5 \& -1.1 \& 0.0 \& 2.9 \& 1.2 \& 0.9 \& -0.1 \& -0.5

\hline Q2 \& 0.6 \& -0.3 \& 0.6 \& 0.0 \& 0.8 \& 1.4 \& 0.7 \& -0.2

\hline Q3 \& 1.0 \& 0.6 \& 0.4 \& 0.0 \& 0.2 \& 2.8 \& 0.6 \& 0.3

\hline Q4 \& 0.8 \& 1.9 \& 0.0 \& 0.0 \& 0.1 \& 0.9 \& 0.5 \& -1.4

\hline 2003 Q1 \& 1.5 \& 1.2 \& 0.4 \& 3.5 \& 0.2 \& 1.5 \& 0.7 \& 1.0

\hline Q2 \& 0.8 \& 0.0 \& 0.2 \& 0.0 \& 0.7 \& 1.3 \& 0.5 \& 0.0

\hline Q3 \& 0.6 \& 1.8 \& 0.3 \& 0.0 \& 0.2 \& 0.6 \& 0.2 \& 0.1

\hline Q4 \& 1.2 \& 1.6 \& 0.2 \& 0.0 \& 0.5 \& 0.1 \& 0.5 \& -0.3

\hline 2004 Q1 \& 1.4 \& -0.4 \& 0.2 \& 4.2 \& -0.5 \& 0.6 \& 0.3 \& -0.2

\hline Q2 \& 1.1 \& 1.6 \& 0.2 \& 0.0 \& 0.4 \& 0.8 \& 0.6 \& 0.1

\hline Q3 \& 1.2 \& -0.3 \& 0.5 \& 0.0 \& 0.2 \& 0.9 \& 0.8 \& 1.3

\hline Q4 \& 0.7 \& 0.4 \& 0.0 \& 0.0 \& 0.2 \& 0.5 \& 1.2 \& 0.4

\hline 2005 Q1 \& 1.8 \& 1.6 \& 0.8 \& 4.9 \& 1.1 \& 0.6 \& 1.6 \& 2.7

\hline Q2 \& 0.1 \& 0.0 \& 1.0 \& 0.0 \& 0.2 \& 1.5 \& 1.1 \& 1.8

\hline Q3 \& 0.7 \& 0.2 \& 1.4 \& 0.0 \& 0.8 \& 0.3 \& 1.2 \& 1.4

\hline \multicolumn{9}{|l|}{Percentage change, latest quarter on corresponding quarter of previous year}

\hline 2000 Q1 \& 2.5 \& -1.3 \& -0.8 \& 4.5 \& 1.3 \& 6.3 \& 5.2 \& 1.9

\hline Q2 \& 2.0 \& 3.3 \& -0.2 \& 4.5 \& -1.7 \& 7.3 \& 4.3 \& 2.2

\hline Q3 \& 2.2 \& 4.0 \& 0.4 \& 4.5 \& -1.8 \& 7.2 \& 4.6 \& 2.7

\hline Q4 \& 2.5 \& 3.4 \& 1.2 \& 4.5 \& -1.8 \& 5.1 \& 4.1 \& 3.7

\hline 2001 Q1 \& 2.9 \& 4.2 \& 4.2 \& 3.1 \& -1.4 \& 5.4 \& 3.7 \& 1.4

\hline Q2 \& 3.2 \& 4.7 \& 4.3 \& 3.1 \& 1.6 \& 5.3 \& 3.7 \& 0.7

\hline Q3 \& 3.3 \& 3.8 \& 4.3 \& 3.1 \& 1.1 \& 7.4 \& 2.8 \& -0.2

\hline Q4 \& 2.1 \& 4.4 \& 4.0 \& 3.1 \& 0.7 \& 9.2 \& 1.4 \& -0.9

\hline 2002 Q1 \& 2.8 \& 0.7 \& 1.4 \& 2.9 \& 1.0 \& 8.1 \& 0.4 \& -1.2

\hline Q2 \& 2.6 \& -1.3 \& 0.9 \& 2.9 \& 1.0 \& 7.7 \& 0.6 \& -0.8

\hline Q3 \& 3.0 \& -0.5 \& 1.2 \& 2.9 \& 1.9 \& 7.7 \& 1.2 \& -0.2

\hline Q4 \& 3.9 \& 1.0 \& 1.0 \& 2.9 \& 2.4 \& 6.0 \& 1.8 \& -1.8

\hline 2003 Q1 \& 3.9 \& 3.3 \& 1.4 \& 3.5 \& 1.3 \& 6.7 \& 2.6 \& -0.3

\hline Q2 \& 4.0 \& 3.7 \& 1.0 \& 3.5 \& 1.3 \& 6.7 \& 2.3 \& -0.1

\hline Q3 \& 3.6 \& 5.0 \& 1.0 \& 3.5 \& 1.2 \& 4.4 \& 1.9 \& -0.2

\hline Q4 \& 4.1 \& 4.7 \& 1.2 \& 3.5 \& 1.6 \& 3.6 \& 1.9 \& 0.9

\hline
\end{tabular}

Table 2 - continued

Table 2 - continued
Corporate Services Price Indices (Experimental) (2000=100)

	Commercial vehicle ferries	Sea and coastal water freight	Business air fares	Freight forwarding	National post parcels*	Courier services	Business telecoms services*	Banking services*
SIC(2003)	61.10/1	61.10/2	62.10/1	63.4	64.11	64.12	64.2	65.12/1
2000 weights per cent								
Gross sector	0.30	0.75	3.37	7.67	3.57	2.48	12.15	2.98
Net sector	0.38	0.95	1.65	6.43	1.88	1.31	5.59	3.35
Annual								
2000	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2001	98.7	100.7	115.1	100.4	103.1	102.7	92.6	108.2
2002	100.6	95.0	122.8	99.8	107.1	107.1	90.6	116.5
2003	102.8	96.1	127.1	104.3	113.3	109.2	87.8	125.6
2004	102.6	95.2	129.6	107.6	119.5	112.7	85.6	126.7
Percentage change, latest year on previous year								
2000	1.9	2.8	5.6	0.9	4.1	0.2	-16.0	10.2
2001	-1.3	0.7	15.1	0.4	3.1	2.7	-7.4	8.2
2002	2.0	-5.7	6.7	-0.6	3.9	4.2	-2.2	7.7
2003	2.1	1.1	3.5	4.4	5.9	2.0	-3.0	7.8
2004	-0.2	-0.9	2.0	3.2	5.4	3.2	-2.5	0.9
Quarterly results (not seasonally adjusted)								
2000 Q1	100.9	96.8	96.2	98.9	96.5	98.6	107.0	94.9
Q2	99.8	98.8	98.0	99.3	101.2	99.2	99.6	99.3
Q3	100.4	101.7	100.0	100.5	101.2	100.0	99.1	103.8
Q4	98.9	102.7	105.8	101.2	101.2	102.2	94.3	102.0
2001 Q1	101.5	103.9	111.9	102.2	101.2	100.4	93.1	101.4
Q2	99.0	101.6	113.1	100.6	103.7	101.5	92.8	109.0
Q3	97.0	99.9	116.8	99.4	103.7	104.2	93.7	106.7
Q4	97.3	97.5	118.5	99.4	103.7	104.8	90.8	115.7
2002 Q1	101.8	96.4	120.7	98.5	103.7	106.0	88.3	113.6
Q2	100.5	94.1	122.2	99.5	108.2	106.6	89.5	117.8
Q3	100.6	94.1	123.3	100.4	108.2	107.7	93.0	113.4
Q4	99.6	95.4	124.8	100.9	108.2	107.9	91.4	121.3
2003 Q1	102.6	98.8	124.9	102.2	108.2	108.6	88.2	122.5
Q2	102.8	97.0	127.1	104.4	115.0	109.4	87.3	125.8
Q3	102.8	94.5	128.1	105.0	115.0	109.3	88.2	125.7
Q4	102.8	94.0	128.2	105.5	115.0	109.4	87.6	128.4
2004 Q1	102.6	95.4	129.1	104.9	115.0	110.9	86.1	127.3
Q2	102.5	94.1	129.5	107.5	121.0	112.1	85.8	128.4
Q3	102.6	93.9	129.6	109.3	121.0	113.4	85.6	125.1
Q4	102.7	97.3	130.3	108.7	121.0	114.3	85.0	126.0
2005 Q1	104.8	96.7	132.3	109.9	121.0	115.0	83.4	125.5
Q2	104.7	97.7	133.5	111.9	124.0	116.2	82.7	126.7
Q3	104.8	101.2	134.9	113.9	124.0	117.6	81.5	123.1

Table 2 - continued

	Commercial vehicle ferries	Sea and coastal water freight	Business air fares	Freight forwarding forwarding	National post parcels*	Courier services	Business telecoms services*	Banking services*
SIC(2003)	61.10/1	61.10/2	62.10/1	63.4	64.11	64.12	64.2	65.12/1
Percentage change, latest quarter on previous quarter								
2000 Q1	5.6	2.1	0.8	0.7	0.0	-0.9	-3.2	3.2
Q2	-1.0	2.1	2.0	0.4	4.8	0.6	-6.9	4.7
Q3	0.6	2.9	2.0	1.2	0.0	0.8	-0.6	4.5
Q4	-1.4	1.0	5.8	0.7	0.0	2.1	-4.8	-1.7
2001 Q1	2.6	1.2	5.8	1.0	0.0	-1.8	-1.3	-0.5
Q2	-2.5	-2.2	1.1	-1.6	2.5	1.1	-0.3	7.4
Q3	-2.0	-1.7	3.3	-1.2	0.0	2.6	1.0	-2.1
Q4	0.3	-2.4	1.4	-0.1	0.0	0.6	-3.2	8.5
2002 Q1	4.6	-1.1	1.9	-0.9	0.0	1.2	-2.7	-1.8
Q2	-1.3	-2.4	1.2	1.0	4.4	0.6	1.3	3.6
Q3	0.1	0.1	0.9	0.9	0.0	0.9	4.0	-3.7
Q4	-1.0	1.3	1.2	0.5	0.0	0.2	-1.8	6.9
2003 Q1	3.0	3.6	0.1	1.3	0.0	0.6	-3.5	1.0
Q2	0.2	-1.8	1.7	2.2	6.3	0.7	-1.0	2.7
Q3	0.0	-2.6	0.8	0.5	0.0	-0.1	1.0	-0.1
Q4	0.0	-0.5	0.1	0.5	0.0	0.1	-0.6	2.2
2004 Q1	-0.2	1.5	0.7	-0.6	0.0	1.3	-1.7	-0.9
Q2	-0.1	-1.3	0.3	2.5	5.1	1.1	-0.4	0.9
Q3	0.0	-0.2	0.1	1.6	0.0	1.2	-0.2	-2.6
Q4	0.1	3.7	0.6	-0.5	0.0	0.8	-0.7	0.7
2005 Q1	2.1	-0.6	1.5	1.1	0.0	0.5	-1.8	-0.4
Q2	-0.1	1.0	0.9	1.7	2.5	1.1	-0.8	1.0
Q3	0.1	3.5	1.1	1.8	0.0	1.2	-1.5	-2.9
Percentage change, latest quarter on corresponding quarter of previous year								
2000 Q1	0.2	-3.1	2.5	-2.6	2.0	-0.7	-17.5	5.3
Q2	1.2	0.2	3.4	0.2	4.8	-0.7	-17.8	11.6
Q3	2.8	6.1	5.5	3.0	4.8	-0.2	-13.8	12.7
Q4	3.6	8.3	10.9	3.0	4.8	2.6	-14.7	10.9
2001 Q1	0.6	7.3	16.4	3.4	4.8	1.7	-13.0	6.9
Q2	-0.9	2.8	15.4	1.3	2.5	2.3	-6.9	9.7
Q3	-3.4	-1.8	16.8	-1.1	2.5	4.1	-5.4	2.8
Q4	-1.6	-5.1	12.0	-1.8	2.5	2.6	-3.8	13.5
2002 Q1	0.3	-7.2	7.8	-3.6	2.5	5.7	-5.1	12.0
Q2	1.5	-7.5	8.0	-1.1	4.4	5.1	-3.6	8.1
Q3	3.7	-5.8	5.6	0.9	4.4	3.3	-0.7	6.3
Q4	2.4	-2.1	5.3	1.5	4.4	3.0	0.7	4.8
2003 Q1	0.8	2.5	3.5	3.7	4.4	2.4	-0.1	7.8
Q2	2.3	3.1	4.0	4.9	6.3	2.6	-2.4	6.8
Q3	2.2	0.3	3.9	4.6	6.3	1.5	-5.2	10.8
Q4	3.2	-1.5	2.8	4.6	6.3	1.4	-4.1	5.9

Table 2 - continued

	Commercial vehicle ferries	Sea and coastal water freight	Business air fares	Freight forwarding	National post parcels*	Courier services	Business telecoms services*	Banking services*
SIC(2003)	61.10/1	61.10/2	62.10/1	63.4	64.11	64.12	64.2	65.12/1
Percentage change, latest quarter on previous quarter								
2004 Q1	0.0	-3.4	3.4	2.6	6.3	2.1	-2.4	3.9
Q2	-0.3	-3.0	1.9	3.0	5.1	2.5	-1.8	2.1
Q3	-0.3	-0.6	1.2	4.1	5.1	3.8	-3.0	-0.5
Q4	-0.1	3.6	1.6	3.1	5.1	4.5	-3.0	-1.9
2005 Q1	2.1	1.4	2.4	4.8	5.1	3.7	-3.1	-1.4
Q2	2.1	3.8	3.1	4.0	2.5	3.6	-3.5	-1.3
Q3	2.2	7.8	4.1	4.2	2.5	3.6	-4.7	-1.6

Table 2 - continued
Corporate Services Price Indices (Experimental) (2000=100)

	Property rentals*		Construction plant hire*	Market research	Technical testing	Employment agencies
SIC(2003)	70.2	70.3	71.32	74.13	74.3	74.5
2000 weights per cent						
Gross sector	8.08	3.81	2.44	1.18	0.79	14.77
Net sector	12.79	1.62	5.90	1.02	1.00	6.83
Annual						
2000	100.0	100.0	100.0	100.0	100.0	100.0
2001	106.5	101.9	104.2	102.6	103.8	107.1
2002	111.0	102.6	102.0	107.0	107.2	112.0
2003	115.6	105.8	108.2	109.8	111.0	115.5
2004	120.2	114.6	106.8	111.4	112.7	117.4
Percentage change, latest year on previous year						
2000	5.7	6.5	5.1	2.4	1.3	2.3
2001	6.5	1.9	4.2	2.6	3.8	7.1
2002	4.3	0.7	-2.1	4.3	3.3	4.6
2003	4.1	3.1	6.1	2.6	3.6	3.1
2004	4.0	8.4	-1.3	1.4	1.5	1.7
Quarterly results (not seasonally adjusted)						
2000 Q1	98.0	98.5	96.6	99.7	99.3	99.3
Q2	99.3	99.7	100.8	100.0	99.6	99.9
Q3	100.6	100.6	101.7	100.5	100.0	100.1
Q4	102.2	101.3	100.9	99.8	101.1	100.7
2001 Q1	104.1	101.9	101.8	102.3	101.7	102.7
Q2	105.7	101.9	108.0	102.6	104.2	106.8
Q3	107.2	101.9	105.0	102.7	104.3	108.7
Q4	108.8	101.8	101.9	103.0	104.9	110.0
2002 Q1	109.6	101.5	100.3	106.4	106.0	111.6
Q2	110.7	102.0	101.4	106.5	106.3	111.9
Q3	111.3	103.0	102.9	106.9	107.6	112.4
Q4	112.5	103.8	103.3	108.3	108.9	112.2
2003 Q1	113.4	103.9	106.5	109.1	109.9	113.4
Q2	115.5	104.9	108.4	109.3	110.5	116.0
Q3	116.3	106.7	108.8	110.3	111.7	116.4
Q4	117.1	107.5	109.1	110.6	111.9	116.2
2004 Q1	118.3	110.2	107.0	110.8	112.4	116.1
Q2	119.4	113.6	107.8	111.1	112.3	117.6
Q3	120.9	116.0	106.2	111.4	112.9	117.5
Q4	122.2	118.8	106.1	112.2	113.2	118.5
2005 Q1	122.5	120.9	106.5	113.3	113.3	118.7
Q2	123.8	121.2	107.1	114.7	113.5	120.1
Q3	124.4	124.3	107.4	115.3	114.6	122.1

Table 2 - continued

	Property rentals*		Construction plant hire*	Market research	Technical testing	Employment agencies
SIC(2003)	70.2	70.3	71.32	74.13	74.3	74.5
Percentage change, latest quarter on previous quarter						
2000 Q1	1.2	2.6	0.7	1.4	0.4	0.9
Q2	1.3	1.2	4.3	0.3	0.2	0.6
Q3	1.3	0.9	0.8	0.5	0.5	0.2
Q4	1.6	0.7	-0.7	-0.7	1.1	0.6
2001 Q1	1.9	0.6	0.9	2.5	0.6	2.0
Q2	1.5	0.0	6.1	0.3	2.5	4.0
Q3	1.4	0.0	-2.7	0.0	0.1	1.8
Q4	1.5	-0.1	-3.0	0.4	0.6	1.2
2002 Q1	0.8	-0.3	-1.5	3.2	1.0	1.4
Q2	1.0	0.5	1.0	0.1	0.3	0.3
Q3	0.5	0.9	1.5	0.4	1.2	0.4
Q4	1.1	0.8	0.4	1.2	1.3	-0.2
2003 Q1	0.8	0.1	3.1	0.8	0.9	1.1
Q2	1.8	1.0	1.9	0.2	0.6	2.3
Q3	0.7	1.7	0.3	0.9	1.1	0.3
Q4	0.7	0.8	0.3	0.2	0.2	-0.1
2004 Q1	1.0	2.5	-1.9	0.2	0.4	-0.1
Q2	1.0	3.1	0.8	0.3	-0.1	1.3
Q3	1.3	2.1	-1.5	0.2	0.5	-0.1
Q4	1.1	2.5	-0.1	0.7	0.3	0.8
2005 Q1	0.2	1.8	0.3	1.0	0.1	0.2
Q2	1.1	0.2	0.6	1.3	0.2	1.1
Q3	0.5	2.6	0.3	0.5	1.0	1.7
Percentage change, latest quarter on corresponding quarter of previous year						
2000 Q1	5.9	8.3	0.3	2.6	0.7	2.5
Q2	5.9	6.5	7.4	2.8	1.0	2.1
Q3	5.4	5.7	7.8	2.7	1.3	2.2
Q4	5.5	5.6	5.1	1.5	2.1	2.4
2001 Q1	6.3	3.5	5.4	2.6	2.4	3.5
Q2	6.5	2.3	7.1	2.6	4.7	7.0
Q3	6.6	1.4	3.3	2.1	4.3	8.6
Q4	6.5	0.5	1.0	3.3	3.8	9.3
2002 Q1	5.3	-0.4	-1.4	4.0	4.2	8.6
Q2	4.7	0.1	-6.1	3.8	2.0	4.8
Q3	3.8	1.0	-2.0	4.2	3.1	3.4
Q4	3.4	2.0	1.4	5.1	3.8	1.9
2003 Q1	3.5	2.4	6.1	2.6	3.7	1.6
Q2	4.3	2.8	7.0	2.6	4.0	3.7
Q3	4.6	3.6	5.7	3.2	3.8	3.6
Q4	4.1	3.6	5.6	2.2	2.8	3.6

Table 2 - continued

	Property rentals*	Real estate agency activities	Construction plant hire*	Market research	Technical testing	Employment agencies
SIC(2003)	70.2	70.3	71.32	74.13	74.3	74.5
Percentage change, latest quarter on corresponding quarter of previous year						
2004 Q1	4.3	6.0	0.5	1.5	2.2	2.3
Q2	3.4	8.3	-0.5	1.7	1.6	1.4
Q3	4.0	8.7	-2.3	0.9	1.0	1.0
Q4	4.4	10.5	-2.7	1.4	1.1	2.0
2005 Q1	3.6	9.8	-0.5	2.3	0.8	2.3
Q2	3.7	6.7	-0.7	3.2	1.1	2.1
Q3	2.9	7.2	1.2	3.5	1.5	3.9

Table 2 - continued
Corporate Services Price Indices (Experimental) (2000=100)

	Security services	Industrial cleaning	Commercial film processing	Contract packaging	Direct marketing \& secretarial services	Translation \& interpretation services
SIC(2003)	74.60/2	74.7	74.81/9	74.82	74.83(pt)	74.83(pt)
2000 weights per cent						
Gross sector	2.03	2.41	0.16	0.60	0.34	0.05
Net sector	2.57	2.45	0.20	1.38	0.35	0.05
Annual						
2000	100.0	100.0	100.0	100.0	100.0	100.0
2001	104.4	101.1	99.9	101.8	101.2	99.6
2002	108.2	104.0	99.9	103.1	99.7	101.5
2003	113.8	106.9	103.4	109.3	100.4	102.6
2004	117.7	109.3	107.7	111.4	101.5	107.1
Percentage change, latest year on previous year						
2000	2.1	0.7	0.2	1.2	1.3	-0.2
2001	4.4	1.1	-0.1	1.8	1.2	-0.4
2002	3.6	2.9	0.0	1.3	-1.5	1.9
2003	5.2	2.7	3.5	6.0	0.7	1.1
2004	3.5	2.3	4.1	1.9	1.0	4.4
Quarterly results (not seasonally adjusted)						
2000 Q1	99.0	99.9	99.9	99.6	99.9	100.2
Q2	99.7	100.0	100.0	99.4	99.9	100.2
Q3	100.4	100.0	100.0	100.7	100.3	99.9
Q4	100.9	100.1	100.0	100.3	99.9	99.6
2001 Q1	102.1	99.9	100.0	101.1	100.6	99.7
Q2	103.8	100.6	100.1	101.3	101.5	99.7
Q3	105.4	100.9	99.8	102.3	101.3	99.4
Q4	106.3	103.1	99.8	102.4	101.5	99.5
2002 Q1	107.4	103.5	99.9	102.5	100.9	101.4
Q2	107.7	103.9	99.9	102.4	99.3	101.5
Q3	108.3	104.0	99.9	103.2	99.3	101.4
Q4	109.3	104.8	99.9	104.2	99.3	101.6
2003 Q1	111.8	105.6	100.1	105.0	99.7	102.3
Q2	113.0	105.8	99.5	109.7	99.6	102.7
Q3	114.2	107.8	105.4	110.9	100.9	102.7
Q4	116.2	108.3	108.8	111.6	101.5	102.7
2004 Q1	117.2	108.3	109.3	112.0	101.5	108.0
Q2	117.7	109.3	107.1	110.8	101.4	108.0
Q3	117.8	109.6	107.1	111.3	101.5	106.2
Q4	118.2	110.0	107.1	111.5	101.5	106.1
2005 Q1	119.6	110.7	105.7	120.5	101.0	106.2
Q2	120.4	110.9	105.9	120.6	102.2	106.2
Q3	122.2	110.9	106.0	121.5	102.7	106.2

Table 2 - continued

	Security services	Industrial cleaning	Commercial film processing	Contract packaging	Direct marketing \& secretarial services	Translation \& interpretation services
SIC(2003)	74.60/2	74.7	74.81/9	74.82	74.83(pt)	74.83(pt)
Percentage change, latest quarter on previous quarter						
2000 Q1	0.4	0.2	0.1	0.8	1.1	0.0
Q2	0.7	0.2	0.1	-0.2	0.0	0.0
Q3	0.7	0.0	0.0	1.3	0.5	-0.4
Q4	0.5	0.1	0.0	-0.4	-0.4	-0.2
2001 Q1	1.2	-0.2	0.0	0.8	0.7	0.0
Q2	1.7	0.7	0.0	0.2	0.9	0.0
Q3	1.5	0.3	-0.3	1.0	-0.2	-0.3
Q4	0.9	2.2	0.0	0.1	0.2	0.2
2002 Q1	1.0	0.4	0.2	0.1	-0.6	1.8
Q2	0.3	0.4	0.0	0.0	-1.6	0.1
Q3	0.5	0.1	0.0	0.8	-0.1	0.0
Q4	0.9	0.8	0.0	0.9	0.0	0.2
2003 Q1	2.3	0.8	0.1	0.8	0.4	0.6
Q2	1.0	0.2	-0.6	4.5	-0.1	0.5
Q3	1.1	1.8	6.0	1.0	1.3	0.0
Q4	1.8	0.5	3.2	0.6	0.6	0.0
2004 Q1	0.8	0.0	0.5	0.4	0.0	5.2
Q2	0.4	0.9	-2.0	-1.0	-0.1	0.0
Q3	0.2	0.3	0.0	0.5	0.0	-1.7
Q4	0.3	0.3	0.0	0.2	0.0	0.0
2005 Q1	1.1	0.6	-1.2	8.1	-0.5	0.0
Q2	0.7	0.2	0.2	0.1	1.2	0.0
Q3	1.5	0.1	0.1	0.8	0.4	0.0
Percentage change, latest quarter on corresponding quarter of previous year						
2000 Q1	1.7	1.0	0.1	0.7	2.2	0.1
Q2	2.1	0.9	0.1	0.6	0.4	0.0
Q3	2.3	0.5	0.2	1.9	1.5	-0.3
Q4	2.3	0.4	0.2	1.5	1.1	-0.6
2001 Q1	3.1	0.0	0.1	1.5	0.7	-0.6
Q2	4.2	0.5	0.1	1.9	1.7	-0.6
Q3	5.0	0.8	-0.3	1.6	1.0	-0.5
Q4	5.3	3.0	-0.3	2.1	1.6	-0.1
2002 Q1	5.2	3.6	-0.1	1.4	0.3	1.7
Q2	3.8	3.3	-0.1	1.1	-2.1	1.8
Q3	2.8	3.1	0.2	0.9	-2.0	2.1
Q4	2.9	1.7	0.2	1.7	-2.2	2.1
2003 Q1	4.1	2.1	0.1	2.5	-1.2	0.9
Q2	4.8	1.9	-0.5	7.1	0.3	1.3
Q3	5.4	3.7	5.4	7.4	1.7	1.3
Q4	6.3	3.3	8.8	7.1	2.3	1.1

Table 2 - continued

	Security services	Industrial cleaning	Commercial film processing	Contract packaging	Direct secretarial services	 interpretation services
SIC(2003)	$74.60 / 2$	74.7	$74.81 / 9$	74.82	74.83 (pt)	$74.83($ pt)

Table 2 - continued
Corporate Services Price Indices (Experimental) (2000=100)

SIC(2003)	Adult education80.42	Sewerage services*$90.00 / 1$	Waste disposal$90.00 / 2$	Commercial washing \& dry cleaning93.01	TOP -LEVEL CSPI	
					Gross sector	Net sector
2000 weights per cent						
Gross sector	1.57	2.33	1.47	0.69	100	
Net sector	1.59	4.14	2.61	0.70		100
Annual						
2000	100.0	100.0	100.0	100.0	100.0	100.0
2001	103.9	98.3	105.3	101.2	102.9	103.2
2002	106.8	99.1	111.3	102.0	105.1	105.3
2003	111.5	102.7	118.6	102.4	108.1	108.8
2004	117.4	108.8	124.1	104.7	110.6	111.4
Percentage change, latest year on previous year						
2000	2.3	-8.7	4.9	-0.3	0.2	1.8
2001	3.9	-1.7	5.3	1.2	2.9	3.2
2002	2.7	0.8	5.7	0.9	2.1	2.0
2003	4.5	3.7	6.5	0.3	2.9	3.4
2004	5.2	5.9	4.6	2.3	2.3	2.4
Quarterly results (not seasonally adjusted)						
2000 Q1	99.5	110.4	99.2	99.7	99.8	99.5
Q2	99.5	96.5	100.4	100.2	99.6	99.5
Q3	100.3	96.5	100.2	100.4	100.2	100.3
Q4	100.8	96.5	100.2	99.8	100.4	100.7
2001 Q1	101.4	96.5	101.8	100.3	101.4	101.8
Q2	104.6	98.9	104.7	101.1	102.9	103.4
Q3	104.6	98.9	106.8	101.2	103.5	103.7
Q4	105.1	98.9	107.9	102.0	103.8	104.1
2002 Q1	106.0	98.9	108.0	102.4	103.8	104.1
Q2	106.3	99.1	110.9	102.1	104.7	105.0
Q3	107.3	99.1	111.3	102.5	105.6	105.6
Q4	107.4	99.1	115.0	101.1	106.1	106.4
2003 Q1	108.1	99.1	115.7	102.4	106.6	107.2
Q2	110.3	104.0	119.8	102.2	108.1	108.8
Q3	112.9	104.0	119.4	102.2	108.7	109.3
Q4	114.8	104.0	119.5	102.7	109.2	109.9
2004 Q1	117.3	104.0	120.0	105.0	109.3	110.1
Q2	117.3	110.4	124.8	104.9	110.6	111.4
Q3	117.5	110.4	124.9	104.3	111.0	111.8
Q4	117.4	110.4	126.6	104.7	111.6	112.5
2005 Q1	117.5	110.4	126.1	104.8	112.3	113.4
Q2	118.5	125.1	136.7	105.3	113.6	115.1
Q3	118.7	125.1	141.8	105.7	114.5	116.0

Table 2 - continued

SIC(2003)	Adult education80.42	Sewerage services*$90.00 / 1$	Waste disposal$90.00 / 2$	Commercial washing \& dry cleaning93.01	TOP -LEVEL CSPI	
					Gross sector	Net sector
Percentage change, latest quarter on previous quarter						
2000 Q1	1.2	0.0	3.0	0.6	0.4	0.8
Q2	0.1	-12.5	1.2	0.5	-0.3	0.0
Q3	0.8	0.0	-0.2	0.2	0.7	0.8
Q4	0.5	0.0	-0.1	-0.6	0.1	0.4
2001 Q1	0.7	0.0	1.6	0.5	1.0	1.1
Q2	3.1	2.5	2.9	0.8	1.5	1.6
Q3	0.0	0.0	2.0	0.1	0.5	0.2
Q4	0.5	0.0	1.0	0.8	0.3	0.4
2002 Q1	0.8	0.0	0.1	0.4	0.0	0.0
Q2	0.3	0.2	2.7	-0.2	0.9	0.9
Q3	0.9	0.0	0.3	0.4	0.8	0.6
Q4	0.1	0.0	3.3	-1.4	0.5	0.8
2003 Q1	0.6	0.0	0.6	1.3	0.5	0.8
Q2	2.1	4.9	3.6	-0.2	1.4	1.4
Q3	2.4	0.0	-0.3	0.0	0.6	0.5
Q4	1.6	0.0	0.0	0.5	0.4	0.5
2004 Q1	2.2	0.0	0.4	2.2	0.1	0.1
Q2	0.0	6.2	4.0	0.0	1.2	1.2
Q3	0.1	0.0	0.1	-0.6	0.3	0.4
Q4	-0.1	0.0	1.3	0.4	0.6	0.6
2005 Q1	0.1	0.0	-0.4	0.1	0.6	0.8
Q2	0.8	13.3	8.4	0.5	1.2	1.6
Q3	0.2	0.0	3.7	0.3	0.8	0.8
Percentage change, latest quarter on corresponding quarter of previous year						
2000 Q1	2.2	3.0	6.5	-0.3	-0.6	1.3
Q2	2.0	-12.5	5.1	-0.8	-0.3	1.5
Q3	2.5	-12.5	4.1	-0.7	0.9	2.2
Q4	2.5	-12.5	4.0	0.7	1.0	2.1
2001 Q1	2.0	-12.5	2.6	0.6	1.5	2.3
Q2	5.1	2.5	4.3	0.9	3.3	3.9
Q3	4.3	2.5	6.6	0.9	3.2	3.3
Q4	4.3	2.5	7.7	2.2	3.4	3.3
2002 Q1	4.5	2.5	6.1	2.1	2.4	2.2
Q2	1.7	0.2	5.9	1.0	1.8	1.5
Q3	2.6	0.2	4.2	1.3	2.0	1.9
Q4	2.2	0.2	6.6	-0.9	2.2	2.3
2003 Q1	2.0	0.2	7.1	0.0	2.7	3.0
Q2	3.8	4.9	7.9	0.1	3.2	3.6
Q3	5.3	4.9	7.3	-0.3	3.0	3.6
Q4	6.8	4.9	3.9	1.5	2.9	3.3

Table 2 - continued

	Adult education	Sewerage services*	Waste disposal	Commercial dry cleaning	TOP -LEVEL CSPI	
GIC(2003)	80.42	$90.00 / 1$	$90.00 / 2$	93.01		Net sector sector

Revisions to quarterly GDP growth and its production (output), expenditure and income components

Heather Robinson
Office for National Statistics

This article presents the results of the latest revisionsanalysis of Gross Domestic Product (GDP), updating the previous article published in J anuary 2005. It analyses revisions to the estimates of quarterly GDP at different stages of the production process, and also presentsconclusionsof revisions analysis of the quarterly growth ratesfor the main components of the expenditure, production and income measures of GDP. More detailed analysis of the components can be found in the appendicesto this article, available on the National Statistics website at: www.statistics.gov.uk/ cci/article.asp?ID=1289.

Introduction

M any different aspects of quality can be used to assess GDP estimates. Reliability, for example, can be assessed by analysing revisions to growth rates of quarterly GDP. Revisions analysis measures the reliability of an early estimate in predicting the value of a later estimate. Revisions anal ysis does not measure accuracy, which relates to how close the estimate is to the underlying 'true' value. It is possiblethat a reliable estimate (in that it is revised only very slightly over time) could be very inaccurate (in its closeness to the underlying'true' value), and vice versa.

Revisions analysisforms part of a wider programme of work being carried out to introduce Quality Reports to communicate quality information about estimates to users. Quality Reports provideinformation on different elements of quality (including reliability) and include both static and dynamic quality information specific to a release. M ore detail of the type of information included in Quality Reports is given in another article(Jenkinson, 2005).

Revisions to economic statistics can attract a great deal of attention, as addressed by the Statistics Commission Review of Revisions to Economic Statistics in April 2004. This concluded that, for most economic statistics, revisions are the norm and users expect revisions. The review made several recommendations that the Office for N ational Statistics (ONS) had already been working towards; these have been taken further since the review. AppendixA to this article contains a final update on the progress that has been made towards the recommendations contained in the review.

This article provides a summary of the analysis of revisions to quarterly GDP growth rates, and also to the components of the expenditure, production (or output) and income measures of GDP. For most of the analysis, seasonally adjusted and chained volume measures (or constant price) areused. For the income components of GDP, the analysis uses seasonally adjusted data but at current prices, not chained volumemeasures, due to the nature of how the data are collected and the difficulty of deflating the components. Thedetailed analyses of revisions to the components are available in the Appendices, available on the N ational Statistics website at: www.statistics.gov.uk/cci/article.asp?! $=1289$.

Key findings

- The initial estimate of quarterly GDP growth was, on average, 0.18 percentage points below the latest estimate. This is statistically significant.
- Within the compilation process for GDP, the largest revision occurred at the post Blue Book 2 (BB2) stage with a mean revision of 0.10 , which is statistically significant. M ean revisions for other stages of the production process were small and not statistically significant.
- For the expenditure components, Gross Fixed Capital Formation (GFCF) has the largest mean revision at 1.42 percentage points, which is statistically significant, despite the large variance of the revisions. This has a similar impact on GDP as the mean revision to Household Final Consumption Expenditure (HHFCE) of 0.01 because of each component's relative proportion of GDP. The mean revision to HH FCE is not statistically significant.
- Total Imports and Total Exports are the only other expenditure components with statistically significant mean revisions at 0.71 and 0.70 percentage points respectively. Since exports are added to GDP and imports deducted, if the revisions follow the sametrend as indicated then the impact on GDP of revisions to net trade (exports less imports) is not as great as if the components are considered separately.
- None of the output components had statistically significant mean revisions. Agriculture has the largest mean revision at 0.58 but this has a small impact on GDP as it makes up a low proportion. Conversely, Total Services has the smallest mean revision but it has the biggest impact on GDP since it makes up a large proportion.
- Within Total Services, none of the mean revisions for any of the components are statistically significant, both overall and at each stage of the production process.
- None of the income components had statistically significant mean revisions. Financial Corporations has the largest mean revision at 39.23 but this is not statistically significant due to the high variance of therevisions. This large mean revision is driven mainly by revisions to one particular quarter; when this quarter is taken out of the analysis the mean revision falls to 4.98 percentage points.
- Across all of the income components, Compensation of Employees and Taxes on Products less Subsidies have the smallest mean revisions and the initial estimates for these series are much better predictors for the latest values than the other components.

Methodology

The production of quarterly GDP in the UK follows a number of stages. The main stages of the production process are outlined below, with the estimate of actual data available at each stage taken from another Economic Trends article (Skipper, 2005).

- M onth 1 (M 1) - the first estimate of GDP quarterly growth is published around 25 days after the end of the
quarter in theGDP Preliminary EstimateFirst Release. This preliminary estimate is based on 44 per cent 'actual' data. Therest is based on projections using a variety of modelling techniques. The data content varies by industry; for the service industries estimates are based on 39 per cent actual data, for the production industries the figure is 73 per cent and for the construction industry 0 per cent.
- M onth 2 (M2) - the second estimate is published around 55 days after the end of the quarter in theUK Output, Income and Expenditure First Release. In this release, ONS improves on the preliminary estimate by including more complete output data, as well as early information on GDP measured by the expenditure and income measures. At this point the output measure of GDP is based upon 67 per cent of actual data and isthought to bethe best measure of growth in the short-term.
- M onth 3 (M 3) - the third estimate is published around 85 days after the end of the quarter in the Quarterly National Accounts First Release. In this release, ON S produces a full set of quarterly economic accounts, updating and expanding the information made availablein the earlier estimate as well as updating estimates for earlier quarters in the current year and normally the previous year. Fuller survey data for components of each of the expenditure, output and income measures are available. At this point the output measure of GDP is based upon 80 per cent of actual data and again is taken to bethe best estimate of short-term growth.
- Blue Books(BB) - annual GDP estimates are published in the BlueBook, usually in June or September. The quarterly data are updated again during the production of the first and second estimates of annual GDP, as data from new and more comprehensive annual data sources become available. The second time an annual estimate is published in the Blue Book, Input-Output Supply and Usebalancing is applied to the estimate for the first time. The InputOutput Supply and Usebalancing is re-run in subsequent Blue Books using additional benchmark data. Further methodological improvements may also be made during thepublication of BlueBooks.

In this article revisions to quarterly GDP growth rates are analysed over the periods between:

- M1 and M3
- M3 and BB1 (thefirst time an annual estimate is published)
- BB1 and BB2 (the second time an annual estimate is published)
- BB2 and the latest estimate (post BB2)

For the analysis of quarterly GDP growth rates, the time series used runs from the first quarter of 1993 (Q1) to the final quarter of 2002 (Q4). 1993 was the first year that the preliminary (M1) estimate of GDP was published. Taking the analysis only as far as the final quarter of 2002 ensures that all the estimates have had at least three years to mature and have all been through two BlueBooks.

Data in this article are comparable to the data used in the revisions analysis in GDP First Releases (GDP Preliminary Release, UK Output Income and Expenditure, UK Quarterly National Accounts) but the analysis is carried out over different time periods and so the summary statistics will not be the same. In addition, in this article revisions are analysed in relation to the stages of the compilation process as outlined above, using Blue Books as key markers. The analysis in First Releases uses different stages to break up the revisions to be consistent with the analysis in other First Releases.

The main part of the analysis is to apply a statistical test to the mean revisions to see if they are significantly different from zero, by comparing the mean revision with the variability of the revisions (see Box 1 for further details). The outcome of thetest gives an indication of whether the revisions pattern may have occurred by chance rather than due to a systematic over or under estimation of earlier estimates. The significance test in this article is based on the assumption that the revisions are normally distributed. A Jarque-Bera statistical test can be used to check the suitability of a normal distribution. For GDP quarterly growth rates, the JarqueBera test gives a p-value of 0.72 and the hypothesis that the data arenormally distributed cannot be rejected. So at-test is appropriate to assess the significance of the revisions. Graphs and other summary statistics arealso used in the analysis to further break down the revisions.

Revisions analysis of quarterly GDP grow th

Figure 1 shows revisions to quarterly GDP growth rates between the first quarter of 1993 (Q1) and the last quarter of 2002 (Q4). It shows that the preliminary estimates (M 1) have been revised in both directions with all revisionslying between -0.4 and 1.0 percentage points. It can be seen that it is more common for the preliminary estimate to be revised up rather than down over the given time period.

Figure 2 shows revisions according to the different stage in the production process at which they occur. Although for some quarters revisions are cumulative, it shows that in most cases revisions can be made in different directions at each stage of the production process and so can offset each other to an

Box 1

Testing for significance in revisions

Revisions to a series are considered to be significant if the mean revision is statistically different from zero. A t-test is performed on the time series of revisionsat different stages of production to test for significance. There are some difficulties with using a standard t -test for the mean revision, since it assumes that the revisions are independent of each other. This assumption is not true for a time series because revisionsmade in one period may be related to revisionsmade in previous periods.

To overcome this, the association of the revisions between successive time periods isstudied through calculating the serial correlation of the revisions. When the correlation is positive, a modified t-statistic is used and where the correlation is negative a standard t-test can still be used.

The modified t-statistic used correctsfor the lack of independence indicated by the correlation by making an adjustment to the estimate of the variability of the revisions. A technical description of the modified t -statistic and its calculation is given in another Economic Trendsarticle (Jenkinson, 2004). The modified t-test is an approximate method, which hasbeen developed to provide an indication of the significance of the revisions.

It should be noted that when the t-test is applied to the revisions, it takes account of the variability of the series of revisions itself. So it could happen that the mean revision is statistically significant, but the revisionsare small in relation to the time seriesitself. In that case, the mean could be statistically significant but the revisions not necessarily economically significant.
extent. While for the series as a whole the largest revisions haveoccurred post BB2, this trend does not appear to have followed through as starkly for the quarters after 2000 Q 4.

This is because revisions that were madein Blue Book 2003 as a result of various methodological changes will appear in the 'post BB2' stage for quarters in 1993 to 2000, but will appear

Figure 1
Total revisions to quarterly GDP growth, 1993Q1 to 2002Q4

Figure 2
Revisions by stage to quarterly GDP grow th, 1993Q1 to 2002Q4

Table 1
Summary statistics for revisions by stage to quarterly GDP grow th, 1993Q1 to 2002Q4

1993 Q1- 2002Q4	Mean revision	M ean abs revision	Variance	t-test used	t-stat
Revisions between M1 and M 3	0.01	0.09	0.01	Standard	0.41
Revisions between M3 and BB1	0.05	0.15	0.03	Adjusted	1.86
Revisions between	0.02	0.16	0.04	Standard	0.57
BB1 and BB2	0.10	0.25	0.10	Standard	2.03^{*}
Revisions since BB2 Total revisions	0.18	0.32	0.12	Adjusted	3.01^{*}

*shows the t-test comparing the mean revision to zero is significant .
in the stage 'BB1-BB2' for quarters in 2001 and 'M 3-BB1' for quarters in 2002.

Table 1 provides moreinformation about revisions at different stages of the production process. It gives detail on the mean revision, the mean absolute revision and the variance of the revisions at each stage. It also gives information on which t-test has been used and the results of thet-test.

It supports the general trend seen in Figure 2 - that the largest revisions have occurred post BB2. Thetable shows that the post BB2 revisions are significant, though it is worth noting that thet-statistic is only slightly larger than the critical t value which it has to exceed to indicate significance. The mean revisionsfor all theother stages before BB2 are not significant. The overall mean revision from the earliest estimate to the latest one is significant; over the period 1993 Q1 to 2002 Q4, M 1 estimates of GDP growth underestimated the latest estimate for the quarter by 0.18 percentage points on average.

Figure 3
Mean revisions by stage to quarterly GDP grow th, 1993Q1 to 2002Q4

M ore information on the pattern of revisions can be gained from considering the mean absoluterevision alongside the mean revision. In the case of revisions between BB1 and BB2 this is evident, since the mean revision looks small at 0.02 whereas the mean absolute revision is comparatively larger at 0.16 percentage points. This shows that the revisions at this stage are relatively large but are madein opposite directions and over time offset one another (illustrated in Figure 2).

Figure 3 shows the mean revisions to quarterly GDP growth and illustrates that the mean revisions for every stage of the GDP process are positive. It al so shows that the two stages with the largest mean revisions are between $M 3$ and $B B 1$ and revisions sinceBB2.

Although the overall mean revision is statistically significant, it should be noted that this is still less than 0.2 percentage points.

Approaches to measuring GDP

GDP can bemeasured using threetheoretical approaches:

- expenditure

- production (or output)
- income

The expenditure approach measures the total expenditure on all finished goods and services produced within theeconomy; the production (or output) approach measures the sum of the value added created through the production of goods and services within the economy; the income approach measures the total incomegenerated by the production of goods and services in the economy.

The components of each approach to measuring GDP are estimated through samplesurveys and administrative sources. In the short run, forecasts and model sare used to estimate growth for the later months of thequarter, for which data have not yet been collected. In the long run these forecasts are replaced with the actual data when it becomes available. A singleestimate is then derived through a balancing process and published as the official estimate of GDP (see Box 2 for more information on thebalancing process).

Box 2

Balancing process

The three different measures of GDP - expenditure, production (output) and income - should in theory be equal as they are different methods of measuring the same activity in the economy. However due to difficulties with availability of data and the extent to which the data sources capture the activity in the economy, this is often not the case.

The three measures become coherent in thelong-term through the use of a supply-use framework. This enables differences between the estimates of supply and use of specific products to be investigated, and the accounts adjusted accordingly to ensure a balance. Further information on the supply-use framework is available on the National Statistics website at: www.statistics.gov.uk/ $\mathrm{CCI} /$ nugget.asp? $\mathrm{D}=179$.
In the short run, there are not enough data available to produce a full supply-use bal ancing table. The first step in increasing the coherence of the raw data received is adjustment for quality by National Accounts experts following comprehensive analysis and investigation of possibleincoherences.
Estimates of quarterly growth from the expenditureand income sides are brought into linewith the estimate measured from the production (output) approach using an alignment adjustment. The estimate measured using the production (output) approach is taken to bethe best
estimate of growth in the short term due to the availability of data. The alignment adjustment is applied to the component of the accounts which is the most difficult to measure. It is applied to the series 'changes in inventories' (on the expenditureside) and 'gross operating surplus of non-financial private corporations' (on the income side).

The size of these alignment adjustments is one measure of the coherence of theaccounts, and is published in the Quarterly National Accounts release. These alignment adjustments sum to zero annually as output is not thought to bethe best estimate of annual growth, contradictory to the short-term.

Further detail on the balancing process can befound in the UK ESA 95 Gross National Income Inventory of M ethods, by referring to the bal ancing chapter. See:
www.statistics.gov.uk/statbase/product.asp?vInk=6392.
Dueto historical reasons and availability of data the analyses of revisions to the quarterly growth rates for the components of each of the three measures could not be carried out in all cases for consistent time periods. Details of the time periods used for each of the three approaches and any exceptions aregiven in Box 3 .

Box 3

Data and time series

Expenditure- For expenditure components, data on revisions on a consistent basis areonly available in most cases from 1996, so the analysis covers the period 1996Q 1 to 2002Q 4. The exception to this is the final consumption expenditure of non-profit institutions serving households (NPISH) which is only available as a separateseries from 1998Q 3. Expenditure components arefirst released at M 2 and so for this analysis the first revisions period investigated will be M 2 to M 3 rather than M 1 to M 3 .

Production (Output) - For output components data areonly available from 1996, so the analysis covers the period 1996Q 1 to 2002Q 4. For all of the four main output components, M 2 estimates are available from 1998Q 4 onwards and for Total Services, M 1 estimates are available from 1998Q4 onwards. Thisis reflected in thefirst revisions period analysed which is M 1 to M 3 for Total Services but M 2 to M 3 for the other components.

Income- For income components data are only available from 1998Q 2, so the analysis covers the period 1998Q2 to 2002Q4. Some of the income components are first released at M 2 - Compensation of Employees (CoE), Other income, Taxes on Products less Subsidies - for which data are availablefrom 1998Q 3 and thefirst revisions period analysed is M 2 to M 3. For theother income componentsPublic Non-Financial Corporations, PrivateNon-Financial Corporations and Financial Corporations - the first release is at M 3, so the first revisions period analysed is M 3 to BB1.

Expenditure components

The expenditure measure of GDP calculates the total expenditureon final demand for UK produced goods and services (also described as total domestic expenditure (TDE), adjusted for trade). It is broken down into categories according to the purchaser and product. Themain components (and their percentage of GDP in 2002) are:

- HHFCE (63.7 per cent) - household final consumption expenditure
- NPISH (2.5 per cent) - final consumption expenditure by non-profit institutions serving households
- GGFCE (20.1 per cent) - general government final consumption expenditure
- GFCF (16.5 per cent) - gross fixed capital formation
- Changes in inventories (0.3 per cent)
- and Exports (26.2 per cent).
- Imports of foreign-produced goods and services are then deducted (-29.2 per cent).

For the analysis of expenditure components, estimates for the quarters from 1996 Q1 to 2002 Q4 are used with the exceptions al ready noted in Box 3.

Table 2 shows summary statistics for the revisions to growth rates of components of the expenditure measure of GDP, and Figure 4 shows the mean revisions in a bar chart. Revisions to growth rates of changes in inventories are not included. Analysis of growth rates to changes in inventories would not be meaningful because the underlying estimate is a flow estimate and is published as levels rather than growth. Revisions analysis of levels of changes in inventories is summarised at the end of this section, but it should be noted that this analysis considers levels whereas for the other expenditure components it looks at growth so they arenot directly comparable.

It can be seen from Figure 4 that the largest mean revision is to GFCF of 1.42. Table 2 shows that this mean revision for

Figure 4
Mean revisions of GDP(E) components, 1996Q1 to 2002Q4

GFCF is significant, despitethe high variance of revisions shown in thetable. Though it is worth noting that the t-statistic is only just larger than the critical t value which it has to exceed to indicate significance. Table2 al so shows that Total Exports and Total Imports have significant overall mean revisions.

Therearetwo further diagnostic statistics in Table 2 which provide us with more information on the revisions to the expenditure components. Firstly, the mean absolute relative revision is the mean absolute revision divided by thelatest estimate of the mean absolute growth rate. This can give an indication of the relative impact of the revision on the growth rates. It shows that the revisions to GFCF are relatively large, followed by revisions to NPISH and GGFCE. Secondly, the mean squared error (MSE) is a measure that combines the mean revision and the dispersion of the revisions. So, in general a small M SE means the component is a better estimator of the final value than if it had a larger M SE. Table 2 shows GFCF with thelargest M SE and HHFCE with the smallest.

Table 2
Summary statistics for revisions to main components of GDP(E), 1996Q1 to 2002Q4

Component	Per cent of GDP (based on 2002) values	M ean revision	Mean abs revision	Variance	M ean absolute relative revision	M ean Squared Error (MSE)
HHFCE	63.7	0.01	0.47	0.34	0.50	0.34
NPISH	2.5	0.78	1.38	1.79	0.79	1.79
GGFCE	20.1	0.07	0.81	1.05	0.78	1.06
GFCF	16.5	1.42*	2.21	6.24	1.20	8.25
Exports	26.2	0.70*	1.21	1.65	0.66	2.14
Imports	-29.2	0.71*	1.16	1.42	0.60	1.92
Inventories	0.3	n/a	n/a	n/a	0.75	n/a

[^0]Figure 5 shows the impact that revisions to different expenditure components haveon revisions to GDP. The mean absolute revision for each component is plotted against its proportion of GDP. In order to assess the relative impact of these revisions on GDP, it is useful to draw a line on the graph to represent an equation of the form:

Constant $=$ proportion of GDP * mean abs revision

In this case, the constant used is the mean of the above equation for the expenditurecomponents. Theline can be used to comparethe impact of the revisions on GDP: if the component lies on the line it has the same impact as another component also on the line. Components abovethe line have a larger impact on GDP than components below the line.

Figure 5 shows that none of the components lie on this line. However, someinformation can begained from the location of the observations on the graph. Although the absolute mean revision to HHFCE is smaller than that for GFCF, Total Imports and Total Exports, it has a similar impact on GDP since its proportion of GDP is higher. It also shows that despite NPISH having the second largest mean absolute revision, this has a low impact on GDP becausethe proportion of GDP is so small.

Figure 5
Impact chart of GDP(E) components - mean absolute revision and proportion of GDP

Summary of revisions to expenditure components

Analysis of revisionsto quarterly growth in the expenditure components of GDP is contained in Appendix B, available at: www.statistics.gov.uk/cci/article.asp?ID=1289.

A summary of the results is presented here.
H H FCE: M ean revisions are small compared to some of the other components of expenditure and are not statistically significant at any stages of the production process. Revisions tend to be negative between $M 2$ and $M 3$ and since BB2; and positive for M 3 to BB 1 and BB 1 to BB 2 . The overall mean revision is small at 0.01 percentage points and is not statistically significant.

NPISH : None of the mean revisions for different stages of the production process are statistically significant. N PISH has the second largest mean revision of all the expenditure components but is not statistically significant due to the large variance of the revisions.

GGFCE: M ean revisions are small compared to some of the other components of expenditure and are not statistically significant at any stages of the production process, dueto the large variance of the revisions. Despite this, in just under a third of thequarters studied, the revision has caused the latest estimate to have a different sign from the M 2 estimate, changing the pattern of growth. Thetotal mean revision is small at 0.07 percentage points and is not statistically significant.

GFCF: The largest revision amongst the expenditure components occurred within GFCF of over 8 percentage points in 2002Q 2. Revisions to GFCF are large and very variable. In just over 40 per cent of the quarters studied the revision has caused the latest estimateto have a different sign from the M 2 estimate, changing the pattern of growth. Despite having the largest variances of all the expenditure components, the mean revision between M 2 and M 3 is statistically significant, as is the mean total revision of 1.42.

Changes in inventories: The mean revision is largest between BB1 and BB2 and is statistically significant at 469.9 but it should be noted that this cannot be compared with the other expenditure components since the revisions analysis here is considering levels not growths. M ean revisions at the other production stages, and theoverall mean revision are not statistically significant.

Total Exports: Revisions have been positive, on average, for all stages of the production process. The mean revision is statistically significant between M 3 and BB1 and al so for the total revision.

Total Imports: The pattern of revisions is similar to Total Exports. M ean revisions are significant between M 3 and BB1, and BB1 and BB2. The total revisions aresignificant at 0.71 percentage points.

Since Total Exports and Total Imports showed significant revisions, further analysis has been carried out on the components which make up these two series - exports of goods, exports of services, imports of goods and imports of services. The analysis showed that for all components of exports and imports, none of the mean revisions were significant either by stage or overall. It al so indicated to a certain extent that revisions to imports and exports can follow the same trend. The two series arelinked in this way because the same data sources are used to derive both estimates and the methodologies are linked. Since exports are added to GDP and imports deducted, if the revisions of both follow the same trend then the impact on GDP may not be as great as shown in Figure 5. This conclusion is supported by an article anal ysing revisions to quarterly current account bal ance of payments data (Turner, 2005) which was also published in Economic Trends.

Production (output) components

The production (or output) measure of GDP (GDP(P) or O) is calculated by aggregating the total gross value added (GVA) in theeconomy. It is defined as the sum of the value added of all the economic activities that produce goods and services. The value added by an economic activity is defined as the total output (usually sales or turnover) of the activity less the inputs of other economic activities required to produce this output.

In theory, GDP(0) should be measured by deducting inputs from outputs but this is not practical for short-term measurement. Instead the recommended approach (for marketed output) is generally to use deflated turnover as a proxy. Recent improvements in the sources and methods resulting from the Index of Services devel opment project have increased the usage of deflated turnover in GDP(0). Other types of indicators used as proxies for gross value added include: volume measures (physical measures of output), measures of usage of inputs and the cost-weighted output indices used to estimate health service output.

The main industrial categories (and their percentage of GVA in 2002) are:

- Agriculture, forestry and fishing (1.0 per cent) - hereafter termed as 'Agriculture'
- Total Production (20.1 per cent) - includes manufacturing, mining and quarrying, and electricity, gas and water supply
- Construction (5.9 per cent)
- Total Services (73.0 per cent)

The components of Total Services (and their percentage of GVA in 2002) are:

- Distribution, hotels and catering (15.7 per cent)
- Transport, storage and communication (8.0 per cent)
- Business services and finance (26.4 per cent)
- Government and other services (22.9 per cent)

For the analysis of production (output) components, estimates for the quarters from 1996Q1 to 2002Q 4 are used with the exceptions al ready noted in Box 3.

Table 3 shows summary statistics for the revisions to growth rates for each of the industrial categories, and Figure 6 graphs the mean revisions in a bar chart.

Figure 6 clearly shows that the largest mean revision is to Agriculture of 0.58 percentage points. For Agriculture, Table 3 shows that the mean absolute relative revision and M SE are especially high; but due to the large variance of the revisions at 12.85 , the mean revision is not statistically significant. Table 3 also shows that none of the other main industrial sectors havesignificant mean revisions.

Figure 7 shows the impact of revisions different industrial sectors have on $\operatorname{GDP}(0)$ (see Figure 5 for an explanation).

Figure 7 shows that despite Agriculture having the highest mean absolute revision, it has a low impact on GVA because it does not make up a high proportion. In contrast, Total Services has the smallest mean absolute revision of the four main industrial sectors but the impact is much higher, due to its large weight in GVA.

Figure 6
Mean revisions to main industrial sectors of GDP(0), 1996Q1 to 2002Q4

Table 3
Summary statistics for revisions to main industrial sectors of GDP(0), 1996Q1 to 2002Q4

Component	Per cent on GVA (based on 2002 values)	Mean revision	Mean absolute revision	Meabsolute relative revision	
Agriculture					Mean squared Error (M SE)
Total Production	1.0	0.58	2.40	12.85	1.27
Construction	20.1	0.13	0.57	0.47	1.05
Total Services	5.9	0.17	0.83	1.15	0.74

[^1]Figure 7
Impact chart of GDP(O) components - mean absolute revision and proportion of GVA

Summary of revisions to Production (Output) components

Analysis of revisions to quarterly growth in the production (output) components is contained in Appendix C available at: www.statistics.gov.uk/cci/article.asp?|D =1289

A summary of the results is presented here.
Agriculture: M ean revisions at different stages of the production process are amongst the largest for the output components. Revisions are also variable and areoften madein different directions giving comparatively larger mean absolute revisions. This results in none of the mean revisions being significant.

Total Production: M ean revisions for different stages of the production process are small, particularly thosefor M 2 to M 3. The actual revisions made are in some cases much larger than the mean revisions since they are made in oppositedirections for different time periods. None of the mean revisions for stages of the production process are statistically significant.

Construction: N one of the mean revisions for different stages of the production process are statistically significant. The largest revisions are made between M 2 and M 3 , and are considerably greater than that for the other stages. However,
dueto the large variance of revisions between $M 2$ and $M 3$, the mean revision is not statistically significant.

Total Services: In general mean revisions are small at each stage of the production process. In all cases, the mean absolute revisions are comparatively larger since revisions are made in opposite directions for different time periods. This is illustrated for revisions between BB1 and BB2 where the mean revision is 0.0 percentage points but the mean absolute revision is 0.2 percentage points. Theonly stage at which the mean revision is statistically significant is between M 3 and BB 1 at 0.07 percentage points. Although this is a small mean revision, the variance is very low resulting in significance.

Total Services sub-components

Since Total Services account for such a large proportion of GVA (73.0 per cent in 2002) there is merit in analysing revisions to the sub-components of the services sector.

Table 4 shows summary statistics for the revisions to growth rates of components of the services sector, and Figure 8 graphs the mean revisions in a bar chart.

Figure 8 shows that the largest mean revisions of 0.26 occurred in both Distribution, hotel sand catering and Transport, storage and communications. Of these two, Table 4 shows that Transport, storage and communications has the more variable revisions and according to the M SE is the worse predictor of the final estimate. None of the mean revisions to components of Total Services are statistically significant.

Figure 8
Mean revisions to main components of Total Services, 1996Q1 to 2002Q4

Table 4
Summary statistics for revisions to main sub-components of Total Services, 1996Q1 to 2002Q4

Component	Per cent of Total Services (based on 2002 values)	Mean revision	Mean absolute revision	Variance	Mean absolute relative revision	Mean Squared Error (MSE)
Distribution, hotels and catering	21.5	0.26	0.63	0.54	0.68	0.60
Transport, storage and communications	10.9	0.26	0.94	1.43	0.57	1.49
Business services and finance	36.1	0.04	0.55	0.50	0.49	0.50
Government and other services	31.4	0.19	0.37	0.19	0.59	0.23

[^2]Figure 9 shows the impact that revisions to different components of Total Services have on GDP (0) (see Figure 5 for an explanation).

Figure 9
Impact chart of Total Services components on GDP(O) - mean absolute revision and proportion of GVA

Figure 9 shows that despitetransport, storage and communications having the highest mean absolute revision, it has a low impact on GVA because it does not make up a high proportion. In contrast, a lower mean absolute revision for business services and finance has a greater impact on GDP dueto its weight within GVA.

Summary of revisions to sub-components of Total Services

Analysis of revisionsto quarterly growth in the subcomponents of Total Services is contained in Appendix D available at: www.statistics.gov.uk/cci/article.asp?ID=1289. A summary of the results is presented here.

Distribution, hotels and catering: None of themean revisions are significant and in general are relatively small. H owever in some cases they have changed the pattern of growth, markedly so for two quarters. Thelargest revisions are a result of the implementation of theIndex of Services (IOS) development programme in BB 2003.

Transport, storage and communication:The early estimates predict the trend of the latest estimate well, with only two clear exceptions. Themean revisions are all quite small and none are statistically significant.

Business services and finance: Early estimates appear to pick up the trend of latest estimates well, in particular where there is negative growth in two of the quarters analysed. The mean revisions are very small and nonearestatistically significant. The mean absolute revisions are relatively larger, suggesting that revisions are made in opposite directions which offset each other.

Government and other services: The mean revisions at each stage of the production process are fairly small and none are statistically significant. H owever there are some instances where revisions have dramatically changed the M 3 estimates. Reasons for the largest revisions include improvements to the government health output indicator and to a lesser extent reclassification of NHS Trusts in BB2004. Also at BB2004 was the implementation of industry reviews of private education and recreation services, which caused revisions back to 2001Q1. For most quarters analysed, these revisions will appear in the 'since BB2' stage but for later quarters the revisions will show in earlier stages. For example revisions as a result of BB2003 would beclassified as 'since BB2' for a quarter in 1999 whereas they would come under 'BB1 to BB2' for quarters in 2001 and 'M 3 to BB1' for quarters in 2002.

Income components

The income approach of GDP measures the total income generated by the production of goods and services within the economy. It is broken down into categories according to who has earned the income. Themain components (and their percentage of GDP in 2002) are:

- Compensation of Employees (56.1 per cent) - primarily made up of wages and salaries
- Public Corporations (0.6 per cent) - gross operating surplus of Public Non-Financial Corporations
- PrivateCorporations(18.2 per cent) - gross operating surplus of PrivateNon-Financial Corporations
- Financial Corporations (2.9 per cent) - gross operating surplus of Financial Corporations
- Other income (9.3 per cent) - includes Mixed Income which covers the income of the self-employed.
- Taxes on products less subsidies (12.9 per cent)

Where gross operating surplus is made up of gross trading profits, rental and appreciation of stocks.

For the analysis of income components, estimates for the quarters from 1998 Q 2 to 2002 Q 4 are used with exceptions already noted in Box 3. For the income components the anal ysis uses seasonally adjusted data but it is at current prices, not chained volume measures, due to the nature of how the data are collected.

Table 5 shows summary statistics for the revisions to growth expenditurerates of components of the incomemeasure of GDP, and Figure 10 graphs the mean revisions in a bar chart.

It can be seen from Figure 10 that the largest mean revision is to Financial Corporations of 39.23 percentage points. Despite this very high value, Table 5 shows that the mean revision is not significant. The underlying reason behind this is the much larger variance of the revisions. Thelarge mean revision for Financial Corporations is being driven mainly by revisions to one quarter, 2001Q1. Reasons for these revisions are explored in appendix E and summarised later in this section. If this quarter is removed from the analysis, the mean revision

Table 5
Summary statistics for revisions to main components of GDP(I), 1998Q2 to 2002Q4

Component	Per cent GDP (based on 2002 values)	Mean revision	Mean absolute revision	Mean absolute relative revision	Variance
Squared Error (MSE)					
Compensation of employees	56.1	0.23	0.37	0.22	0.24
Public non-financial corporations	0.6	-3.48	5.97	75.97	1.23
Private non-financial corporations	18.2	0.12	3.35	18.21	1.65
Financial Corporations	2.9	39.23	85.22	$26,718.51$	1.02
Other income	9.3	-1.28	5.78	53.20	1.14
Taxes on products less subsidies	12.9	0.07	1.35	28.56	0.98

Figure 10
Mean revisions of GDP(I) components, 1998Q2 to 2002Q4

changes from 39.23 to 4.98 percentage points. Neither are statistically significant.

The interesting aspect of Financial Corporations is that the mean revision, mean absolute revision, variance and M SE are large but the mean absolute relative revision is not the largest of the income components. The mean absolute relative revision gives an indication of the relative impact of the revision on growth rates of the component. This indicates that despitethe mean revision being large, it does not impact greatly on the component probably because it is a volatile series from one quarter to the next and can itself have very large growth rates.

In addition to Financial Corporations, the M SE column in Table5 also shows that Public Non-Financial Corporations and Other income are al so not effective predictors of the final estimate. In both of these cases, the mean revision is not significant which is most likely to be due again to the large variance of the revisions. Of the income components, it can be seen that CoE and Taxes on products less subsidies are the best predictors of the final value.

Figure 11
Impact chart of GDP(I) components - mean absolute revision and proportion of GDP

Figure 11 shows the impact of revisions different components have on $\operatorname{GDP}(\mathrm{I})$ (see Figure 5 for an explanation).

Figure 11 shows the relative impact of the mean revisions to the components by taking into account their proportion of GDP. It shows that the mean absolute revision to Financial Corporations of 85.22 does not have as large an impact as may be expected because it only contributes 2.9 per cent to GDP. It does however, still havethe largest impact on GDP as it is the only component above the constant line. The mean revisionsto Private Non-Financial Corporations and Other income have a similar impact on GDP since they are both very close to the constant line.

Summary of revisions to income components

Analysis of revisions to quarterly growth in the income components of GDP is contained in Appendix E available at: www.statistics.gov.uk/cci/article.asp?ID $=1289$
A summary of the results is presented here:

CoE - M ean revisions are small compared to some of the other components of income, the overall mean revision is small at 0.23 percentage points and is not statistically significant. Revisions have been negative, on average, between M 2 and M 3; positive for M 3 to BB1; and fairly evenly split for BB1 to BB2 and since BB2. The mean revision of -0.16 percentage points between $M 2$ and $M 3$ is the only stage of the production process for which the mean revision is significant. This is due to the very low variance of the revisions at 0.04 .

Public N F Corporations - None of the mean revisionsfor different stages of the production process are statistically significant. Public NF Corporations has the second largest mean revision of all the income components (without regard to sign) but it is not statistically significant due to the large variance of therevisions.

PrivateNF Corporations- None of the mean revisions for different stages of the production process are statistically significant. Revisions are variable and are made in both directions at every stage of the production process. In over half of the quarters during the time period analysed the revision has caused the latest estimate to have a different sign from the M 3 estimate, changing the pattern of growth. The net effect of large revisions in opposite directions is that the overall mean revision is small at 0.12 percentage points and not statistically significant.

Financial Corporations- M ean revisions are the largest among the income components but none are statistically significant due to thelarge variance of the revisions. Theoverall mean revision of 39.23 percentage points is being driven mainly by revisions to one quarter (2001Q1) dueto revised FISIM (financial intermediation services indirectly measured) data. If this quarter is removed from the analysis, the mean revision changes from 39.23 to 4.98 percentage points, neither are statistically significant. None of the mean revisions at different stages of the production process aresignificant. The largest mean revision occurs post BB2 which is again driven by 2001Q1, with its removal the mean revision changes from 28.68 to 4.89 percentage points.

Other income- Revisions to Other income arevery variable and are made in both directions at every stage of the production process. This leads to high variances for the revisions and results in none of themean revisions for different stages of the production process being statistically significant.

Taxes on Products less Subsidies - M ean revisions are small compared to some of the other components of expenditure, the overall mean revision is small at 0.07 percentage points and is not statistically significant. Revisions have been negative, on average, between BB1 and BB2; and positive for all other stages. Revisions are often made in opposite directions at different stages of the production process for the samequarter, which net each other out to an extent. This can be seen by noting the overall mean absolute revision which at 1.35 is relatively larger than the mean revision of 0.07 percentage points.

Acknow ledgements

The author wishes to thank the people whose contributions made this article possible. In particular, thanks are due to David Obuwa, Graham Jenkinson and Paul Cullinane.

References

Jenkinson, G (2005) Publishing Quality Information for National Accounts Outputs. Availableat: www.statistics.gov.uk/cci/ article.asp? $1 \mathrm{D}=1141$

Skipper H (2005) Early estimates of GDP: information content and forecasting methods. Economic Trends No. 617, pp 26-35. Available at: www.statistics.gov.uk/cci/article.asp?|D =1113

Jenkinson G (2004) ON S Policy on Standards for presenting revisions in timeseries First Releases. Economic TrendsNo. 604, pp 70-72.
Availableat: www.statistics.gov.uk/cci/article.asp?ID $=793$
Turner E (2005) Analysis of revisions to quarterly current account balance of payments data. Economic TrendsNo. 621, pp 53-62. Availableat: www.statistics.gov.uk/cci/article.asp?id=1125

Appendix A

Progress by ONStowardsthe recommendations of the StatisticsCommission Review of Revisionsto Economic Statistics- 31 October 2005

Statistics Commission Recommendations	ONS Response to the Statistics Commission	Progress and timetable
1) Recommendation: The Office for National Statistics (ONS) should assess more systematically the performance of the forecasting models used in compilation of the first estimate of GDP, undertake further methodological development, and make other changes aimed at greater transparency and best practice.	1.1) ONS has been reviewing its models and systems in the context of the Statistical Modernisation Programme. This includes re-engineering of systems and methods for both the National Accounts and Labour M arket Statistics. Work on re-engineered systems will continue and is scheduled to be completed by March 2006, with full implementation over the following year.	Work on re-engineered systems continues. They will be delivered for National Accounts central systems and Labour Force Survey Re-weighting by M arch 2006. The systems will then be tested and quality assured before being embedded into production systems with planned implementation in 2008.
	1.2) ONS will now undertake a review of the forecasting models used in the preliminary estimate of GDP, drawing on external expertise. This review will also examine the scope for making use of qualitative surveys.	The work was taken forward in two sub-projects: i) an analysis of the statistical properties of the surveys conducted by external organisations, and ii) a study of optimal forecast methods for preliminary GDP.
		Work on the statistical properties of external surveys has now been completed and supports the basis of ongoing quality assurance of ONS regular outputs.
		Work on optimal forecast methods has led to a more detailed examination of the early estimates of GDP. This includes analysis of the extent to which forecasting, annual benchmarking, and methods changes have contributed to revisions to the output estimates of GDP.
	1.3) ONS will produce an article on methods used to produce the preliminary estimate of GDP, updating the article in Economic Trends M arch 2000. This will include documentation of models used. The models used for construction are already documented in Volume 3 of the Commission's report.	An article based on the findings of this work has been published in the April 2005 edition of Economic Trends. This can be found at: www.statistics.gov.uk/articles/ economic_trends/ET617Skipper.pdf

[^3]ONS has recently launched a corporate initiative to manage its relationships with all its key stakeholders, termed accounts. Each key account relationship is overseen by an executive director in ONS. This ensures that all aspects of the relationship, including the provision of data to ONS, is fully and actively managed. This process is underpinned by Service Level Agreements (SLAs) which are being refined to focus on key operational needs and issues in a common format. The most important of these SLAs have all been recently updated and senior management are fully informed about their operation and any problems which occur. Further key accounts are being similarly covered as resources permit.

Statistics Commission Recommendations	ONS Response to the Statistics Commission	Progress and timetable
3) Recommendation: DTI should work together with ONS to consider whether production of construction forecasts for the first estimate of GDP might better be handled within ONS.	3.1 and 3.2) Discussions about responsibility for construction statistics have started between ONS and DTI at permanent secretary level. It is proposed to defer decisions until the second stage of the joint DTI/ONS review of early estimates of construction output for GDP has been completed later this year. The second stage of the joint review is examining ways of improving the early estimates of construction, including looking at the case for producing a monthly index of construction output. Such an index could be based either on a new monthly survey or modelled estimates or a combination of the two. This decision needs to be made first, as it will influence the priority that needs to be given to any changes in responsibility.	The second stage of the report was published in November 2004 at: www.statistics.gov.uk/ about/M ethodology_by_theme/revisions_policies/ construction_output_stātistics.asp It established that there had been an error within the DTI of the processing of the Q1 2003 estimate of construction output. Revised figures have now been published by DTI, and ONS has updated the national accounts to reflect the correction of this error. Discussions with regard to which department should have lead responsibility for the production of estimates of construction output have taken place between the DTI and ONS permanent secretaries and have now been concluded. It was decided that DTI will retain responsibility for the production of estimates of construction output for the near future but with the aim to transfer the responsibility to ONS in the long-term. A report outlining this decision was published in October 2005 at: www.statistics.gov.uk/cci/article.asp?ID=1287

4) Recommendation: ONS should
 explore ways to influence external perceptions so that revisions are not simply equated with correction of errors, and should devote resources to assessing users' comprehension of, and reaction to, the recent revamping of the information content of First Releases.

4.1) ONS will continue with initiatives to influence external perceptions, such as the publication of articles organising seminars and conferences and, wherever possible, by clearly signalling planned revisions in advance.
4.2) ONS will be holding a workshop later this year for City analysts and economic journalists on methods for producing National Accounts and reasons for revisions.

ONS first releases covering time series subject to revisions now include this information as standard.

The workshop, known as an ONS Economic Statistics Forum, was held on 30 September 2004 at the Bank of England and was repeated on 8 January 2005 at HM Treasury. Slides from the forum are available on the National Statistics website at: www.statistics.gov.uk/ about_ns/economic_revisions.asp

ONS has invited feedback at events, in articles and on its website, but comments so far have been limited. A summary of feedback received to date is contained in the article by E George and D Obuwa: National Accounts' Revisions Analyses: A Summary to April 2005. This is available at: www.statistics.gov.uk/cci/ article.asp?ID=1140

The Statistics Commission organised a seminar that brought together leading government statisticians, politicians and journalists in order to discuss with the Commission the issues highlighted by the report. This was held on 28 October 2004. The report can be found at: www.statscom.org.uk/media_pdfs/reports/Revisions \%seminar\% 2028.10.04.pdf

ONS discussed the key issues with regards the communication of revisions to users.

A paper on how to use revisions information in compilation was produced for the ONS/OECD international workshop discussed as part of recommendation 5 . See: www.oecd.org/dataoecd/43/ 62/33779647.pdf

Len Cook presented a paper at a DGINS conference in Copenhagen in May 2005 on 'The Challenge of Communicating Statistics'. In this paper he discussed the problems ONS faced after making a large revision in September 2003, the work we have done following the Statistics Commission review, and the lessons learned from the experience.

The paper built on the article published by Len Cook in January 2004:

Statistics Commission Recommendations	ONS Response to the Statistics Commission	Progress and timetable

5) Recommendation: ONS should provide more information about past revisions in its First Releases, and should publish further analyses and information relating to the reliability of the main economic time series.
5.1) The initial programme of including information on past revisions in First Releases, which began in February, will be completed in June. By then revisions information will be included in 23 releases including all the macro-economic time series releases. ONS is currently considering whether to expand further the range of information contained in its First Releases.

Information on revisions is now available in 23 First Releases. 18 of these contain revisions analysis (the others do not have long enough time series available). See: www.statistics.gov.uk/cci/article.asp?ID=793 for more detail on the policy and: www.statistics.gov.uk/ about/M ethodology_by_theme/revisions_policies/ default.asp for access to the supporting data.

See also recommendations 5.3, 5.4 and 5.6.
5.2) The regular annual article on revisions to quarterly GDP growth, last published in December 2003, will be extended to cover output components of GDP. These changes will be made for the next article due around the end of the year.
5.3) Over time the [revisions webpage] will be developed to include more information, including real-time datasets (that is, of revisions triangles). It is hoped to include revisions triangles for GDP, retail sales and the Index of Production in a common format by the end of the year.
5.4, and 5.6) The first priority of ONS with respect to quality is the fundamental upgrading of its information management and methodology in order to provide the capability for strengthening the quality and measures of quality associated with each statistical measure. The second is to provide ways for users to assess the fitness for purpose of official statistics when they apply them to uses beyond those that determined the key attributes of the measure.
The aim is to produce by the end of the year a paper presenting the different options [for reliability measures], which would then be used to engage in the international debate.

The GDP Annual Article on revisions analysis is published alongside this update in the December 2005 edition of Economic Trends. This includes analysis of revisions to $\operatorname{GDP}(0), \operatorname{GDP}(\mathrm{E})$ and for the first time GDP(I) components by stage.

An article 'Analysis of Revisions to Quarterly Current Account Balance of Payments Data' was published in May 2005, and appeared in Economic Trends in August. See: www.statistics.gov.uk/cci/article.asp?id=1125 See also recommendation 4.3.

ONS manages a revisions website at:
www.statistics.gov.uk/about_ns/economic_revisions.asp
This website contains links to revisions triangles (real time databases) supporting the revisions analysis contained in first releases (see 5.1 above). These can also be used to examine past revisions to a time series further. See: www.statistics.gov.uk/about/ M ethodology_by_theme/revisions_policies/default.asp to access the triangles and: www.statistics.gov.uk/cci/ article.asp?ID=1026 for more information on the policy.

An article launching the concept of Quality Reports as a method for publishing quality information for National Accounts outputs was published in June, see: www.statistics.gov.uk/cci/article.asp?ID=1141

This covers a programme of work underway on producing usability statements / Quality Reports for National Accounts outputs, with GDP acting as the pilot. The Summary Quality Report for GDP was published in June, see: www.statistics.gov.uk/cci/ article.asp?|D=1180

The programme of work to develop Quality Reports for other key economic indicators has begun and is due to be completed within the next two years. Over the next six months, Quality Reports are planned to be developed for Labour M arket Statistics, Balance of Payments, Index of Production and Index of Distribution.

Statistics Commission Recommendations	ONS Response to the Statistics Commission	Progress and timetable

5.5) There are also the European Central Bank indicators covering the National Accounts, and descriptive quality indicators being developed by Eurostat, covering facets of quality such as relevance, comparability, accessibility and coherence.

Additional actions on recommendation 5)

ONS have been involved in the Task Force on Output Quality for Quarterly National Accounts throughout and fully intend to be involved in any future work. The final report of the task force can be found here:
www.cmfb.org/pdf/CM FB\% 2004-06-A.7.1\% 20 FinalCM FBreport\%20TF\%20QNA.pdf

ONS have utilised this final report in developing the work on quality indicators in 5.4 and 5.6 and will therefore be well placed once this work is rolled out across member states.

A joint ONS/OECD international workshop to discuss revisions analysis was held on 7/8 October 2004 in Paris.

ONS presented our own experiences as well as comparing results and techniques with other OECD countries. For papers and slides see: www.oecd.org/document/23/ 0,2340 ,en_2649_34253_33729303_1_1_1_1,00.html
6) Recommendation: ONS should use the opportunity offered by implementation of the Protocol on Revisions to clarify revisions policy in two ways:
In cases where the need for 'unexpected' revisions is known but the full effects cannot be quantified for some time, revisions should normally be handled in the same way as revisions from methodological changes, that is with a preannouncement of the intention to make the change, together with, where possible, an indication of its likely effects. Interpretation of the clause in the Protocol on Revisions that requires, for market sensitive statistics, that the process of release of revisions must not in itself create uncertainty should be clarified. The Commission recommends that this should be interpreted as applying to the actual process of releasing revisions and not to preannouncement of intention to make a previously unforeseen revision. The National Statistician may want to consider whether any redrafting of the protocol is needed, in order to remove ambiguity.
6.1) It is well established practice within ONS, in cases where the need for 'unexpected' revisions is known but the full effects cannot be quantified for some time, that revisions should normally be handled in the same way as revisions from methodological changes, that is, with the preannouncement of the intention to make the change, together with, where possible, an indication of its likely effects.
6.2) Each case is, and will continue to be, judged on its merits. However, as the National Statistician's letter of 7 July to the Chairman of the Statistics Commission and ONS's submission to this Review (Volume 3 pp 69-71 and 95-96) explained, the revisions to imports to take account of adjustments for the effect of VAT fraud were quite exceptional in a number of respects. They were very large, with a wide range of uncertainty and were associated with criminal activity. Throughout there was a need to take care not to compromise Customs law enforcement operations. Moreover they had complex ramifications across a range of statistics, including the Balance of Payments and National Accounts as well as the trade statistics themselves.
6.3) The way that the revisions to imports were handled should not, therefore, be regarded as setting a precedent. It was because of their exceptional nature that the National Statistician wrote to the Commission on 7 July giving a full account of the circumstances. It is not the intention of the Code of Practice to resolve all difficult situations, but to ensure that all decisions that involve difficult judgements are managed transparently, consistently, and do not contradict the principles of the Code of Practice. Each such decision in itself contributes to the body of 'case law', guiding responses in future similar situations.
6.4) The National Statistician believes that the requirement set out in both the Protocol on Release Practices and the Protocol on Revisions that 'for market sensitive statistics the process of release of revisions must not itself create uncertainty' is very important and applies at all stages of the process. Nevertheless the National Statistician, as explained in his letter of 26 April to the Chairman, will consider the Commission's views alongside discussions with his counterparts in other countries about international practice.

Following a response to ONS' comments from David Rhind of the Statistics Commission, Len Cook sought views from other NSIs. His response to David Rhind can be seen at: www.statistics.gov.uk/about_ns/downloads/ rhind22.pdf

Advertising placement Corporate Services Price Index

Anthony Luke
Office for National Statistics

The Office for National Statistics isdeveloping a Corporate Service Price Index (CSPI) for the advertising placement industry. The advertising placement CSPI will monitor the price of advertising space on television and in printed publications. The television advertising CSPI iscreated using unit prices estimated from audience and revenue figures, weighted together using revenue figures fixed in the base year 2000. A printed media advertising CSPI iscreated using unit prices estimated from advertising rate card prices, adjusted by audience and discounting factors, weighted together using advertising revenue figuresfixed in the base year 2000. It is estimated that the adverting placement CSPI will be published in the CSPI 2006 quarter one resultson 12 M ay 2006.

Introduction

The CorporateServices Price Index (CSPI) branch of the Officefor National Statistics (ONS) is currently developing a CSPI for the advertising placement industry. We intend to publish the price index as part of CSPI'squarter one 2006 results. It also provides details on how the price index is being compiled, what data sources are being used and what the overall coverage of the advertising industry will be.

To see moreinformation about CSPI and to view the latest results, please visit the National Statistics website at: www.statistics.gov.uk/cspi.

Scope

TheAdvertising industry can be categorised using the following two industrial classifications:

The UK Standard Industrial Classification (SIC) identifies thefollowing:
Advertising (74.40):
74.40/1 Sale or leasing activities of advertising space or time
74.40/2 Planning, creation and placement of advertising activities
74.40/9 Advertising activities not elsewhereclassified

TheCentral Product Classification (CPC) is similar:
Advertising (836):
8361 Planning, creating and placement
8362 Purchase or sale of space, on commission
8369 Other advertising services
As can be seen, expenditure in the advertising industry can besplit between the cost of creating an advertisement, the cost of displaying an advertisement and the fees for arranging either or both.

Initially, ONS planned to develop a price index that would have covered the whole advertising industry. Unfortunately, there are many problems to overcome when trying to develop a price index for the creativeside of advertising. For example, many of the contracts that advertising agencies take on areunique, making price collection difficult. Weighting items is also problematic because many different elements make up the creative process. A television commercial, for example, involves hiring many specialists such as film directors, actors, cameramen, lighting technicians and catering staff. Also, the cost of hiring a famous actor will be
considerably higher than the cost of hiring an unknown. Such inconsistencies, in the price of elements with the same basic specifications, add to the difficulty of creating accurate weights.

It is also difficult to measure the expenditure split between creation and display because there is a lack of statistical data relating to this matter in the advertising industry. One industry expert consulted estimated that 90 per cent of advertising revenue is generated by placing advertisements. But there was no statistical evidence to support this assumption.

The structure of the advertising placement industry is more apparent thanks to statistical data gathered by the Advertising Association, a trade association.

Taking the above into consideration, ON S has chosen to develop a CSPI for advertising placement. It is hoped that the price index will beexpanded at a later date, to cover the creative side of the industry, but this will not happen in the immediatefuture.

Currently, theCSPI measures the changing cost of advertising, in other words, the changing cost of thespace an advertisement takes up, be it air-time on a television station or column inches in a newspaper.

Industry structure

Figure 1 is an industry structure diagram showing the various media types that sell advertising space. The numbers on the diagram are the weightsfor each media's size within the industry, relative to each other. These weights were derived from advertising expenditure figures published in the Advertising Association's AdvertisingStatistics Yearbook 2001. The areas highlighted in bold show the current coverage of the advertising placement CSPI:

As can be seen, theCSPI covers two media types, television and printed media which between them account for 75 per cent of the revenue generated by theindustry.

Methodology

The following section outlines the methodology behind the advertising placement CSPI. The two major components, television and printed media, are discussed separately because they are compiled in different ways.

Television advertising placement

Prices for advertising space on television are affected by a number of factors: The time of day and year, the audience size and type and the buying power of the advertisers (by buying lots of space an advertiser can secure large discounts). This makes direct measurement of tel evision advertising prices difficult. To makethings simpler, a proxy price index has been created, using a combination of advertising audience figures, revenue data and averageCost Per Thousand (CPT) values. These figures have been supplied to ONS by a third-party company called Nielsen M edia Research (N M R). The figures aresupplied on a quarterly basis for every television channel broadcasting in theUK.

Audience figures are measured in impacts; each impact represents one adult watching a thirty second commercial. Impacts are most commonly measured in thousands. Revenue figures are defined as the amount of money generated through the sale of advertising space in a given period. Price estimates can be generated by taking the channel's total advertising revenue figure in a quarter and dividing it by the impact figure for the same period. This gives an estimate of the price for displaying an advert to one thousand peopleor, as it's more commonly known in the advertising industry, a Cost Per Thousand (CPT).

Figure 1
Industry structure diagram

To create a television advertising CSPI , channels are separated into different groups. Terrestrial channels aregrouped according to the region they broadcast to (for example, West M idlands, East Anglia, South Wales). Satellite channels are grouped according to the type of shows they broadcast (for example, movies, films, documentaries). All the channels in a particular group are assumed to have equal weights. This means a CPT value can becalculated for each group by dividing the total revenue figure for all the channels in the group by the total audience figure. M ovements in these group CPTs are used to calculated quarterly price relatives, using the year 2000 as the base period. A weighted average is calculated from these price relatives to give a price index. The weights for group price relatives are calculated from the total revenue generated in the base year 2000 by each channel in thegroup. In the futurethe base period for the advertising placement CSPI will be revised every five years.

In summary, unit prices areestimated from audience and revenue figures and they are weighted together using revenue figures fixed in the base year 2000 to give a price index.

Printed media

The printed media CSPI includes four media types: national newspapers, regional newspapers, consumer magazines and business magazines.

The advertisements that appear in these publications fall between two categories, display and classified.

Display advertisements are usually big, often filling half a page or more and in many cases they are printed in colour to make them as eye catching as possible. They are favoured by companies with products or services they wish to sell or promote.

Classified advertisements, by contrast, tend to besmaller and in black and white. They areused primarily for advertising jobs, properties and educational courses. They do not need to be as eye catching as display advertisements because people seek them out if they are in the market for the product or service being advertised. For example, someone looking for work will seek out the recruitment section of a newspaper.

M agazines usually carry more display than classified advertisements because magazines are a more colourful medium. N ewspapers normally carry both and the split between them can vary significantly between publications.

To create a printed media CSPI, ONS has adopted a slightly different methodological approach to that of television. A sample framefor printed media was drawn up. The basisfor this sample frame was a list of publications and advertising revenue data provided by NMR. Every publication in the sample framewas divided into one of the twelve following strata:

- consumer magazines display
- consumer magazines classified
- national papers display
- national papers classified
- daily regional newspapers display
- daily regional newspapers classified
- free weekly regional newspapers display
- free weekly regional newspapers classified
- paid for weekly display
- paid for weekly classified
- business magazines display
- business magazines classified

Using proportion probability sampling a representative sample of publications were selected from each stratum. Each publication's total advertising revenuefigure in the year 2000 was used as the weighting factor in this selection process.

For every publication in the selected sample we have collected an advertising rate card price. Thetype of price selected depends on the stratum to which the publication belongs. So, all the prices selected in the National Papers Display stratum will, for instance, be for display advertisements.

Each publication's rate card price is divided by the publication's circulation figure. This gives an estimate for the price of displaying the advert to one person.

Both prices and circulation figures are available on each publication's rate-card. These rate-cards are collated for us by a company called British Rates and Data (BRAD). BRAD produce a monthly book which contains rate-cards for nearly every publication published in theUK. The samerate-card data is al so held on their website: www.intellagencia.com

Rate card prices, however, do not always reflect the price actually paid for advertising space. In many cases, advertisers can secure large discounts on the rate card price by buying advertising space in large quantities or at the right time of year. Unfortunately, it is very difficult to measure discounts directly because every advertising campaign is unique and so are the discounts applied to them. Again, ONS has relied on third-party company NM R to supply us with discounting factors. These are availablefor all the display advertisements in our sample and we have applied these to the price estimates detailed in the previous couple of paragraphs. Discounting factors for classified advertisements are not available, but this is not considered a problem because discounting is much rarer on classified advertisements.

Rate card prices, circulation figures and discount factors arecombined to create an estimated price for each of the publications in the sample. This process is repeated on a quarterly basis. The changes in these estimated prices are used to create price relatives for each publication in our sample, using the year 2000 as the base period.

A weighted average of these price relatives is taken to create a price index for each stratum listed above. The weights are derived from total 2000 advertising revenue figures supplied by NM R for each publication. These weights remain fixed in the base year 2000.

The priceindices for each stratum arethen weighted together using total revenuefigures for each stratum in the year 2000 to give a price index for printed media. The weights used are derived from advertising revenuefigures published in the Advertising Associations' AdvertisingStatistical Yearbook 2001. These figures are used instead of the N M R data because they are total UK revenue figures and not just the total revenue figures of the publications in the sampleframe.

In summary, advertising rate card prices, adjusted by audience and discounting factors, areused to create price relatives, which are weighted together into a price index using advertising revenue figures fixed in the base year 2000.

Creating a top-level advertising placement CSPI

To create a top-level CSPI wesimply combine the two price indices for television and printed media advertising described above. The two sets of price relatives are weighted together using total UK advertising revenue figures for the two media types in theyear 2000. These figures are published in the AdvertisingStatistical Yearbook 2001.

Summary of data sources

Nielsen M edia Research (NMR) is a research and analysis company that collects a wide variety of statistics on numerous media types. M ore information about NM R can be found on their website: www.nielsenmedia.co.uk.

They provide the following data:

- quarterly television advertising audience and revenue figures for all UK channels dating back to Q1 2000
- quarterly discounted and non-discounted advertising revenue figures for printed media dating back to Q1 2000

BRAD (British Rates and Data) Group is a market research company that collates advertising rate-cards for the majority of newspapers and magazines printed in theUK. They publish these rate-cards in monthly directories and on their website: www.intellagencia.com.

They provide thefollowing data:

- quarterly rate card prices for the sampled publications dating back to Q1 2000
- quarterly circulation figures for the sampled publications dating back to Q1 2000

TheAdvertising Association (AA) is a trade association for the advertising industry. They produce statistics and reports which they publish in numerous booklets and on their website: www.adassoc.org.uk.

The following data is published in theAA's Advertising Statistics Yearbook 2001:

- total UK advertising revenuefigures for each of the printed media stratum in theyear 2000
- total UK advertising revenue figures for each media type operating in the advertising industry in the year 2000

Publication

It is hoped that the advertising placement Corporate Services Price Index will be published as part of the CSPI's 2006 quarter-one results. These will be availableon the National Statistics website on 12 M ay 2006: www.statistics.gov.uk/cspi. It must be understood, however, that the price index is still under construction, so release dates are subject to change. We would welcome comments from any potential users on this work.

Acknow ledgments

CSPI development work is partially funded by the European Commission.

IT investment, ICT use and UK firm productivity

Tony Clayton
Office for National Statistics

In a research programme sponsored by theDepartment of Trade and Industry, economists from the London School of Economics (LSE) and the Office for National Statistics (ONS) have shown how much ICT investment and use improves productivity in UK business.

The research links data from tens of thousands of firms collected in ONS surveys. It uses data on sales and value added by firms, investment in IT and other assets, employee numbers, pay and skills, purchases of IT and telecoms services, ownership and multinational links, employee and business use of computers and on e-commerce and e-business activity.

It quantifies IT investment behaviour, and the productivity effects in UK firms associated with:

- investment in computer hardware and software
- use of computers or the internet by employees
- use of e-commerce for buying and / or selling
- use of telecommunications
- use of electronic business processes

M ost are shown to have statistically significant relationships with business productivity. The study also shows that US owned firms get moreout of IT investment.

The two articles which follow outlinetwo aspects of the research which are innovative:
The role of IT in firm productivity; evidencefrom UK microdata, by Rafaella Sadun of LSE outlines the techniques used to create estimates of firm level purchased hardware and software capital, the relationships established between IT capital (hardware and software) and productivity, and the range of stringent econometric tests used to ensure results are not dueto endogenous effects or spurious correlation.

ICT use and productivity by Shikeb Farooqui of ONStakes Sadun's conclusions on IT capital and looks at the additional effects on productivity associated with measures of ICT use, particularly use of computers and theinternet by employees, use of electronic trading, and purchases of telecommunications services.

So far as we are aware this is first time such a broad range of ICT indicators, and other factors, have been used to assess firm level productivity effects, Earlier international studies coordinated by OECD have looked at most of them separately, and we have drawn on this work (seeTheEconomic Impact of ICT, M easurement, Evidence and Implications, OECD 2004).

Articles covering a wider range of results of the research programme, and its implications for ICT measurement in the economy, are published on the National Statistics website at www.statistics.gov.uk/cci/nugget.asp?|D =1240

Contributors to this research include:
Professor John VanReenen, Raffaella Sadun and Nick Bloom of LSE
Tony Clayton, Shikeb Farooqui, M ark Leaver and Felix Ritchie of ONS
Chiara Criscuolo, now at Organisation for Economic Co-operation and Development.

The role of IT in firm productivity; evidence from UK micro data ${ }^{1}$

Raffaella Sadun
 Office for National Statistics, London School of Economics CEP and the Centre for Reserach into Business Activity (Ceriba)

In this article we analyse the productivity impact of Information Technology (IT) in the UK economy using a newly built micro dataset on hardware and software capital stocks of 20,000 firms both in manufacturing and servicesbetween 1995 and 2003. We first describe the construction of the IT capital stocks, which are built applying the Perpetual Inventory method. We then quantify the productivity impact of IT using several econometric techniques (OLS, GMM and Olley Pakes) which exploit the rich cross sectional and time series dimensions of the data. IT appears to have a significant impact on productivity, and the elasticity estimates are comparable with the resultsfound in the literature for the US.

Introduction

Recent years have witnessed an increasing interest on the relationship between Information Technology (IT) and productivity. A rich array of analysis has explored this issue empirically, first in the framework of theUS economy and more recently in a broader set of countries. The initial studies- based on growth accounting techniques applied to industry level data - have and continue to beextended by additional evidence based on firm level and industry-specific analysis. The main result coming out of these studies is that IT brings along significant productivity effects, with estimates ranging from normal to 'excessive' returns depending on the type of data used.

In this articlewe examine the productivity of IT in a panel of UK establishments, using for the first time firm level information on IT expenditure collected by the Office for National Statistics (ONS). In its spirit, this exercise is similar to previous studies analysing the productivity of IT at the micro data level. In contrast with the previous literature, the variables used in this work to measure theIT inputs are capital stocks estimated via the perpetual inventory method - rather than volume based estimates of capital stocks (Brynjolfsson and Hitt, 2003), investment flows (OECD studies) or binary variables documenting the existence of IT infrastructure within the firm (Atrostic and Nguyen, 2004). This feature of the data, combined with its time and cross-sectional dimension, allows the use of a variety of econometric techniques beside Ordinary Least Squares (OLS) - namely Generalised M ethod of M oments (GM M) and Olley-Pakes (1996) - able to refine the robustness of the econometric estimates with respect to measurement and endogeneity issues.

Thefirst section of the article describes the main data sources used to build the IT variables. The second section explains the methodology used to estimate capital stocks out of investment flows. Finally, it presents the main results of the productivity regressions using various econometric techniques.

Data

ONS has collected information on firm level IT expenditures since thelate 1990s using various sources. The Business Survey into Capital ized Items (BSCI) included a question on hardware and software expenditures since 1998. The Quarterly Inquiry into Capital Expenditure (QCapex) introduced similar questions in 2001. The first IT information is contained in theone-off Fixed Asset Register (FAR) covering 1995 to 2000. TheAnnual Business Inquiry (ABI), the major source of establishment level data in the UK² al so has additional questions on software included since 2000.

These surveys are compiled at the firm level, that is, at the reporting unit level. The 'reporting unit reference number' (RUREF) is an identification number unique to each establishment which does not change when a plant istaken over by a new firm, for example. The surveys contain information on the value (in thousands of
pounds) of software and hardware acquisitions and disposals reported by thefirm in a specific year.

- TheBusiness Survey into Capitalised Items (BSCI) asksfor details of acquisitions and disposals of capital in more than 100 categories, including computer hardware and software. The survey is annual and runs between 1998 and 2003; we dropped the 1998 cross section dueto concerns over reliability expressed by the data collectors. There is a 100 per cent sampling frame for the largest 750 businesses and a stratified random sample of medium sized businesses (between 100 and 750 workers). The BSCI contributes about 1,500 to 2,000 observations on IT expenditurefor each year between 1999 and 2002.
- TheQuarterly Inquiry into Capital Expenditure(QCapex) provides information on hardware and software investments from 2000 Q 1 until 2003 Q 4. The inquiry selects 32,000 establishments each quarter. Of these 32,000 companies, all establishments with over 300 employees are selected each quarter. Businesses with fewer employees are selected for the inquiry randomly. Each quarter onefifth of the random sample is rotated out of the sample and a new fifth is rotated in. The quarterly data have been annualized in several alternative ways and we checked the robustness of the results across these. First, we extrapolated within year for establishments with missing quarters. ${ }^{3}$ As a second alternative, we constructed an indicator that gives thenumber of non-missing values that exist for each year and establishment and included this as an additional control in the regressions. Third, we dropped observations constructed from less than four full quarters. The results were quite robust across all three methods and the tables report results based on the first method.
- TheFixed Asset Register (FAR) asks for the historic cost (gross book value) of thefixed assets held on thefirms' asset register, broken down by the years of acquisition. The survey provides information on IT hardwareassets only, and covers the years 1995 up to 2000. The survey provides information for about 1,000 hardware observations.
- TheAnnual Business Inquiry (ABI). Thelong version of theABI survey sent to a third of the overall $A B I$ sample (mainly large firms) contains a question on software expenditures from 2000 onwards. TheABI team uses the long surveys to build estimates of software expenditure purchased by smaller firms. This gives approximately 25,000 non-zero returned values for software investment in each year.

Estimation of IT capital stocks

Since some of the firms contained in the overall sample appeared more than once, wewere able to build up IT capital stocks from IT expenditure using the perpetual inventory method following Jorgenson (2001). In doing so, we kept to US assumptions over depreciation rates and hedonic prices and used industry level estimates from the inputoutput matrices for the initial year of the IT stock in the establishment's two digit industry using the estimates in O'M ahony (2003) (wealso compare with Oulton, 2004). ${ }^{4}$

Once the stocks were built within each different survey, we combined them across surveys and, for hardware and software separately, we built across-surveys stocks. ${ }^{5}$

Thebasic Perpetual Inventory M ethod (PIM) equation is:
$K_{i t}^{h}=l_{i t}^{h}+\left(1-\delta^{n}\right) K_{i t-1}^{h}$
where I_{t}^{h} represents real investment of asset typeh (for example, computer hardware, I^{c}) and δ_{t}^{h} is the asset specific depreciation rate. To construct real investment we deflated nominal investment using the economy-wide (asset specific) hedonic price indices for software and hardware provided by the National Institute of Economic and Social Research (NIESR) (which are based on Jorgensen's US price deflators). We rebased to the year 2000 for consistency with the other PPI deflators used in our econometric analysis.

Basic assumptions

Theuse of PIM methodology with the ONS micro-data required theintroduction of various assumptions regarding the treatment of zero and non-consecutive investments encountered in the IT databases, the choice of the starting point of the recursive al gorithm and the deflator needed to build real stocks of IT capital.

Zeros. Both the BSCI and the QCapex codeare missing values as zeros. Whilein the BSCI we are able to identify actual zero investment through a specific coding, but for the QCapex this is not possible. In the construction of the capital stocks we treated the zero investment observations as actual absence of IT investment. M oreover, in order to maximize the number of observations over which we could apply the PIM , we interpolated net investment observations for a single year of data if we observed investment the year before and the year afterwards. This affected only 2.8 per cent of the observations in the regression sample and results are sufficiently robust to be able to discard these observations.

PIM Starting Values. In order to apply the PIM methodology, we needed to approximate an initial value to start the recursion. We applied a similar methodology as theone devised by M artin (2005) to construct establishment level capital stocks in theAnnual Respondents Database (ARD). For each firm, we first built two digit industry-specific IT Investment/C apital ratios using the N ISEC02 industry level data-set provided by the NIESR, which contains separate time-series data on hardware and software capital stocks and runsup to 2001 (these are based on the input-output tables starting in 1975). We then used theratio of the establishment's IT investment flow to the industry investment flow (denoted $w_{i t}^{A}$ for method 'A') to impute the IT capital stock (that is, we are assuming that the establishment's investment rate is the same as the industry average investment ratein theinitial period). M ore precisely, we assumed that for $t=0$ only the initial plant level IT capital stock $C_{i o}^{A}$ was:
$C_{i 0}^{A}=w_{i t}^{A} C_{j t} \forall i \in j ; w_{i t}^{A}=\left[\left.\begin{array}{c}c \\ i_{i t}^{c} \\ 1_{j t}^{c}\end{array} \right\rvert\,\right.$
wherej represents an industry so aj sub-script represents
an industry total - that is, ${ }_{1}{ }_{\mathrm{j} \text { it }}$ is total industry IT investment and C_{jt} is the total IT capital stock in timet. We applied this approximation to determine our initial condition in thefirst year that the establishment appears in our sample. For de novo establishments this is not an issue as their capital stock is zero. After thefirst year, we simply apply the PIM method, since some of the establishments that weobserve only for the first time may beinvesting systematically at a different rate from the industry average. To check whether our results were driven by the methodology used to build the initial conditions, we considered an alternative methodology based on employment weights (method ' B '). For the first time we observed a plant in our sample we assumed that:
$C_{i 0}^{B}=w_{i t-1}^{B} C_{j t-1}(1-\delta)+l_{i t}^{c}$

$$
\begin{equation*}
\mathrm{w}_{\mathrm{it-1}}^{\mathrm{B}}=\binom{\mathrm{L}_{\mathrm{it-1}}}{\mathrm{~L}_{\mathrm{j}-1}} \quad \forall \mathrm{i} \in \mathrm{j} \tag{3}
\end{equation*}
$$

Depreciation. As far as the depreciation rate is concerned, for all IT capital (software and hardware) we chose a depreciation rate of 36 per cent per annum. This choice is consistent with the analysis and methodology followed by the Bureau of Economic Analysis (BEA) which, in turn, derives from the study by Doms, Dunn, Oliner and Sichel (2004). In this study, the depreciation ratefor PCs is estimated at approximately 50 per cent, this value including both obsolescence and re-evaluation effects. Since- as the BEA - we use real IT investments we have to usea lower depreciation rate to avoid double counting of the revaluation effect, included in the price deflators. Basu et al (2003) arguethat the true geometric rate of depreciation should be, in fact, approximately 30 per cent. We also experimented with the extreme assumption of a 100 per cent depreciation rate for IT, thus working directly with the flows.

Across-survey stocks

Following the steps described above, we obtained hardware and software stocks within each different survey. In order to simplify the empirical analysis, we combined all the information from the different surveys to construct overall across-surveys IT stocks for both hardware and software. Our strategy was to usethe BSCI measure as the most reliable observation (as recommended by the data collectors). We then built our synthetic measure using the QC apex stocks if the BSCI observation was missing or equal to zero and the QCapex was different from zero. We finally used the FAR if both QCapex and BSCI were missing and/or equal to zero and the FAR was not. For the software capital stock we also used theABI information as a fourth source, following the same order described above. The sources of the aggregate capital stocks are summarized in Table 1.

Table 1

Sources	Number of observations	
Source	Hardware capital	Software capital
BSCl	3,704	2,387
QICE	17,517	13,049
FAR	686	881
ABI	-	43,735

In order to keep track of the possible measurement error introduced using this procedure, we introduced in all the IT regressions a dummy that identifies the source of the observation for both the hardware and the softwarestocks. Thedummies are generally not significantly different from zero.

Basic production function estimates

Matching the IT data with the ABI

The standard methodology used to evaluate the impact of IT on productivity is the econometric estimates of a production function whereIT is typically introduced as an additional input. In order to perform this type of analysis, we matched our IT dataset with theABI. TheABI contains information on inputs and outputs reported by UK firms, according to a stratified random sample: sampling probabilities are higher for large establishments (for example, 100 per cent for all establishments with more than 250 employees). Data on the production sector (including manufacturing) is in the ABI which has a long time series element (from 1980 and before in some cases). Data on the non- production sector (services) is available for a much shorter time period (from 1997 onwards). The sample is large: in 1998 al onethereare 28,765 plants in the production sector alone (H askel and M artin, 2002). The questionnairesent out on the $A B I$ is extensive and covers all the variables needed to estimate basic production functions. In particular we have gross output, value added, employment, wage bill, investment and total materials (this includes all intermediateinputs- energy, materials, etc.) and as described in M artin (2003) yearly firm-level estimates of total capital stock. TheABI also covers the non-manufacturing sector from 1997 onwards. This is important as the majority of the sectors that intensively use IT are outsidemanufacturing.

TheABI and theIT datasets wereeasily matched through the RUREF identifier. The three IT hardware surveys were not designed to cover exactly the same establishments as contained in the ABI survey, but because there is oversampling of the larger establishments in all surveys the overlap is substantial, especially for the larger plants. Our dataset runs from 1995 through 2003, but there are many more observations in each year post-1999. Since the micro data are typically subject to problems related to outliers, we used standard procedures to clean the ABI and the IT data. First, wedropped all observations with negative value added and/or capital stock. Second, we dropped the top and bottom percentile of the distribution of employment and gross value added. Third, wedropped extreme values of total capital stock per employee and gross value added per employee. This step of the cleaning procedure was performed on the overall ARD sample. We applied a similar cleaning procedure al so to our across surveys IT variables, dropping the top and bottom percentiles of the ratio of the variables to gross value added. ${ }^{6}$

After cleaning we are left with 22,736 non-zero observations for hardware and 58,283 for software. Some descriptive statistics are presented in Table 2 which refers to 2001. This shows the basic summary statistics for the sample with, respectively, non-missing hardware and software information.

Table 2
Summary statistics sample (2001 cross section)

	Hardw are sample			
Variable	Frequency	Mean	Median	Standard deviation
Employment	7,495	795.91	238.00	$3,943.87$
Capital per worker	7,495	84.03	46.97	112.70
Value Added per worker	7,495	38.92	28.26	52.69
Gross Output per worker	7,495	118.89	81.08	132.32
Total Materials per worker	7,495	79.37	44.47	102.60
Hardware Capital/ Gross Output	7,495	0.0103	0.002	
Hardware expenditure per worker	7,495	0.94	0.33	2.04
Hardware capital	7,495	989.65	76.55	$10,548.86$

Softw are sample

Variable	Frequency	Mean	M edian	Standard Deviation
Employment	20,259	319.22	55.00	$2,808.62$
Capital per worker	20,259	66.20	33.77	100.92
Value Added per worker	20,259	34.51	20.08	10.37
Gross Output per worker	20,259	100.49	63.75	93.46
Total Materials per worker	20,259	66.06	32.38	0.76
Software Capital/ Gross Output	20,259	0.008	0.003	1.35
Software expenditure per worker	20,259	0.55	0.20	$7,715.68$
Software capital	20,259	199.91	9.78	

Notes: All monetary amounts are in sterling in year 2000 prices, deflated using ONS four SIC digit producer price indexes; firm level value added is constructed as the sum of turnover, variation of total stocks, work of capital nature by own staff, insurance claims received minus purchases; total stocks are constructed as described in the Appendix. All variables in units of thousands except ratios and employment.

There are many small and medium sized establishments in our sample- the median employment is 238 and the mean is 796. M ean and median employment tends to be substantially higher than theoverall ARD sample (mean employment is 217 and median employment is 22). The reason why we lose some of the smallest plants is because the surveys use stratified random sampling, which gives higher sampling weights to thelarger establishments in the economy. M edian output per worker (our main measure of productivity) is $£ 82,000$ for the hardware sample and $£ 64,000$ for the software sample. Value added per worker is $£ 28,300$ for thehardware sample and $£ 26,000$ for the software sample. The mean hardware capital in the plant isjust under $£ 1$ million. The mean software capital is substantially lower, about $£ 200,000$. The reason for this substantial differencemay be due to the fact that the reported hardware investments refer also to bundled software, ${ }^{7}$ and also because surveys are believed to understate 'own account' software written by a firm's employees. At rental prices average IT capital is about 1 per cent of gross output at the un-weighted mean (1.5 per cent if weighted by size) or 2.3 per cent of value added (similar to the means in Basu et al, 2003).

Econometricmethodology

Following Klette (1999), establishments in an industry are assumed to beconstrained by a production function $\mathrm{Q}_{\mathrm{it}}=\mathrm{A}_{\mathrm{it}} \mathrm{F}_{\mathrm{t}}\left(\mathrm{X}_{\mathrm{it}}\right)$ where Q is gross output of establishment i at timet, $A_{i t}$ is an establishment specific productivity factor and $F_{t}($.$) is a part of the production function common to all$ plants. The production function relationship can be expressed
in terms of logarithmic deviations from a point of reference. ${ }^{8}$ This reference point can bethought of as the representative plant's level of output and inputs for each year. Rewriting the production function in terms of logarithmic deviations from this reference point and making some assumptions about the functional form of $F_{t}($.$) (denote such a transformed variable$ $\widetilde{\mathrm{x}}_{\mathrm{it}} \equiv \ln \mathrm{X}_{\mathrm{it}}-\ln \mathrm{X}_{\mathrm{t}}$ where X_{t} is the reference point ${ }^{9}$)
$\widetilde{\mathrm{q}}_{i t}=\widetilde{\mathrm{a}}_{\mathrm{it}}+\alpha_{i \mathrm{it}}^{M} \widetilde{m}_{i t}+\alpha_{i t}^{L T_{i t}}+\alpha_{i t}^{k} \widetilde{\mathrm{k}}_{\mathrm{it}}+\alpha_{\mathrm{it}}^{\mathrm{c}} \widetilde{\mathrm{c}}_{\mathrm{it}}$
wherec is the capital stock of computer hardware, k is non-computer capital, I is labour and m is materials. The $\bar{\alpha}_{\mathrm{it}}^{j}$ is the output elasticity for factor j evaluated at an internal point between X_{it} and X_{t}. The specific object of interest in this framework is the estimate of $\alpha_{i t^{\prime}}^{c}$, which measures the elasticity of output with respect to IT capital.

Theterm $\widetilde{\mathrm{a}}_{\mathrm{it}}$ (thefirms' productivity relative to the reference firm) follows an error component structure, that is:
$\widetilde{\mathrm{a}}_{\mathrm{t}}=\mathrm{a}_{\mathrm{i}}+\mathrm{u}_{\mathrm{it}}$
Thechoice of theeconometric technique to estimate (5) depends crucially on the different assumptions on the nature of the $\widetilde{\mathrm{a}}_{\mathrm{it}}$ term. The typical concern is that firm level fixed effects are likely to be correlated with input choices, generating biased coefficient estimates. Within group estimations will address the problem only under the crucial assumption that the fixed effects are constant over time. H owever, when this condition is not met, or when there is measurement error in inputs, fixed effects may actually generate worse estimates than OLS. In thisframework, we
can exploit the fact that we have panel data on our plants and attempt to control for unobserved heterogeneity more rigorously through panel data techniques for production functions using, System GM M and Olley Pakes, which are described in theAppendix.

Results

The basic production function results are contained in Tables 3 and 4. For each table, the first three columns present OLS results, the next three columns present GM M -system results and the final column presents Olley Pakes results. Column (1) presents the results without fixed effects, but all other columns control for fixed effects.

Hardw are (Table 3)

Across all specifications, all the factor inputs, including hardware capital are positive and significant. In column (1) the sum of the coefficients on the factor shares is 0.99 , very close to constant returns to scale. Column (2) includes a full set of 11,000 establishment specific fixed effects. The coefficients all remain significant at conventional levels. The coefficient on hardware capital falls from 0.04 to 0.03 , the coefficient on materials falls from 0.54 to 0.47 . By contrast the coefficient on non-IT capital increases from 0.12 to 0.16 and the coefficient on labour rises from 0.29 to 0.32 . Compared to many other results in the micro production function literature ${ }^{10}$ the results here are reasonably stable when including fixed effects. ${ }^{11}$

Table 3
Basic production function estimates - hardw are

Estimation Method	(1) OLS, No fixed effects	(2) OLS, Fixed effects	(3) OLS, Fixed effects	(4) GMM, Static	(5) GMM, Dynamic (Unrestricted)	(6) GMM COMFAC (Restricted)	(7) Olley-Pakes
Dependent variable: $\ln (\mathrm{GO})=\ln ($ Gross Output)							
Ln(Ht) Hardware capital	$\begin{aligned} & 0.0440 * * * \\ & (0.0023) \end{aligned}$	$\begin{aligned} & 0.0299 * * * \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.0265 * * * \\ & -0.0063 \end{aligned}$	$\begin{aligned} & 0.0391 * * * \\ & (0.0171) \end{aligned}$	$\begin{aligned} & 0.0656 * \\ & (0.0373) \end{aligned}$	$\begin{aligned} & 0.0430 * * \\ & (0.021) \end{aligned}$	$\begin{aligned} & 0.0204 * * * \\ & (0.003) \end{aligned}$
Ln(Ht-1) Hardware capital, lagged	-	-	-	-	$\begin{aligned} & -0.0343 \\ & (0.0242) \end{aligned}$	-	-
$\operatorname{Ln}(\mathrm{Mt})$ M aterials	$\begin{aligned} & 0.5384 * * * \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.4665 * * * \\ & (0.019) \end{aligned}$	$\begin{aligned} & 0.4702 * * * \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.3998 * * * \\ & (0.0402) \end{aligned}$	$\begin{aligned} & 0.3293 * * * \\ & (0.075) \end{aligned}$	$\begin{aligned} & 0.3595 * * * \\ & (0.0494) \end{aligned}$	$\begin{aligned} & 0.5562 * * * \\ & (0.0102) \end{aligned}$
Ln(M t-1) M aterials, lagged	-	-	-	-	$\begin{gathered} -0.0715 \\ (0.0534) \end{gathered}$	-	
Ln(Kt) Non-IT Capital	$\begin{aligned} & 0.1193 * * * \\ & (0.0063) \end{aligned}$	$\begin{aligned} & 0.1650^{* * *} \\ & (0.0153) \end{aligned}$	$\begin{aligned} & 0.1953 * * * \\ & (0.0234) \end{aligned}$	$\begin{aligned} & 0.1584 * * * \\ & (0.041) \end{aligned}$	$\begin{aligned} & 0.3618^{* * *} \\ & (0.0869) \end{aligned}$	$\begin{aligned} & 0.2937 * * * \\ & (0.0526) \end{aligned}$	$\begin{aligned} & 0.1511 * * * \\ & (0.0115) \end{aligned}$
Ln(Kt-1)Non-IT Capital, lagged	-	-		-	$\begin{aligned} & -0.1815^{* * *} \\ & (0.0592) \end{aligned}$	-	
Ln(Lt) Labour	$\begin{aligned} & 0.2868 * * * \\ & (0.0062) \end{aligned}$	$\begin{aligned} & 0.3177 * * * \\ & (0.0198) \end{aligned}$	$\begin{aligned} & 0.2979 * * * \\ & (0.0209) \end{aligned}$	$\begin{aligned} & 0.4158 * * * \\ & (0.0479) \end{aligned}$	$\begin{aligned} & 0.2981 * * * \\ & (0.0829) \end{aligned}$	$\begin{aligned} & 0.3524^{* * *} \\ & (0.056) \end{aligned}$	$\begin{aligned} & 0.2611 * * * \\ & (0.008) \end{aligned}$
Ln(Lt-1)	-	-		-	$\begin{aligned} & 0.0091 \\ & (0.0624) \end{aligned}$	-	
Ln(Yt-1) Gross Output, lagged	-	-	-	-	$\begin{aligned} & 0.2330 * * * \\ & (0.0581) \end{aligned}$	-	
Rho, ρ	-	-	-	-	-	$\begin{aligned} & 0.3488 * * * \\ & (0.0291) \end{aligned}$	-
Observations	22736	22736	6763	6763	6763	6763	12069
Fixed effects	No	Yes	Yes	Yes	Yes	Yes	Yes
1st order serial correlation test (p value)	-	-	-	$\begin{aligned} & -3.634 \\ & (0.000) \end{aligned}$	$\begin{aligned} & -5.223 \\ & (0.000) \end{aligned}$	-	-
2nd order serial correlation test (p value)	-	-	-	$\begin{gathered} -0.239 \\ (0.811) \end{gathered}$	$\begin{aligned} & 0.953 \\ & (0.341) \end{aligned}$	-	-
Sargan-Hansen Test (p value)	-	-	-	$\begin{aligned} & 34.38 \\ & (0.354) \end{aligned}$	$\begin{aligned} & 24.65 \\ & (0.852) \end{aligned}$	-	
COMFAC (p value)	-	-	-	-	-	$\begin{aligned} & 6.7474 \\ & (0.15) \end{aligned}$	-

[^4]To implement our GM M estimates we need to condition on a sample where we have at least three continuous time series observations (the OLS estimates keep all observations, even if we only observe a plant for a single period). Column (3) conditions on the samesub-samplethat wewill estimate our GM M results on and re-runs the within groups estimate of column (2). The estimates are stable even after throwing away about threequarters of the sample. Column (4) presents the equivalent specification using GM M -SYS. The absence of higher order serial correlation and the failure of the Sargan test to reject are consistent with the hypothesis that the instruments are valid. The coefficients on materials and nonIT capital fall and the coefficients on labour and hardware
capital rise compared to column (3). Finally column (5) implements a general dynamic model including lags of all the independent variables and the dependent variable. We then impose the common factor restrictions (COM FAC) by minimum distance and present these restricted estimates in the final column (note that we cannot reject theCOM FAC restrictions as indicated by the diagnostics at the base of column (6)). The coefficient on hardware (and the other factors) remains positive and significant with a coefficient of about 0.04 (similar to OLS levels in fact). Finally, column (7) implements a version of the Olley Pakes method. Although all the variables are significant at conventional levels this produces the lowest coefficient on hardware capital in Table 3: 0.02.

Table 4
Basic production function estimates - software

Estimation Method	(1) OLS, No fixed effects	(2) OLS, Fixed effects	(3) OLS, Fixed effects	(4) GMM, Static	(5) GMM, Dynamic (Unrestricted)	(6) GMM COMFAC (Restricted)	(7) Olley-Pakes
Dependent variable: $\ln (\mathrm{GO})=\ln ($ Gross Output)							
$\operatorname{Ln}(\mathrm{St})$ Software capital	$\begin{aligned} & 0.0491^{* * *} \\ & (0.0013) \end{aligned}$	$\begin{aligned} & 0.0222^{* * *} \\ & (0.0025) \end{aligned}$	$\begin{aligned} & 0.0163^{* * *} \\ & (0.0033) \end{aligned}$	$\begin{aligned} & 0.0231^{* * *} \\ & (0.0081) \end{aligned}$	$\begin{aligned} & 0.0235 \\ & (0.0151) \end{aligned}$	$\begin{aligned} & 0.0232^{* *} \\ & (0.0118) \end{aligned}$	$\begin{aligned} & 0.0192 * * * \\ & (0.0017) \end{aligned}$
Ln(St-1) Software capital, lagged					$\begin{aligned} & (0.0053) \\ & (0.0080) \end{aligned}$		
$\operatorname{Ln}(\mathrm{Mt}) \mathrm{M}$ aterials	$\begin{aligned} & 0.5145 * * * \\ & (0.0046) \end{aligned}$	$\begin{aligned} & 0.4061^{* * *} \\ & (0.0137) \end{aligned}$	$\begin{aligned} & 0.4299 * * * \\ & (0.0191) \end{aligned}$	$\begin{aligned} & 0.4457 * * * \\ & (0.0343) \end{aligned}$	$\begin{aligned} & 0.4244 * * * \\ & (0.0531) \end{aligned}$	$\begin{aligned} & 0.4533 * * * \\ & (0.0464 \end{aligned}$	$\begin{aligned} & 0.529 * * * \\ & (0.0074) \end{aligned}$
Ln(M t-1) M aterials, lagged					$\begin{aligned} & -0.0972^{* * *} \\ & (0.0262) \end{aligned}$		
Ln(Kt) Non-IT Capital	$\begin{aligned} & 0.1007 * * * \\ & (0.0040) \end{aligned}$	$\begin{aligned} & 0.2103^{* * *} \\ & (0.0130) \end{aligned}$	$\begin{aligned} & \text { 0.1899*** } \\ & (0.0189) \end{aligned}$	$\begin{aligned} & 0.1504^{* * *} \\ & (0.0303) \end{aligned}$	$\begin{aligned} & 0.2536 * * * \\ & (0.0637) \end{aligned}$	$\begin{aligned} & 0.1733^{* * *} \\ & (0.0411) \end{aligned}$	$\begin{aligned} & 0.1534 * * * \\ & (0.0003) \end{aligned}$
Ln(Kt-1) Non-IT Capital, lagged					$\begin{aligned} & -0.1465 \\ & \left(0.0436^{* * *}\right) \end{aligned}$		
Ln(Lt) Labour	$\begin{aligned} & 0.3227 * * * \\ & (0.0035) \end{aligned}$	$\begin{aligned} & 0.3511^{* * *} \\ & (0.0127) \end{aligned}$	$\begin{aligned} & 0.3589 * * * \\ & (0.0182) \end{aligned}$	$\begin{aligned} & 0.3857 * * * \\ & (0.0387) \end{aligned}$	$\begin{aligned} & 0.2554 \\ & \left(0.0738^{* * *)}\right. \end{aligned}$	$\begin{aligned} & 0.3347 * * * \\ & (0.0479) \end{aligned}$	$\begin{aligned} & 0.2945 * * * \\ & 0.0057 \end{aligned}$
Ln(Lt-1) Labour, lagged					$\begin{aligned} & 0.0148 \\ & (0.0519) \end{aligned}$		
Ln(Yt-1) Gross Output, lagged					$\begin{aligned} & 0.2766 * * * \\ & (0.0370) \end{aligned}$		
Rho, ρ						$\begin{aligned} & 0.3405 * * * \\ & -0.0312 \end{aligned}$	
Observations	58,283	58,283	13,072	13,072	13,072	13,072	26,463
Fixed effects	No	Yes	Yes	Yes	Yes	Yes	Yes
1st order serial correlation test (p value)				$\begin{aligned} & -8.624 \\ & (0.000) \end{aligned}$	$\begin{aligned} & -9.517 \\ & (0.000) \end{aligned}$		
2nd order serial correlation test (p value)				$\begin{aligned} & -0.172 \\ & (0.863) \end{aligned}$	$\begin{aligned} & -0.704 \\ & (0.481) \end{aligned}$		
Sargan-Hansen Test (p value)				$\begin{aligned} & 44.87 \\ & (0.065) \end{aligned}$	$\begin{aligned} & 39.62 \\ & (0.198) \end{aligned}$		
COM FAC (p value)						$\begin{aligned} & 14.11 \\ & (0.007) \end{aligned}$	

Notes: * significant at 10 per cent; ${ }^{* *}$ significant at 5 per cent;*** significant at 1 per cent. The dependent variable in all columns is the log of gross output. The time period is 1995-2003. All variables are expressed in deviations from the 4 digit industry mean in the same year. The estimation method in columns (1) through (3) is OLS (with fixed effects in columns (2) and (3); .in columns (4) to (6) we use System-GM M (Blundell and Bond, 2000) and in column (7) we use Olley Pakes (1996). Standard errors in brackets under coefficients in all columns are clustered by establishment (i.e. robust to heteroskedacity and autocorrelation of unknown form). One step GMM results reported. All columns include age, foreign ownership and region dummies and a dummy taking value one if the firm belongs to a multi-firm enterprise group as additional controls. In columns (4) to (6) instruments are all plant level factor inputs lagged $t-2$ and before (when available) in the differenced equation (i.e. $\mathrm{m}_{\mathrm{t}=2}, \mathrm{n}_{\mathrm{t}=2}, \mathrm{k}_{\mathrm{t}=2}, \mathrm{C}_{\mathrm{t}=2}, \mathrm{q}_{\mathrm{t}=2}$) and lagged differences in the levels equation ($\Delta \mathrm{m}_{\mathrm{t}-1}, \Delta \mathrm{n}_{\mathrm{t}-1}, \Delta \mathrm{k}_{\mathrm{t}-1}, \Delta \mathrm{c}_{\mathrm{t}-1}$,). Serial correlation tests are LM tests of the first differenced residuals (See Arellano and Bond, 1991). Sargan-Hansen Test of instrument validity is a test of the over-identification restrictions. Olley Pakes uses a fourth order series expansion to approximate the phi function.

Softw are (Table 4)

The software capital follows a very similar pattern to the one described for hardware. In particular, the variable appears with a positive and significant coefficient across all specification, ranging from a value of 0.049 (basic OLS estimation) to the value of 0.019 (Olley Pakes). Themain complication of the software regressions arises with theGM M estimations. In the static model the Sargan test is rejected; in the dynamic model the Sargan test is not rejected, but the COM FAC restrictions are rejected. These results - possibly due to the greater degree of noise associated with the software capital estimates - underminethe reliability of the GM M estimates.

In terms of the point estimates, the coefficients on software capital tend to besimilar to - but slightly lower - than the ones shown for hardware. This result is confirmed when we run the basic fixed effects estimation on the sample for which we have both hardware and software capital (not reported). In this sample of 18,325 observations the coefficient on hardware capital is 0.0266 and the one on software is 0.0203 , and both are significant at the 1 per cent level. ${ }^{12}$

Overall the different estimators produce estimates of the elasticity of output with respect to IT in the range of 0.02 to 0.04 . It is reassuring to find that IT capital does indeed appear to have a positive impact on raising output, consistent with the findings from the new micro studies in the US and elsewhere. Although the coefficient is larger than the share of IT capital in output (about 1 per cent to 1.5 per cent in Table 2 and 3) the difference is not as dramatic as has been found in other studies such as Brynjolfsson and Hitt (2003). ${ }^{13}$

Robustness checks

Weconsidered several experiments regarding our assumptions concerning the construction of the IT capital stock. First, there is uncertainty over the exact depreciation ratefor IT capital, so we experimented with a number of alternatives including the extreme case of 100 per cent depreciation which effectively treats IT investment as a flow. Secondly, we do not know theinitial IT capital stock for ongoing firms the first time they enter the sample. Our base method is to assume that theIT investment rate is the same as the industry average IT investment rate in the base period. An alternative is to assume that the plant's share of theIT stock is the same as its share of employment in the industry in the base period. This affects the magnitude of the coefficient on IT (results not reported, availableupon request) but it always remains positive and significant.

We estimated the production function separately for manufacturing and services to evaluatethe role of industry heterogeneity. Both the hardware and the software stocks remained positive and highly significant in all the specifications and their coefficients were generally slightly higher in services than manufacturing - although the same happened for normal capital and employment.

Conclusions

This article describes the main sources and the methodology used to build the first firm-level estimates of IT (hardware and software) capital. M atching the IT variable with the $A B I$, we are ableto exploit a very rich establishment level panel dataset to estimate the effects of IT on productivity. We find robust evidencethat IT has a positive and significant correlation with productivity even after controlling for many factors such as fixed effects, and using various econometric methodologies that takeinto account problems related to measurement error and inputs endogeneity. We estimate that a doubling of the IT stock is associated with an increase in productivity of between 2 per cent and 4 per cent, a result which is in line with the existing literature.

This article covers a very small part of the IT research agenda that is currently in place at ONS combining various firm level data sources. In a related paper, Bloom et al. (2005) combine the IT stocks with theAnnual Inquiry into Foreign Direct Investments (AFDI) and analyse the returns to IT investments made by a sample of UK and non UK multinationals. They also look at the interaction between IT and skills combining the ONS firm level data with regional and sector-specific measures of skills built from the Labour Force Survey. In this edition of Economic Trends, S. Farooqui reports on the research conducted combining the IT stocks presented in this article with additional measures of firm level technological choices (E-commerce activity, number of people using computers in thefirm, etc.) The ongoing data collection conducted by ONS will hopefully extend the sample of the IT stocks, opening the way to a very wide range of research opportunities.

Notes

1. This article draws heavily from the paper 'It ain't what you do, it's the way you do I.T: testing explanations of productivity growth using U.S. affiliates', by Bloom N , Van Reenen J and Sadun R. Avail able at www.statistics.gov.uk/CCI/article.asp?ID $=1236$.
2. For a more detailed description see Barnes and M artin (2002).
3. The extrapolation was done by simple averaging, but wealso tried more sophisticated quarterly models taking into account the quarter surveyed. This made practically no difference.
4. Because we have a short time series for many firms we are careful to check the robustness of the results for different assumptions over the treatment of the initial year of the IT stock. We consider different ways to impute the initial value, and also show that using just the flow measures (that is, not using any imputations for the initial year) gives us qualitatively similar results.
5. We are careful to check for differences in coefficients due to the IT measures coming from different surveys. We could not reject the assumption that there were no significant differences in the IT coefficients arising from the fact that the IT stocks were built from different surveys.
6. The results presented in thetables are robust to the choice of different ratios.
7. According to the ABI, an alternative explanation may be that the software question was misinterpreted by the reporting firms, especially in the first years in which thequestion was included. This might have led the firms to report the software expenditures as included in the hardware response. Also, software expenditures are sometimes accounted as current expenses rather than capitalised items.
8. This uses a version of the multivariate generalized mean value theorem (for example, Thomas, 1968). The production function istherefore much more general than simply Cobb-Douglas.
9. We will generally use the four digit industry mean at timet as the reference point for ${ }_{x^{\prime}}$ but we also experimented with alternatives such as the four digit industry year median.
10. Griliches and M airesse (1997), Olley and Pakes (1996) or Levinsohn and Petrin (2003).
11. Thetransformation of variables into deviations from the industry mean helps stability and it may be that there is much less measurement error in this mandatory establishment survey than thetypical firm study using accounting data.
12. A similar comparison for the GM M and the Olley Pakes methodologies are complicated by the lack of a sufficient number of consecutive observations.
13. There are a number of possible reasons for the differences. M ost obviously, Brynjolfsson's data is from theUS whereas ours is from theUK - and a related paper by Bloom, Sadun and Van Reenen (2005) shows that there appears to be larger IT coefficientsfor US firms than for UK firms. Other differences include:

- we are using more disaggregated data (establishments rather than worldwide accounts of firms)
- our measure of IT capital is constructed in the standard way from flows of expenditure whereas BH use a measurebased on pricing different pieces of IT equipment
- our sample is much larger and covers a morerecent time period
- our estimation techniques are different.

References

Ackerberg D and Caves, K (2004) Structural Identification of Production Functions. UCLA mimeo.
Arellano M and Bond S (1991) Sometests of specification for panel data: M onte Carlo evidence and an application to employment functions. Review of Economic Studies 58, pp 277-297.
Atrostic B K and N guyen S (2004) How Businesses use Information Technology, Insights for measuring Capital and Productivity. CES, M ay 2004.
Basu Susanto, Fernald J G, Oulton Nicholas, Srinivasan Sylaja (2003) The Case of the M issing Productivity Growth: Or, Does information technology explain why productivity accelerated in the United States but not the United Kingdom? Federal ReserveBank of Chicago Working Paper, W P-2003-08.
Blundell Richard and Bond S (1998) Initial Conditions and Moment Restrictions in dynamic panel data models. Journal of Econometrics.
Blundell Richard and Bond S(2000) GM M estimation with persistent panel data: an application to production functions. Econometric Reviews 19(3), pp 321-340.
Bond S and Soderbom M (2005) Adjustment costs and identification of Cobb Douglas Production functions, mimeo, University of Oxford.
Bresnahan T, Brynjolfsson E and Hitt L (2002) Information Technology, Workplace O rganization and the Demand for skilled Labor. Quarterly Journal of Economics 117(1), pp 339-376.
Brynjolfsson E and Hitt L (2000) Beyond Computation: Information Technology, Organisational Transformation and Business Performance. Journal of Economic Perspectives, 14(4), pp 23-48.
Brynjolfsson E and Shinkyu Y (1996) Information Technology and Productivity: A Review of the Literature. Advances in Computers XLIII, pp 179-214.

Brynjolfsson E, Hitt L and Shinkyu Y (2002) IntangibleAssets: Computers and Organizational Capital. M IT Sloan, Paper 138.
Brynjolfsson E and Hitt L (2003) Computing Productivity: Firm Level Evidence. Review of Economics and Statistics 85 4, pp 793-808.
Colecchia A and Schreyer (2002) ICT Investment and Economic Growth in the 1990s: Is this United States a Unique Case? Review of Economic Dynamics pp 408-442.
Crepon B and Heckel T (2002) Computerization in France: an evaluation based on individual company data. Review of Incomeand Wealth 1, pp 1-22.
Doms M , Dunn W, Oliner S, Sichel D (2004) How Fast Do Personal Computers Depreciate? Concepts and N ew Estimates. NBER Working Paper 10521.
Feenstra R and Knittel C (2004) Re-assessing the U S quality adjustment to computer prices: The role of durability and changing software. NBER Working Paper 10857.

Geske Ramey and Shapiro (2004) Why do computers depreciate? NBER Working Paper 10831.
Griliches Z and M airesseJ (1997) Production functions: The Search for Identification in Scott Ström (ed.), Essays in H onour of Ragnar Frisch, Econometric Society M onograph Series, Cambridge University Press: Cambridge.
Haskel J and M artin R (2002) The Productivity Spread, Ceriba mimeo.
Klette T J (1999) M arket power, scale economies and productivity: Estimates from a panel of establishment data. Journal of Industrial Economics 47, pp 451-76.
Jorgenson D and Stiroh K (2000) Raising the Speed Limit: US Economic Growth in the Information Age. Brookings Papers on EconomicActivity 1, pp 125-211.
Jorgenson D W (2001) Information technology and the US economy. American Economic Review 91(1), pp1-32.
LevinsohnJ and Petrin A. (2003) Estimating Production functions using inputs to control for unobservables. Review of Economic Studies 70, pp 317-342.
Olley G Steven, Pakes Ariel (1996) The Dynamics of Productivity in the Telecommunications Industry. Econometrica 64(6), pp 1263-1297.
O'M ahony M and van Ark B, eds. (2003) EU Productivity and Competitiveness: An Industry PerspectiveCan Europe Resumethe Catching-up Process? Office for Official Publications of the European Communities: Luxembourg.

Oulton N and Srinivasan S (2004) Productivity growth and the role of ICT in the UK: An industry view, 1970-2000. Centre for Economic PerformanceDiscussion Paper No. 681.

Pakes A (1994) Dynamic Structural M odels, Problems and Prospects Part II: M ixed Continuous-DiscreteControl Problems and market interactions, Advances in Econometrics (C. Sims ed.), Cambridge University Press: Cambridge.
Stiroh K (2002a) Information Technology and the U S Productivity Revival: What Do the Industry Data Say? American Economic Review 92(5) December, pp 1559-1576.

Stiroh K (2002b) Reassessing the Role of IT in the Production Function: A M eta analysis, mimeo, Federal Reserve Bank of New York.

Thomas E B (1968) Calculus and Analytical Geometry. AddisonWesley: Redding MA.

Van Ark B, Inklaar R and M cGuckin R H (2002) 'Changing Gear.' Productivity, ICT and Service Industries: Europe and the United States. Research M emorandum GD-60 University of Groningen , Groningen Growth and Development Centre.
Wilson (2004) IT and Beyond: The Contribution of Heterogeneous Capital to Productivity, mimeo Federal ReserveBank of San Francisco.

Appendix: Econometric methods

System GM M

The basic equation we wish to estimate can bewritten in simplified form as: ${ }^{1}$

$$
\begin{equation*}
q_{i t}=\theta x_{i t}+u_{i t} \tag{A2}
\end{equation*}
$$

Where θ is the parameter of interest. Assume that the stochastic error term, u_{it}, takes the form

$$
\begin{equation*}
u_{i t}=\eta_{i}+\tau_{t}+\omega_{i t} \tag{A3}
\end{equation*}
$$

$\omega_{\mathrm{it}}=\rho \omega_{\mathrm{it}-1}+v_{\mathrm{it}}$
The τ_{t} represent macro-economic shocks captured by a series of timedummies, η_{i} is an individual effect, and v_{it} is a serially uncorrelated mean zero error term. Theother element of the error term, ω_{it} is allowed to have an AR(1) component (with coefficient ρ) which could be due to measurement error or slowly evolving technological change Substituting (A3) into (A2) gives us the dynamic equation
$\mathrm{q}_{\mathrm{it}}=\pi_{1} \mathrm{q}_{\mathrm{it}-1}+\pi_{2} \mathrm{x}_{\mathrm{it}}+\pi_{3} \xi \mathrm{x}_{\mathrm{it}-1}+\eta_{\mathrm{i}}^{*}+\tau_{\mathrm{t}}^{*}+v_{\mathrm{it}}$
The common factor restriction (COM FAC) is $\pi_{1} \pi_{2}=-\pi_{3}$. Note that $\tau_{\mathrm{t}}^{*}=\tau_{\mathrm{t}}-\rho \tau_{\mathrm{t}-1}$ and $\eta_{\mathrm{i}}^{*}=(1-\rho) \eta_{\mathrm{i}}$.

In the main results section we present several econometric estimates of production functions. The most rigorous approach follows that recommended by Blundell and Bond (2000) that uses a 'system GM M ' approach to estimate equation (A4) and then imposes theCOM FAC restrictions by minimum distance. We now turn to describing theGM M approach in moredetail.

If we allow inputs to be endogenous we will require instrumental variables. In the absence of any obvious natural experiments we consider moment conditions that will enable us to construct a GM M estimator for equation (A4).
A common method would be to take first differences of (A4) to sweep out the fixed effects:
$\Delta \mathrm{q}_{\mathrm{it}}=\pi_{1} \mathrm{q}_{\mathrm{it}-1}+\pi_{2} \Delta \mathrm{x}_{\mathrm{it}}+\pi_{3} \Delta \xi \mathrm{x}_{\mathrm{it}-1}+\Delta \tau_{\mathrm{t}}+\Delta v_{\mathrm{it}}$
Since v_{it} is serially uncorrelated the moment condition

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{x}_{\mathrm{it}-2} \Delta v_{\mathrm{it}}\right)=0 \tag{A6}
\end{equation*}
$$

ensures that instruments dated $t-2$ and earlier ${ }^{2}$ are valid and can be used to construct a GM M estimator for equation (4) in first differences (Arellano and Bond, 1991). A problem with this estimator is that variables with a high degree of persistence over time (such as capital) will have very low correlation between their first difference ($\Delta \mathrm{x}_{\mathrm{it}}$) and the lagged levels being used an instrument (for example $\mathrm{x}_{\mathrm{it-2}}$). This problem of weak instruments can lead to substantial bias in finite samples. Blundell and Bond (1998) point out that under a restriction on the initial conditions another set of moment conditions are available: ${ }^{3}$
$\mathrm{E}\left(\Delta \mathrm{x}_{\mathrm{it}-1}\left(\eta_{\mathrm{i}}+v_{\mathrm{it}}\right)\right)=0$
This implies that lags of the first differences of the endogenous variables can be used to instrument the levels equation (A4) directly. The econometric strategy is then to
combine theinstrumentsimplied by themoment conditions (A6) and (A7). We stack the equations in differences and levels (that is, (A4) and (A5)). We can obtain consistent estimates of the coefficients and use these to recover the underlying structural parameters in (A2).

The estimation strategy assumes the absence of serial correlation in the levels error terms $\left.\left(v_{\mathrm{it}}\right)\right)^{4}$ Wereport serial correlation tests in addition to the Sargan- H ansen test of the over-identifying restrictions in all theGM M results. ${ }^{5}$

This GM M ‘system’ estimator has been found to perform well in M onteCarlo simulations and in the context of the estimation of production functions (Blundell and Bond, 2000). The procedure should also bea way of controlling for transitory measurement error (the fixed effects control for permanent measurement error).

Olley Pakes

Reconsider the basic production function (aggregating the variable inputs into labour and the quasi- fixed inputs into capital)

$$
\begin{equation*}
\mathrm{q}_{\mathrm{it}}=\alpha^{\mathrm{L}} \mathrm{itt}_{\mathrm{it}}+\alpha^{\mathrm{k}} \mathrm{k}_{\mathrm{it}}+\omega_{\mathrm{it}}+\eta_{\mathrm{it}} \tag{A8}
\end{equation*}
$$

The'efficiency term', ω_{it}, is the unobserved productivity state that will be correlated with both output and the variable input decision. We assumethat capital is predetermined and current investment (which will react to productivity) takes one period before it becomes productive. Under the assumptions specified in Pakes (1994) we can show that the investment policy function is monotonic in the unobserved productivity state and capital. This function can therefore be inverted to express $\omega_{\text {it }}$ as a function of investment and capital.
$\omega_{\mathrm{it}}=\widetilde{\omega}\left(\mathrm{i}_{\mathrm{it}} \mathrm{k}_{\mathrm{it}}\right)$
Thefirst stage of the OP algorithm uses this invertibility result to re-express the production function as:
$\mathrm{q}_{\mathrm{it}}=\alpha_{1} \mathrm{l}_{\mathrm{it}}+\alpha_{\mathrm{k}} \mathrm{k}_{\mathrm{it}}+\widetilde{\omega}\left(\mathrm{i}_{\mathrm{it}} \mathrm{k}_{\mathrm{it}}\right)+\eta_{\mathrm{it}}==\alpha_{\mathrm{l}} \mathrm{l}_{\mathrm{it}}+\phi\left(\mathrm{i}_{\mathrm{it}} \mathrm{k}_{\mathrm{it}}\right)+\eta_{\mathrm{i}}$
where

$$
\phi\left(\mathrm{i}_{\mathrm{it}} \mathrm{i}_{\mathrm{it}}\right)=\phi_{\mathrm{t}}=\widetilde{\omega}\left(\mathrm{i}_{\mathrm{it} t^{\prime}} \mathrm{k}_{\mathrm{it}}\right)+\alpha_{\mathrm{k}} \mathrm{k}_{\mathrm{it}}
$$

We approximate this function with a series estimator that previous applications have shown to beclose to the fully non-parametric approximation. We can use thisfirst stage results to get estimates of the coefficients on the variable inputs.
Thesecond stage of theOP algorithm is
$q_{i t}^{*}=q_{i t}-\alpha_{1} l_{\mathrm{it}}=\alpha_{\mathrm{k}} \mathrm{k}_{\mathrm{it}}+\omega_{\mathrm{it}}+\eta_{\mathrm{it}}$
Notethat the expectation of productivity conditional on last period's information set is
$\omega_{\mathrm{it}} \mid \mathrm{x}_{\mathrm{it}=1}=\mathrm{E}\left[\omega_{\mathrm{it}} \mid \omega_{\mathrm{it}-1} \chi^{\prime} \chi_{\mathrm{it}}=1\right]+\xi_{\mathrm{it}}$
where $\left[\chi_{\text {it }}=1\right]$ indicates that the firm has chosen not to shut down (in the empirical results we experiment with al so allowing for a selection stage over the decision to exit). This follows from the assumption that unobserved productivity evolves as a first order M arkov process. A gain we assumethat
we can approximate this relationship with a high order series approximation $\mathrm{g}\left(\omega_{\mathrm{it}-1}\right)$.
Substituting this in to the second stage and taking expectations conditional on last period's information set (denoted $\mathrm{I}_{\mathrm{t}-1}$) gives us
$E\left(q_{i t}^{*} \mid I_{t-1}\right)=\alpha_{k} k_{i t}+g\left[\phi\left(i_{i t-1}, k_{i t-1}\right)-\alpha_{k} k_{i t-1}\right]$
Since we al ready have in hand estimates of the ϕ_{t-1} function this amounts to estimating by Non-Linear Least Squares (N LLS). This now gives us all the relevant parameters of the production function. ${ }^{6}$

Notes

1. In this and in the following paragraph all the inputs and the output variable are expressed in deviations from the year-SIC4 mean.
2. Additional instruments dated $\mathrm{t}-3, \mathrm{t}-4$, etc. become available as the panel progresses through time.
3. The conditions are that the initial change in productivity is uncorrelated with thefixed effect $E\left(\Delta y_{i 2} \eta_{i}\right)=0$ and that initial changes in the endogenous variables are also uncorrelated with thefixed effect $E\left(\Delta y_{i 2} \eta_{i}\right)=0$
4. If the process is $\mathrm{MA}(1)$ instead of $\mathrm{MA}(0)$ then the moment conditions in (6) and (7) no longer hold. Nevertheless $\mathrm{E}\left(\chi_{\mathrm{it}-3} \Delta v_{\mathrm{it}}\right)=0$ and $\mathrm{E} \Delta\left(\chi_{\mathrm{it-2}}\left(\eta_{\mathrm{i}}+v_{\mathrm{it}}\right)\right)=0$ remain valid so earlier dated lags could still be used as instruments. This is the situation empirically with the wage equations.
5. These are based on the first differenced residuals so we expect significant first order serial correlation but require zero second order serial correlation for the instruments to be valid. If there is significant second order correlation we need to drop the instruments back a further time period (this happens to be the case for the wage equation in the results below).
6. There are numerous extensions to the basic Olley-Pakes methodology that have been suggested. First, we utilizethe additional selection correction originally suggested by the authors. Second, Levinsohn and Petrin (2003) suggest using intermediate inputs as an alternative proxy for the unobserved productivity term. This has attractions in plant level data where investment is zero in a non-trivial number of cases.

Ackerberg and Caves (2003) and Bond and Soderbom (2005) emphasis the identification problems underlying theoriginal OP set up which implicitly requires variation in firm specific input prices. The latter argue for the GM M approach discussed in theprevious sub-section which is identified in the presence of differential adjustment costs. Katayama et al (2003) proposean approach that takes imperfect competition more seriously and allows for differential firm specific mark-ups and implement a nested logit approach. Unfortunately their approach requires constant marginal costs and instant adjustment of the capital stock - rather unpalatable assumptions in our context.

Information and Communication Technology use and productivity

Shikeb Farooqui
Office for National Statistics

This article presents the main findingsfrom a strand of research aimed at bringing together a range of interdependent metrics on Information and CommunicationsTechnology (ICT) use in a single framework, to study the relationship between them, and assesstheir impact on firm level productivity. This isthe first study to bring together such a wide range of IT and CT metrics; one of itsintended effectsisto put the 'C' into ICT. Analysishas been conducted for major sectors across the UK economy to help policy makersassesswhich metricsshould be targeted for measurement and relative importance in terms of productivity impact.

Introduction

Recent years have witnessed a surge in interest in Information Technology (IT) and its impact on productivity. The initial growth accounting literature, which has consistently found a positive association between IT and productivity, has increasingly been complimented with similar findings from firm-level studies. Due to differences in international survey design, definitions and limited data availability these studies have, however, focused on varying aspects and measures of the new economy.

M aliranta and Rouvinen (2002) have shown productivity effects associated with employee use of computers and the internet for the Finnish economy. In the USA, firm-level studies of computer networks in manufacturing firms have found a positive association between IT and productivity. ${ }^{1}$ Similar results are availablefor manufacturing firms in Japan (M otohashi, 1999, 2002). In theUK Clayton and Goodridge (2002) have looked at e-business use and labour productivity; their results are supported by evidenceon productivity and pricing effects of ecommerce. M ore recently, Bloom, Sadun and Van Reenen (2005) find productivity effects associated with IT investment using UK business returns from investment surveys.

We bring together these measures under one framework to assess the impact of each on different business models across different sectors. There are clearly linkages between the different metrics; IT investment supportsIT enabled employees and computer networks and telecoms use is necessary to equip the workforce with Internet and e-commerce. But, it is important to consider what these individual components are measuring and why any analysis on ICT impact should includeone or more of these measures.

H ardware capital stock, will include expenditureon network servers and computers etc. but also contains expenditure on operating platforms and other applicationspecific software programs that are built into the hardware. It therefore represents fixed investment in IT infrastructure and to some extent encapsulates all theother IT measures.

Software capital will captureboth purchased software, consisting of packaged application-specific and non-application programs but mostly purchases of customised software, and to a small extent expenditure on software produced inhouse for use within the firm. In both cases software capital embodies extensions and changes to the basic IT infrastructure specific to the firm-systems re engineering that leads to improved efficiency and productivity.

[^5]Reported below are the main findings for the manufacturing and service sectors. A more detailed exposition of the analysis and resultsfor individual service sectors can be found in IT use by firms and employees: Productivity evidence across industries, Office for National Statistics(ONS) research paper series.

Data

Financial information at firm level is gathered through the Annual Business Inquiry (ABI). This survey provides information on employment, gross output, turnover and material inputs, including spend on telecommunication services and firm characteristics such as ownership status and whether the firm is part of a bigger enterprise group. The Investment section of the ABI is used to construct our non-IT capital stock. Since 2000 the ABI includes a section on e-commerce which we use to identify firms that trade electronically.

The E-commerce Inquiry, begun in 2000, is an annual survey dedicated to collecting data on ICT use. Since 2001 it has collected data on the proportion of the labour force equipped with ICT. Both surveys population-sample the largest firms and run a stratified sample on small and medium sized enterprises. M atching information from the two sources provides a valuable link between ICT use and productivity. The E-commercesurvey can also be used to providemore detailed information on the nature of electronic trade: distinguishing between types of product sold and the medium of trade, but theABI provides a larger samplesize and is our choice survey on e-commerce information.

TheIT capital stock is constructed from expenditure returns of surveyed firms. Details of construction methodology can befound in Bloom et al (2005). Although, our dataset runs from 2000 to 2003, most of the information relates to the years 2001 to 2003.

Table D1
Firm characteristics in manufacturing by type of trade decision, 2002
Percentages (relative to SIC4 digit industry mean)

		Employment	Value Added per employee	Gross Output per employee	Capital per employee	Telecom spend per employee	Hardware per employee	Software per employee	Share of employees with access to computer	Share of employees with access to Internet
e-buy	M ean	109	103	102	104	102	109	105	110	109
	Std Deviation	105	43	50	67	61	109	124	44	66
	Observations (no-s)	765	765	765	765	765	765	765	145	145
e-sell	M ean	105	100	101	100	100	100	102	102	103
	Std Deviation	93	43	50	64	59	98	121	50	68
	Observations (no-s)	942	942	942	942	942	942	942	196	196
None	M ean	89	98	99	98	99	95	93	92	89
	Std Deviation	76	40	43	59	54	112	114	39	57
	Observations (no-s)	570	570	570	570	570	570	570	74	74

Table D2
Firm characteristics in services by type of trade decision, 2002
Percentages (relative to SIC4 digit industry mean)

		employment	Value Added per employee	Gross Output per employee	Capital per employee	Telecom spend per employee	Hardware per employee	Software per employee	Share of employees with access to computer	Share of employees with access to Internet
e-buy	M ean	121	103	104	105	104	109	106	101	104
	Std Deviation	221	60	73	100	84	128	149	58	80
	Observations (no-s)	1,283	1,283	1,283	1,283	1,283	1,283	1,283	334	334
e-sell	M ean	115	101	102	103	100	107	102	106	112
	Std Deviation	218	60	68	93	75	118	129	66	94
	Observations (no-s)	1,057	1,057	1,057	1,057	1,057	1,057	1,057	307	307
None	M ean	81	98	97	96	97	92	94	94	89
	Std Deviation	131	62	71	111	79	109	132	80	103
	Observations (no-s)	1,150	1,150	1,150	1,150	1,150	1,150	1,150	256	256

A sizeableproportion of our sampletrade electronically: approximately 45 per cent of businesses run electronic procurement systems and 44 per cent of businesses receive orders via an electronic medium. Tables D1-D2 present descriptive statistics for our sample of manufacturing and service sector firms based on their decision to tradeover electronic platforms. Variables areexpressed as deviations from their four digit industry means.

Unsurprisingly, the decision to tradeelectronically is accompanied by higher than average spend on telecommunications and IT infrastructure. E-traders also have a higher share of ICT-equipped employees. Characteristics vary by sector: in manufacturing, firms with e-procurement systems are more capital intensive, spend up to 2 per cent morethan the industry average on telecoms, 8 per cent more on hardware capital and have 10 per cent moreICT-equipped employees.

In services e-buyers are again the bigger spenders on IT and CT, but e sellers employ a higher share of ICT equipped labour. In 2002, the Internet-equipped labour share for esellers was 11 per cent higher than the industry average.

In nearly all sectors it is the firms with e-procurement systems in place that are the most productive. In terms of value-added per worker e-sellers are more productive than the industry average, however this difference is minimal. Retail is the only sector where firms with electronic links to customers enjoy higher labour productivity than e procurers. ${ }^{2}$ O verall, the gains to electronic trade are not very large compared to industry averages and, more importantly, to firms without electronic trading platforms.

The descriptive statistics (not presented here) ${ }^{3}$ also indicate that there is a degree of experimentation in younger firms. Regardless of the sector we look at, young firms are generally more capital-intensive. They spend more than the industry average on IT investment and CT and have higher ICT-equipped labour share, however, this does not necessarily translate into much higher value added per employee compared to older firms.

Figures 1 and 2 show the relationship between the ICT equipped labour shareand labour productivity. The figures reported are unweighted sample averages but the message is clear: the most productive firms are those that employ a high share of labour with frequent access to ICT. Of course, there are likely to be a multitude of factors driving this representation. A high ICT equipped labour share may reflect a high skill intake, or indeed work organisation and management practices that are conducive to a productive environment. We tackle these issues in the following sections.

Econometric strategy

The modelling strategy laid out in Bloom et al (2005) forms the basis of our estimation technique. Weassume that firm i faces a generalised Cobb-Douglas production function $\mathrm{Q}_{\mathrm{it}}=\mathrm{A}_{\mathrm{it}} \mathrm{Ft}\left(\mathrm{X}_{\mathrm{it}}\right)$, where Q is the output of firm $\mathrm{i}, \mathrm{F}(\mathrm{X})$ is the part of the production that is common to all firms within an

Figure 1
ICT equipped labour share and labour productivity in manufacturing
Value added per employee

Figure 2
ICT equipped labour share and labour productivity in services

Value added per employee

industry and A refers to firm-specific efficiency not related to the input factors. X_{it} includes factor inputs such as capital and labour.

Using a logarithmic transformation we can rewrite our production function as: ${ }^{4}$
$q_{i t}=\alpha_{i t}+\alpha_{i t}^{N / T} k_{i t}+\alpha_{i t}^{H} h w_{i t}+\alpha_{i t}^{S} s w_{i t}+\theta_{\text {lit }}\left(I_{i t i, i t} / l_{i t}\right)+\left(\alpha_{i t}^{N I T}+\alpha_{i t}^{H}+\alpha_{i t}^{S}+\beta_{\mathrm{L}}-1\right) \mid$
where q is a measure of output per employee, k is non-IT capital per employee, I is labour input and hw (hardware) and sw (software) denote our measures of IT capital per employee.

As in M aliranta and Rouvinen (2002) we assume that all workers are perfect substitutes, however, we allow these workers to have different marginal productivities depending on whether they use ICT $\left(I_{\text {itt }}\right)$ or not ($\left.I_{0}\right)$.
Lehr and Lichtenberg (1999) propose improvements in communication as likely to improve overall efficiency in production and lead to proportionate increases in productivity across all factors. We are particularly interested in specific forms of communication that are captured in computer networks. We consider representing total factor productivity in the following way:
$\mathrm{a}_{\mathrm{it}}=\alpha_{\mathrm{i}}+\alpha_{1} \mathrm{t}+\alpha_{2}$ etrade $+\gamma_{\mathrm{j}} \mathrm{z}_{\mathrm{it}}+\mathrm{u}_{\mathrm{j}, \mathrm{t}}$
wheret represents a firms rental payment on telecommunications and etrade is a dummy variable that identifies firms using computer networks to trade electronically. Criscuolo and Waldron (2003) find productivity impacts vary with type of trade. We therefore distinguish between selling and buying over electronic networks. Other observablefactors such as multinational ownership, regional location and affiliation to multi-plant groups are captured in z . The equation to beestimated can then bewritten as:
$q_{\mathrm{it}}=\alpha_{\mathrm{i}}+\alpha_{1} \mathrm{t}+\alpha_{2} \mathrm{etrade}+\alpha_{\mathrm{it}}^{\mathrm{NIT}} \mathrm{k}_{\mathrm{it}}+\mathrm{d}_{\mathrm{it}} \mathrm{hw} \mathrm{it}_{\mathrm{it}}+\delta_{\mathrm{it}} \mathrm{SW}_{\mathrm{it}}+\theta_{\text {lit }}\left(l_{\mathrm{it}, \mathrm{it}} / l_{\mathrm{it}}\right)+$ $\left(\sum \alpha_{\mathrm{it}}^{N I T}+\beta_{\mathrm{L}}-1\right) \mid+\gamma_{\mathrm{j}} \mathrm{z}_{\mathrm{it}}+\mathrm{u}_{\mathrm{j}, \mathrm{it}}$

Our estimation technique relies on Least Squares regressions that arefully robust to a generalised heteroskedastic error term structure that allows for serial dependence over time. It is likely that our results will be affected by unobserved factors such as management practices. Fixed effects would help to control for such time-invariant factors, however the reliability of results is hampered by measurement error. ${ }^{5}$ In order to facilitate international comparison, we use value added as measure of output. This also has the additional advantage of allowing us to discern the pricing impacts that are an inherent part of electronic trade.

We analyse the impact of all the ICT variables mentioned above, but the results here focus on the impact of employee use of ICT and telecommunications. Results relating to IT investment and e-commerce arebriefly mentioned and interested readers can find the accompanying tables and explanations in the long version IT use by firms and employees: Productivity evidence across industries, ONS research paper series.

Results

IT investment

Tables 1 and 2 report regression outputs for manufacturing and services. The first column, in each table, shows the impact of IT investment when modelled on its own. Across all specifications, both our measures of IT capital are positive and significant. In manufacturing, the elasticity of hardware with respect to productivity is 5.6 per cent. In services it is markedly higher at 8.1 per cent. ${ }^{6}$ The impact of software is slightly lower than of hardware in both manufacturing and services. This is likely to bedue to a higher degree of measurement error associated with software. The coefficients on the IT measures are systematically higher for services.

Employee use of ICT

In their study M aliranta and Rouvinen (2002) identify the computer and Internet equipped labour share as proxies for IT investment. By capturing the degree of involvement of the workforce with ICT these measures al so act as indicators of work organisation and skills. In practice these metrics are also likely to measure the electronic exchange of information between employees- and with outside sources-so may give an imperfect measure of networking and knowledge management currently available at firm level.

The data on employees using computers and the Internet is, not surprisingly, correlated with IT investment at firm level. It is also strongly dependent on industry sector. However, the identifiable effects of employee computer / Internet use on firm level productivity are large and significant.

The second column in each table, shows results on employees using computers. In addition to the impact of IT investment, employee use of computers has a positive impact on firm productivity. In manufacturing, use of computers by the workforce raises productivity by 2.1 per cent for every additional 10 per cent of employees IT-enabled.

For services we also find an additional impact of employee use over and above that accounted for by IT investment. Partly because of the higher impact of investment, and partly dueto diminishing returns the impact is slightly lower, with increases of 1.5 per cent for every 10 per cent enabled.

The use of the Internet by the workforce has a positive impact on productivity above that explained by IT investment (Column 3, Tables 1 and 2). In manufacturing, enabling staff with the Internet raises productivity by 2.9 per cent for every 10 per cent enabled. Unlike manufacturing we do not find significant differences in impact between Internet and computer use in services.

Table 1
ICT use in manufacturing

	(1)	(2)	(3)	(4)	(5)
Dependent variable	$\ln ($ VA/EMP)	$\ln (\mathrm{VA} / \mathrm{EMP})$	$\ln ($ VA/EM P)	$\ln (\mathrm{VA} / \mathrm{EMP})$	$\ln ($ VA/EMP)
Log of non-IT capital per employee	$\begin{aligned} & 0.223 * * * \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.256 * * * \\ & (0.029) \end{aligned}$	$\begin{aligned} & 0.257^{* * *} \\ & (0.029) \end{aligned}$	$\begin{aligned} & 0.207 * * * \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.221 * * * \\ & (0.028) \end{aligned}$
Log of employee	$\begin{aligned} & 0.032 * * * \\ & (0.010) \end{aligned}$	$\begin{aligned} & 0.043^{*} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.043^{*} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.044 * * \\ & (0.010) \end{aligned}$	$\begin{aligned} & 0.068 * * * \\ & (0.023) \end{aligned}$
Log of hardware per employee	$\begin{aligned} & 0.056 * * * \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.038 * * \\ & (0.015) \end{aligned}$	$\begin{aligned} & 0.037 * * \\ & (0.015) \end{aligned}$	$\begin{aligned} & 0.012 \\ & (0.020) \end{aligned}$	$\begin{aligned} & -0.019 \\ & (0.043) \end{aligned}$
Log of software per employee	$\begin{aligned} & 0.041^{* * *} \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.032 * * \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.031 * * \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.038 * * * \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.034 * * * \\ & (0.013) \end{aligned}$
Computer equipped labour share		$\begin{aligned} & 0.215 * * * \\ & (0.064) \end{aligned}$			
Internet equipped labour share			$\begin{aligned} & 0.295 * * * \\ & (0.073) \end{aligned}$		$\begin{aligned} & 0.239 * * * \\ & (0.073) \end{aligned}$
Log of telecom spend per employee				$\begin{aligned} & 0.075 * * * \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.093 * * * \\ & (0.026) \end{aligned}$
Hardware*telecom spend				$\begin{aligned} & 0.009 * * \\ & (0.005) \end{aligned}$	$\begin{aligned} & 0.011 \\ & (0.009) \end{aligned}$
Skills					
Proportion of people with a college degree in industry-region cell		$\begin{aligned} & 0.235 \\ & (0.262) \end{aligned}$	$\begin{aligned} & 0.300 \\ & (0.261) \end{aligned}$		
Observations	5,397	1,317	1,317	5,397	1,394
R-squared	0.46	0.64	0.65	0.47	0.64

Robust standard errors in parentheses

* significant at 10 per cent; ${ }^{* *}$ significant at 5 per cent; *** significant at 1 per cent.

The dependent variable in all columns is the log of value added per employee (measured in $£^{\prime} 000 \mathrm{~s}$). Non-IT capital, IT capital and Telecom spend are all measured per employee in $\mathrm{f}^{\prime} 000$ s and expressed in logs in the regression. The time period is 2000-2003. Standard errors in brackets under coefficients are clustered by establishment and robust to heteroskedasticity and serial autocorrelation. All variables are expressed in deviations from the 4digit Industry mean in the same year. Telecom Spend per employee is measured in nominal terms. All regressions include age, region, ownership and group dummies.

It can be argued that the employee use measure is simply acting as a surrogate for skills. Indeed there is a growing literatureon the complementary relationship between IT investment and use and skills. To account for theskills effect we have included a skills measurein regression specifications based on regional educational attainment levels available to the SIC 2-digit industry. The results are robust and suggest employee use of ICT is - as an indicator - far morethan a proxy for IT investment.

Telecommunications spend

Communications technology equipment input is, for most firms outside the communications sector, dominated by purchase of external infrastructure services. Less than 15 per cent of investment in telecommunications products is made by firms outside the communications sector for their own use. ${ }^{7}$ Because most firms use external telecommunications infrastructure - purchased from outside service suppliers - it is difficult to reflect the contribution made by the 'Communications' element of ICT in the same way as we
have for IT. So the best measure of telecommunications use by firms is their external spend on purchased services. We use telecom spend per employee, identified through the ABI, as an indicator of communications infrastructure.

Telecoms use has a large positive and significant effect on firm output across manufacturing and services. It explains up to 7.5 per cent of productivity differences in manufacturing firms-after accounting for the effects of IT capital (Column 4, Table 1). Within manufacturing it also reinforces the productivity effects associated with hardware investment (Column 4 interaction between hardware and telecom spend).

Similar results hold for the service sector (Column 4, Table 2). The impact of telecom use does vary across the service sectors. It appears to be greatest in distribution services where the IT-CT interaction replaces hardware investment as the main productivity influence. This suggests that the role of IT in co-ordinating and managing complex supply chains and external links is much morecritical than as a driver of internal efficiency.

Table 2
ICT use in services

Dependent variable	(1)	(2)	(3)	(4)	(5)
	\ln (VA/EMP)	$\ln (\mathrm{VA} / \mathrm{EMP}$ P)	$\ln (\mathrm{VA} / \mathrm{EMP}$)	$\ln (\mathrm{VA} / \mathrm{EMP})$	$\ln (\mathrm{VA} / \mathrm{EMP}$)
Log of non-IT capital per employee	$\begin{aligned} & 0.268 * * * \\ & (0.012) \end{aligned}$	$\begin{aligned} & 0.274 * * * \\ & (0.025) \end{aligned}$	$\begin{aligned} & 0.264 * * * \\ & (0.025) \end{aligned}$	$\begin{aligned} & 0.245 * * * \\ & (0.012) \end{aligned}$	$\begin{aligned} & 0.249 * * * \\ & (0.025) \end{aligned}$
Log of employee	$-0.047 * * *$	$-0.021^{* * *}$	-0.060***	$-0.055 * * *$	-0.011
	(0.007)	(0.015)	(0.015)	(0.008)	(0.016)
Log of hardware per employee	$\begin{aligned} & 0.081 * * * \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.097 * * * \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.095 * * * \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.032 * * \\ & (0.016) \end{aligned}$	$\begin{aligned} & 0.094 * * \\ & (0.039) \end{aligned}$
Log of software per employee	$\begin{aligned} & 0.055 * * * \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.046 * * * \\ & (0.012) \end{aligned}$	$\begin{aligned} & 0.044 * * * \\ & (0.012) \end{aligned}$	$\begin{aligned} & 0.053 * * * \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.037 * * * \\ & (0.012) \end{aligned}$
Computer equipped labour share		$\begin{aligned} & 0.022 \\ & (0.053) \end{aligned}$			
Internet equipped labour share			$\begin{aligned} & 0.154 * * * \\ & (0.056) \end{aligned}$		$\begin{aligned} & 0.128 * * \\ & (0.055) \end{aligned}$
Log of telecom spend per employee				$\begin{aligned} & 0.074 * * * \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.064 * * * \\ & (0.022) \end{aligned}$
Hardware*telecom spend				$\begin{aligned} & 0.010 * * * \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.001 \\ & (0.007) \end{aligned}$
Skills					
Proportion of people with a college degree in industry-region cell		$\begin{aligned} & 0.206 \\ & (0.420) \end{aligned}$	$\begin{aligned} & 0.158 \\ & (0.419) \end{aligned}$		
Observations	8,255	2,231	2,231	8,255	2,272
R-squared	0.60	0.70	0.71	0.60	0.70

Robust standard errors in parentheses.

* significant at 10 per cent; ** significant at 5 per cent; *** significant at 1 per cent

The dependent variable in all columns is the log of value added per employee (measured in $£^{\prime} 000$ s). Non-IT capital, IT capital and Telecom spend are all measured per employee in $£^{\prime} 000$ s and expressed in logs in the regression. The time period is 2000-2003. Standard errors in brackets under coefficients are clustered by establishment and robust to heteroskedasticity and serial autocorrelation. All variables are expressed in deviations from the 4digit Industry mean in the same year. Telecom Spend per employee is measured in nominal terms. All regressions include age, region, ownership and group dummies.

Column 5 in Tables 1 and 2 presents the impact of employees using the Internet alongsidetelecommunication spend.
Note that the interaction between hardware and telecom spend becomes insignificant and the effects of hardware al so disappear (supporting our hypothesis that the employee use measure is a good indicator of networking within firms). H owever, effects of software and telecoms use remain strong and significant, suggesting that systems, communication and the effective use of both IT and CT is decisive to productivity in both manufacturing and services.

E-commerce

Work by Criscuolo and Waldron (2003) demonstrated, using UK data, that manufacturing firms which use e-commerce showed value added productivity gains associated with electronic buying and smaller productivity losses associated with electronic selling. Together with evidence showing a tendency for prices to decline among firms selling electronically compared to those which do not, this was interpreted to show an overall efficiency gain
associated with electronic process use and market price effects in favour of electronic buyers, through stronger price competition. This study extends their analysis in two ways: firstly we model the effects of ecommerce al ongside our other measures of ICT use, and wealso extend the analysis of ecommerce to the service sector.

Our results corroborate the existing findings in the literature. In commodity markets such as manufacturing, e-selling negatively impacts on value added productivity resulting from added price pressures. M anufacturing firms gain from e-procurement and thenet effect of e-trade is to raise productivity by 1-2 per cent. The impact of e-tradein services is more complex and varies between detailed sectors. Distribution services, however, exhibit gains from e-selling of around 4 per cent.

Age of firm

To assess whether the impact of IT varies within sectors we split our sector samples by the age of the firm. Firms are categorised as young and old in relation to their four digit

Table 3
IT capital and use by age of firm in manufacturing

	(1)	(2)	(3)	(4)	(5)	(6)
Dependent variable	\ln (VA/EM P)	In(VA/EMP)	In(VA/EMP)	\ln (VA/EMP)	\ln (VA/EMP)	\ln (VA/EMP)
Sample	Young firms	Young firms	Young firms	Old firms	Old firms	Old firms
Log of non-IT capital per employee	$\begin{aligned} & 0.192 * * * \\ & (0.022) \end{aligned}$	$\begin{aligned} & 0.183 * * * \\ & (0.053) \end{aligned}$	$\begin{aligned} & 0.207 * * * \\ & (0.052) \end{aligned}$	$\begin{aligned} & 0.263 * * * \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.339 * * * \\ & (0.043) \end{aligned}$	$\begin{aligned} & 0.329 * * * \\ & (0.043) \end{aligned}$
Log of employee	$\begin{aligned} & 0.006 \\ & (0.016) \end{aligned}$	$\begin{aligned} & 0.020 \\ & (0.048) \end{aligned}$	$\begin{aligned} & 0.018 \\ & (0.046) \end{aligned}$	$\begin{aligned} & 0.052 * * \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.056 \\ & (0.035) \end{aligned}$	$\begin{aligned} & 0.051 \\ & (0.034) \end{aligned}$
Log of hardware per employee	$\begin{aligned} & 0.063 * * * \\ & (0.012) \end{aligned}$	$\begin{aligned} & 0.002 \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.014 \\ & (0.030) \end{aligned}$	$\begin{aligned} & 0.047 * * * \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.067 * * * \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.062 * * * \\ & (0.020) \end{aligned}$
Log of software per employee	$\begin{aligned} & 0.045 * * * \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.050 * \\ & (0.029) \end{aligned}$	$\begin{aligned} & 0.049 * \\ & (0.029) \end{aligned}$	$\begin{aligned} & 0.032 * * \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.018 \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.016 \\ & (0.018) \end{aligned}$
Computer equipped labour share		$\begin{aligned} & 0.438 * * * \\ & (0.123) \end{aligned}$			$\begin{aligned} & 0.093 \\ & (0.084) \end{aligned}$	
Internet equipped labour share			$\begin{aligned} & 0.337 * * \\ & (0.139) \end{aligned}$			$\begin{aligned} & 0.259 * * \\ & (0.108) \end{aligned}$
Skills Proportion of people with a college degree in industry-region cell	$\begin{aligned} & 0.027 \\ & (0.234) \end{aligned}$	$\begin{gathered} -0.201 \\ (0.735) \end{gathered}$	$\begin{gathered} -0.332 \\ (0.732) \end{gathered}$	$\begin{gathered} -0.111 \\ (0.167) \end{gathered}$	$\begin{aligned} & 0.331 \\ & (0.334) \end{aligned}$	$\begin{aligned} & 0.469 \\ & (0.319) \end{aligned}$
Observations	2,026	526	526	3,160	791	791
R-squared	0.53	0.78	0.77	0.55	0.72	0.73

Robust standard errors in parentheses.

* significant at 10 per cent; ** significant at 5 per cent; *** significant at 1 per cent.

The dependent variable in all columns is the log of value added per employee (measured in $£^{\prime} 000 \mathrm{~s}$). Non-IT capital, IT capital and Telecom spend are all measured per employee in $£^{\prime} 000$ s and expressed in logs in the regression. The time period is 2000-2003. Standard errors in brackets under coefficients are clustered by establishment and robust to heteroskedasticity and serial autocorrelation. The age of a firm is determined by median age in its four digit sector. All variables are expressed in deviations from the 4 digit Industry mean in the same year. All regressions include age, region, ownership and group dummies. Young firms are differentiated from old firms by median age in 4 digit industry.

Table 4
IT capital and use by age of firm in services

	(1)	(2)	(3)	(4)	(5)	(6)
Dependent variable	In(VA/EM P)	In(VA/EM P)	In(VA/EMP)	In(VA/EMP)	In(VA/EM P)	In(VA/EMP)
Sample	Young firms	Young firms	Young firms	Old firms	Old firms	Old firms
Log of non-IT capital per employee	$\begin{aligned} & 0.302 * * * \\ & (0.016) \end{aligned}$	$\begin{aligned} & 0.342 * * * \\ & (0.035) \end{aligned}$	$\begin{aligned} & 0.337 * * * \\ & (0.035) \end{aligned}$	$\begin{aligned} & 0.253 * * * \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.216 * * * \\ & (0.030) \end{aligned}$	$\begin{aligned} & 0.209 * * * \\ & (0.030) \end{aligned}$
Log of employee	$\begin{aligned} & -0.026 * * * \\ & (0.010) \end{aligned}$	$\begin{aligned} & -0.063 * * * \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.061 * * * \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.032 * * * \\ & (0.009) \end{aligned}$	$\begin{aligned} & -0.038 * * \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.035^{*} \\ & (0.019) \end{aligned}$
Log of hardware per employee	$\begin{aligned} & 0.060 * * * \\ & (0.009) \end{aligned}$	$\begin{aligned} & 0.082 * * * \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.080 * * * \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.083 * * * \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.111 * * * \\ & (0.016) \end{aligned}$	$\begin{aligned} & 0.110 * * * \\ & (0.016) \end{aligned}$
Log of software per employee	$\begin{aligned} & 0.058 * * * \\ & (0.009) \end{aligned}$	$\begin{aligned} & 0.048 * * * \\ & (0.019) \end{aligned}$	$\begin{aligned} & 0.048 * * * \\ & (0.019) \end{aligned}$	$\begin{aligned} & 0.056 * * * \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.039 * * * \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.038 * * * \\ & (0.013) \end{aligned}$
Computer equipped labour share		$\begin{aligned} & 0.019 \\ & (0.084) \end{aligned}$			$\begin{aligned} & 0.020 \\ & (0.066) \end{aligned}$	
Internet equipped labour share			$\begin{aligned} & 0.168 * * \\ & (0.083) \end{aligned}$			$\begin{aligned} & 0.110 \\ & (0.067) \end{aligned}$
Skills Proportion of people with a college degree in industry-region cell	$\begin{aligned} & 0.367 \\ & (0.336) \end{aligned}$	$\begin{aligned} & 0.447 \\ & (0.709) \end{aligned}$	$\begin{aligned} & 0.421 \\ & (0.703) \end{aligned}$	$\begin{gathered} -0.196 \\ (0.237) \end{gathered}$	$\begin{array}{r} -0.138 \\ (0.434) \end{array}$	$\begin{gathered} -0.185 \\ (0.430) \end{gathered}$
Observations	3,588	960	960	4,552	1,271	1,271
R-squared	0.71	0.81	0.81	0.68	0.74	0.75

Robust standard errors in parentheses

* significant at 10 per cent; $* *$ significant at 5 per cent; $* * *$ significant at 1 per cent.

The dependent variable in all columns is the log of value added per employee (measured in $£^{\prime} 000 \mathrm{~s}$). Non-IT capital, IT capital and Telecom spend are all measured per employee in $£^{\prime} 000$ s and expressed in logs in the regression. The time period is 2000-2003. Standard errors in brackets under coefficients are clustered by establishment and robust to heteroskedasticity and serial autocorrelation. The age of a firm is determined by median age in its four digit sector. All variables are expressed in deviations from the 4 digit Industry mean in the same year. All regressions include age, region, ownership and group dummies. Young firms are differentiated from old firms by median age in 4 digit industry.
industry median age. This specific categorisation allows the cohort of middle-aged firms to transition from young, at the beginning of our sample period, to old in later years. Results for manufacturing and services are presented in Tables 3 and 4.

For young manufacturing firms the total impact of IT investment, that is hardware and software capital, is as high as 12 per cent, significantly higher than the 8 per cent for older firms. In young firms the productivity effects of equipping employees with computers are more statistically significant (and bigger in terms of impact) than productivity effects associated with the level of IT investment. For each 10 per cent of the workforce, computer-enabled young firms see a return of 4.4 per cent. This mirrors the findings on IT investment but also suggests that employee use of ICT is a particularly valuable metric for younger firms entering manufacturing sectors.

The losses in value-added associated with e-selling in manufacturing are primarily driven by losses incurred by younger firms. Although older firms do not seem to show any gains from e-selling they do not experience significant losses either. E-procurement is just as beneficial for older firms as for the young and accounts for up to 5 per cent of the productivity difference between firms that trade electronically and those that do not.

In services, benefits from IT investment take longer to manifest as explained by the higher coefficient on hardware for older firms, however, em ployee access to the Internet is strongly significant for young firms. It is also in e-selling where older firms show an advantage and see gains of nearly 4 per cent. Similar dynamics are apparent in retailing where again the positive gains from e-selling, which areas high as 6 per cent, accrue primarily to older established firms.

The age effects of IT may reflect different competitive dynamics in manufacturing and services. M anufacturing firms are morelikely to use IT to optimise value chains and operations, which can change quickly and require a certain degree of flexibility. Younger firms are generally more flexible, which facilitates adoption and implementation of newer technologies ${ }^{8}$, allowing them to experiment more. Benefits from access to wider supply sources and reduced search costs which e-procurement brings are also larger for younger firms. The case for flexibility is strong in manufacturing; however, we also see a degree of learning. The impact of e-selling which is strong for young manufacturing firms but is not visiblefor older businesses suggest that this negative effect disappears as firms undertaking e-selling overcome initial set up costs, gain scale and learn how to operatethe process more effectively.

In services, productivity gains stem from learning rather than flexibility. Thegainsfrom IT investment accrue to older firms that learn to use the technology to simplify the information needs associated with dealing with large numbers of end users. The key to services lies in building up client knowledge bases and customer relations, and once initial set up costs are overcome, gains are likely to come from channeling improved supply chain models and inventory management, especially in distribution services. This is reflected in a larger coefficient on
hardware capital for older firms compared to younger firms, but is more pronounced when we look at e-commerce, with the gains from e-selling primarily accruing to older firms.

In young service firms Internet-equipped labour share raises productivity by 1.7 per cent for each 10 per cent enabled and it does so without affecting the relationship between IT investment and productivity. A similar effect for computers is absent. This shows that the skills, communication links and organisation measured by use of the Internet have a specific and identifiable role for young service firms.

Conclusion

We bring together three different measures of IT use, and for the first time, explicitly model the effects of communications. Using our panel and Least Squares estimation techniques, we assess the relationship between these interdependent measures and their impact on productivity in the UK economy for years 2000 to 2004. The study looks at differences across sectors and within sectors by analysing the age of thefirm.

Our results show differences in impact of IT investment across sectors, with the strongest gains in the services industry. In manufacturing, we find that younger firms are able to get more out of their IT investment than older firms. In young manufacturing firms, enabling employees with computers and Internet is a more significant driver of productivity than investment on its own.

In contrast, we find a degree of learning involved in the servicesector whereIT capital and networks are primarily used to build up client and service provision knowledge bases. This is strongly manifest in thee-commerce results for distribution services: established firms see positive gains in value added from e-selling.

For the first time we look at spending on telecommunication services as a possible driver of productivity and find a strong relationship between the two. We also find a strong association between IT investment and CT spend, with increased spending on the latter compounding the effects of IT investment.

Future work will involve improving our measure of communication infrastructure and looking at the adoption, usage and impact of broadband technologies. We also plan to build and implement improved measures of skills to look at complementarities between skills and ICT investment and use and resolve endogeneity concerns.

Notes

1. Atrostic and N guyen $(2002,2004)$ incorporate a dummy computer network and business processes into standard production function approach and find positive impacts on productivity.
2. See long version for descriptive statistics and regression results for distribution (wholesale and retail) services IT use by firms and employees: Productivity evidence across industries, avail able at www.statistics.gov.uk/cci/article.asp?| $=1233$
3. Available in long version.
4. Lowercase denotes the logarithmic transformation, that is, $\ln (X)=x$
5. Griliches and M airesse (1997) present a general discussion of this problem with production functions and see Brynjolfsson and Hitt (1995, 1996, 2003) for an argument that is particularly relevant to ICTs.
6. See the accompanying Economic Trends article R Sadun, 'The role of IT in Firm Productivity' for other elasticity estimation techniques and results.
7. ONS Supply-Use Table 2002.
8. See Christensen and Rosenbloom (1995) for a detailed exposition.

References

Atrostic B K and N guyen S (2002) Computer Networks and US M anufacturing plant level productivity: New evidence from CNUS data. Centre for Economic Studies W orking Paper 02-01. U.S. Bureau of the Census: Washington D.C.

Atrostic B K and Nguyen S (2004) How businesses use information technology: Insights for measuring capital and productivity. Centre for Economic Studies. U.S. Bureau of the Census: Washington D.C., mimeograph.

Bloom N, Sadun R and Van Reenen J (2005) ICT and productivity: Evidence from a panel of UK establishments. Centre for Economic PerformanceWorking Paper, London School of Economics..

Brynjolfsson E and Hitt L (1995) Information Technology as a Factor of Production: The role of differences among firms. Economics of Innovation and New Technology.

Brynjolfsson E and Hitt L (1996) Paradox Lost? Firm level Evidence on the Returns to Information Systems Spending. M anagement Science.

Brynjolfsson E and Hitt L (2000) Beyond Computation: Information Technology, Organisational Transformation and Business Performance. Journal of Economic Perspectives 14(4), pp 23-48.

Brynjolfsson E and Hitt L (2003) Computing Productivity: Firm level evidence. M IT Sloan Working Paper 4210-01, M IT Sloan School of Management, available online at http://ebusiness.mit.edu/ research/papers.html.

Christensen C M and Rosenbloom R S (1995) Explaining the attackers advantage: technological paradigms, organisational dynamics, and the value network. Research Policy 24, pp 233-257.

Clayton T and Criscuolo C (2002) Electronic Commerce and Business Change. Economic Trends No. 583, pp 62-69. Available at www.statistics.gov.uk/CCI/article.asp?! $=1398$

Clayton T, Criscuolo C and Goodridge P (2003) E-commerce and firm performance: An assessment using multiple survey sources and linked data. EC Working Papers and Studies, Report to the European Commission (DG Eurostat and DG Enterprise).

Clayton T and Goodridge P (2004) E-business and labour productivity in manufacturing and services. Economic Trends No. 609, pp 47-53. Avail able at www.statistics.gov.uk/CCI/ article.asp?! $=945$

Criscuolo C and Waldron K (2003) E-commerce and firm productivity. Economic Trends No. 600, pp 52-57. Available at www.statistics.gov.uk/CCI/article.asp?! $=597$

Farooqui S (2005) IT use by firms and employees: Productivity evidence across industries. Avail able at www.statistics.gov.uk/CCI/ article.asp? D $=1233$

Griliches Z and M airesseJ (1995) Production Functions: The Search for Identification. NBER Working Paper Series available at www.nber.org/papers/W 5067
KnightJ and Pollard M (2004) 2003 e commerce survey of business: Information and Communication Technologies (ICT) adoption and usage. ONS, avail able at www.statistics.gov.uk
Lehr B and Lichtenberg F (1999) Information Technology and its Impact on Productivity: Firm Level Evidence from Government and Private Data Sources, 1977-1993. Canadian Journal of Economics 32(2) pp 323-39.

Maliranta M and Rouvinen P (2004) ICT and Business Productivity: Finnish M icro-level Evidence. Office for Economic Co-operation and Development publication: The Economic Impact of ICT: M easurement, Evidence and Implications.
M otohashi K (2001) Economic Analysis of Information network use: Organisational and productivity impacts on Japanese firms. Research and Statistics Department M ETI:Tokyo, Japan, mimeograph.

M otohashi K (2003) Firm level analysis of information network use and productivity in Japan. RIETI Discussion Paper Series 03-E-021, Institute of Innovation Research, RIETI.

Office for National Statistics Annual Business Inquiry, 2000-2002.
Office for National Statistics E-commerce Survey, 2000-2002.
Office for National Statistics Business Data Laboratory. Linking ONS surveys: A practical guide.
Rowlatt A (2001) M easuring E-commerce: Developments in the United Kingdom. Economic Trends No. 575, pp 30-36. Available at www.statistics.gov.uk/CCI/article.asp?! $=101$

Williams M (2001) E-commerce Inquiry to Business 2000. Economic Trends No. 572, pp 29-36. Available at www.statistics.gov.uk/CCI/ article.asp? $1 \mathrm{D}=99$

1. Summary
1.1 Selected monthly indicators 77
2. UK Economic Accounts
2.1 National accounts aggregates 78
2.2 Gross domestic product: by category of expenditure 80
2.3 Gross domestic product and shares of income and expenditure 82
2.4 Income, product and spending per head 82
2.5 Households' disposable income and consumption 84
2.6 Households' final consumption expenditure, chained volume measures 84
2.7 Gross fixed capital formation 86
2.8 Gross value added, chained volume indices at basic prices, by category of output 88
2.9 Gross value added chained volume indices at basic prices, by category of output service industries 90
2.10 Summary capital accounts and net lending/net borrowing 92
2.11 Private non-financial corporations: allocation of primary income account 94
2.12 Private non-financial corporations: secondary distribution of income account and capital account 96
2.13 Balance of payments: current account 98
2.14 Trade in goods (on a balance of payments basis) 101
2.15 Measures of UK competitiveness in trade in manufactures 102
3. Prices
3.1 Prices 104
4. Labour market
4.1 Labour market activity: seasonally adjusted 106
4.2 Labour market activity: not seasonally adjusted 108
4.3 Labour market activity by age: seasonally adjusted 112
4.4 Jobs and claimant count 114
4.5 Regional claimant count rates 116
4.5A Unemployment rates 118
4.6 Average earnings (including bonuses) 120
4.7 Productivity and unit wage costs 122
5. Selected output and demand indicators
5.1 Output of production industries 124
5.2 Engineering and construction: output and orders 126
5.3 Motor vehicle and steel production 128
5.4 Indicators of fixed investment in dwellings 130
5.5 Number of property transactions 132
5.6 Change in inventories: chained volume measures 134
5.7 Inventory ratios 134
5.8 Retail sales, new registrations of cars and credit business (Great Britain) 136
5.9 Inland energy consumption: primary fuel input basis 138
6. Selected financial statistics
6.1 Sterling exchange rates and UK reserves 140
6.2 Monetary aggregates 142
6.3 Counterparts to changes in money stock M 4 144
6.4 Public sector receipts and expenditure 146
6.5 Public sector key fiscal indicators 146
6.6 Consumer credit and other household sector borrowing 148
6.7 Analysis of bank lending to UK residents, amounts outstanding 150
6.8 Interest rates and yields 152
6.9 A selection of asset prices 154
M easures of variability of selected economic series 155

Notes to tables

Identification codes

The four-letter identification code at the top of each data column is the ONS reference for this series of data on our database. Please quote the relevant code if you contact us requiring any further information about the data.

Currency of data

All data in the tables and
accompanying charts are current, as far as possible, to 29 November 2005.

Some data, particularly for the latest time period, are provisional and may be subject to revision in later editions.

Geographic coverage

Statistics relate mainly to the United Kingdom. Where figures are for Great Britain only, this is shown on the table.

Seasonal adjustments

Almost all quarterly data are seaonally adjusted; those not seasonally adjusted are indicated by the abbreviation NSA.

Money

There is no single correct definition of money. The most widely used measures are:

MO

This is the narrowest measure and consists of notes and coins in circulation outside the Bank of England and bankers' operational deposits at the Bank.

M4

This comprises notes and coin in circulation with the public, together with all sterling deposits (including certificates of deposit) held with UK banks and building societies by the rest of the private sector.

The Bank of England also publish data for liquid assets outside M4.

Conventions

Rounding may lead to inconsistencies between the constituent parts and the total in some tables.

A horizontal line between two consecutive figures indicates that the figures above and below the line have been compiled on different bases and are not strictly comparable. Footnotes explain the differences.

Billion denotes one thousand million.

Symbols used

.. not available

- nil or less than half the final digit shown
+ a series for which measures of variability are given on page 155
\dagger data have been revised since the last edition; the period marked is the earliest in the table to have been revised
* average (or total) of five weeks

National Statistics Online

www.statistics.gov.uk

Users can download time series, crosssectional data and metadata from across the Government Statistical Service (GSS), using the site search and index functions from the homepage. Many datasets can be downloaded, in whole or in part, and directory information for all GSS statistical resources can be consulted, including censuses, surveys, journals and enquiry services. Information is posted as PDF electronic documents, or in XLS and CSV formats, compatible with most spreadsheet packages.

Time Series Data

The time series data facility on the website provide access to around 40,000 time series, of primarily macroeconomic data, drawn from the main tables in our major economic and labour market publications. Users can download complete releases or view and download customised selections of individual time series.

Complete copies of Economic Trends can be downloaded from the following webpage:
http://w ww.statistics.gov.uk/statbase/ product.asp?vink=308

1.1
 Selected monthly indicators

		2003	2004	$\begin{array}{r} 2005 \\ \text { Q1 } \end{array}$	$\begin{array}{r} 2005 \\ \text { Q2 } \end{array}$	$\begin{array}{r} 2005 \\ \text { Q3 } \end{array}$	$\begin{array}{r} 2005 \\ \text { Aug } \end{array}$	$\begin{array}{r} 2005 \\ \text { Sep } \end{array}$	$\begin{array}{r} 2005 \\ \text { Oct } \end{array}$	\%Change Latest 3 months average previous 3 months
Output -chained volume measures (CVM) (2002 = 100 unless otherwise stated)										
Gross value added at basic prices	CGCE	102.5	105.6	106.5	107.0	107.4	0.4
Industrial production	CKYw	99.5	100.3	99.2	99.2	98.6	98.2	98.6		-0.6
Oil and gas extraction	CKZO	94.4	86.3	81.3	81.6	74.7	70.9	76.2	.	-8.4
Manufacturing	CKYY	100.1	102.0	101.5	101.3	101.6	101.7	101.4	.	0.4
Construction	GDQB	105.2	108.7	109.9	110.6	111.2				0.5
Car production (thousands)	FFAO	138.1	137.2	138.4	131.7	138.8	146.0	135.7	126.2	4.6
Domestic demand										
Retail sales volume (2000 = 100)	EAPS	116.6	123.6	124.9	125.6	126.2	126.0	126.8	127.0	0.7
GB new registrations of cars (000s) ${ }^{1}$	BCGT	2646.2	2598.8	697.9	594.4	677.1	84.2	417.6		13.9
Manufacturing:change in inventories (£m,CVM, reference year 2002)	DHBM	-727	-827	409	-527	6	
Prices (12 monthly \% change) and earnings (3 month average)										
Consumer prices index ${ }^{1}$	CJYR	1.4	1.3	1.7	1.9	2.4	2.4	2.5	2.3	
Retail prices index ${ }^{1}$	CZBH	2.9	3.0	3.2	3.0	2.8	2.8	2.7	2.5	
Retail prices index ${ }^{1}$ (less MIPS) ${ }^{2}$	CDKQ	2.8	2.2	2.2	2.2	2.4	2.3	2.5	2.4	
Producer output prices (less FBTP) ${ }^{3}$	EUAA	1.3	1.9	2.5	2.4	2.1	1.9	2.1	1.2	
Producer input prices ${ }^{4}$	EUAB	1.4	4.0	10.6	9.9	12.4	12.9	10.1	7.5	
GB average earnings -whole economy ${ }^{5}$	LNNC	4.5	4.1	4.1	4.2	4.1	..	
Foreign trade ${ }^{6}$ (2002 $=100$ volumes unless otherwise stated)										
UK balance on trade in goods ($£$ million)	BOKI	-47864	-60260	-15735	-14590	-16707	-5900	-5441	.	
Non EU balance on trade in goods ($£$ million)	LGDT	-22036	-29523	-7983	-6295	-7953	-3105	-2293	.	
Non EU exports of goods (excl oil \& erratics)	SHDJ	108.7	113.2	114.9	133.4	132.7	132.7	142.0	.	-0.5
Non EU imports of goods (excl oil \& erratics)	SHED	105.1	116.5	117.8	121.3	120.9	122.4	122.9	..	-0.4
Non EU import \& price index (excl oil) ${ }_{7}^{7}$	LKWQ	96.8	94.7	95.9	97.2	99.0	98.6	98.2	..	
Non EU export \& price index (excl oil $)^{7}$	LKVx	97.7	96.3	97.1	97.6	98.3	98.1	97.9	.	
Labour market and productivity (2002 = 100 unless otherwise stated)										
UK claimant unemployment (thousands)	BCJD	933.3	853.6	820.9	853.8	870.0	867.3	878.0	890.1	2.0
UK employees in manufacturing (thousands)	YEJA	3415	3282	3222	3184	3163	3166	3163	..	-0.9
Whole economy productivity ${ }^{8}$	LNNN	101.6	103.9	104.2	104.5				..	0.3
Manufacturing productivity ${ }^{8}$	LNNX	105.1	111.2	112.6	113.6	115.3	115.3	115.2	..	1.4
Unit wage costs - whole economy	LNNK	101.7	103.4	106.0	106.1				.	0.1
Unit wage costs - manufacturing	LNNQ	98.5	96.5	97.7	96.8	97.1	97.0	97.6	.	0.2
Financial markets ${ }^{1}$										
Sterling ERI (1990=100)	AGBG	100.2	104.1	102.9	104.3	102.9	102.8	103.9	103.1	-0.3
Average exchange rate /US \$	AUSS	1.63	1.84	1.89	1.86	1.78	1.79	1.81	1.76	-1.1
Average exchange rate /Euro ${ }^{9}$	THAP	1.45	1.47	1.44	1.47	1.46	1.46	1.48	1.47	0.0
3 month inter-bank rate ${ }^{10}$	HSAJ	3.95	4.81	4.90	4.69	4.52	4.52	4.52	4.54	
3 month interest on US Treasury bills ${ }^{11}$	LUST	0.93	2.18	2.73	3.06	3.47	3.44	3.47	3.83	
Monetary conditions/government finances										
M0 (year on year percentage growth)	VQMX	7.3	6.0	5.5	4.3	5.4	6.1	5.4	5.2	
M4 (year on year percentage growth)	vQJw	7.2	8.6	10.6	10.6	11.4	10.0	11.3	11.6	
Public sector net borrowing ($£$ million) ${ }^{1,12}$	ANNX	-34741	-38833	-932	-15441	-7626	-5763	-5770	2183	
Net lending to consumers (£ million)(broader)	RLMH	20253	22992	5918	4409	3460	1301	1211	1273	-10.8

		$\begin{array}{r} 2004 \\ \text { Oct } \end{array}$	$\begin{array}{r} 2004 \\ \text { Nov } \end{array}$	$\begin{array}{r} 2004 \\ \text { Dec } \end{array}$	$\begin{array}{r} 2005 \\ \text { Jan } \end{array}$	$\begin{array}{r} 2005 \\ \text { Feb } \end{array}$	$\begin{gathered} 2005 \\ \text { Mar } \end{gathered}$	$\begin{array}{r} 2005 \\ \mathrm{Apr} \\ \hline \end{array}$	$\begin{array}{r} 2005 \\ \text { May } \\ \hline \end{array}$	$\begin{array}{r} 2005 \\ \text { Jun } \end{array}$	$\begin{array}{r} 2005 \\ \text { Jul } \\ \hline \end{array}$	$\begin{array}{r} 2005 \\ \text { Aug } \\ \hline \end{array}$	$\begin{array}{r} 2005 \\ \text { Sep } \\ \hline \end{array}$	$\begin{array}{r} 2005 \\ \text { Oct } \end{array}$	$\begin{array}{r} 2005 \\ \text { Nov } \\ \hline \end{array}$
Activity and expectations															
CBI output expectations balance ${ }^{1}$	ETCU	14	5	-6	10	19	9	5	-1	-5	6	3	6	2	-4
CBI optimism balance ${ }^{1}$	ETBV	-10	..		-22			-15			-16			-21	
CBI price expectations balance	ETDQ	-2	12	9	15	10	11	3	-4	-5	-9	-8	-6	-4	-1
New engineering orders (2000 = 100)	JIQH	75.3	79.5	82.0	79.4	78.4	76.8	77.5	80.2	77.5	79.4	87.0	76.6	.	.

9 Prior to January 1999, a synthetic Euro has been calculated by geometrically averaging the bilateral exchange rate of the 11 Euro-area countries using "internal weights" based on each country's share of the extra Euro-area trade
0 Last Friday of the period
11 Last working day
12 Annual figures are for the financial years 2003/04 and 2004/05.

2.1 National accounts aggregates

	£ million		Indices (2002 = 100)						
	At current prices		Value indices at current prices		Chained volume indices			Implied deflators ${ }^{2}$	
	Gross domestic product at market prices	Gross value added (GVA)at basic prices	Gross domestic product at market prices ${ }^{1}$	Gross Value added (GVA) at basic prices	Gross national disposable income at market prices	Gross domestic product at market prices	Gross value added (GVA) at basic prices+	GDP at market prices	GVA at basic prices
Annual									
	YBHA	ABML	YBEU	YBEX	YBFP	YBEZ	CGCE	YBGB	CGBV
2000	953576	841505	91.0	90.4	93.5	95.9	96.4	94.8	93.8
2001	996758	883412	95.1	94.9	96.4	98.0	98.3	97.0	96.5
2002	1048456	930796	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2003	1105919	981732	105.5	105.5	102.6	102.5	102.5	102.9	102.9
2004	1163942	1032803	111.0	111.0	105.9	105.8	105.6	105.0	105.1
Quarterly									
2000 Q1	234970	207333	89.6	89.1	92.9	95.0	95.4	94.3	93.4
Q2	236346	208163	90.2	89.5	93.1	95.6	96.1	94.3	93.1
Q3	239522	211428	91.4	90.9	94.4	96.3	96.9	94.9	93.7
Q4	242738	214581	92.6	92.2	93.6	96.7	97.3	95.7	94.8
2001 Q1	245674	217424	93.7	93.4	95.6	97.5	97.9	96.2	95.4
Q2	248157	219709	94.7	94.4	96.0	97.8	98.2	96.8	96.1
Q3	249239	221127	95.1	95.0	96.9	98.2	98.4	96.9	96.5
Q4	253688	225152	96.8	96.8	97.2	98.7	98.8	98.1	97.9
2002 Q1	257004	227916	98.1	97.9	98.7	99.2	99.3	98.9	98.7
Q2	261090	232002	99.6	99.7	99.2	99.7	99.7	99.9	100.0
Q3	264065	234484	100.7	100.8	101.0	100.4	100.3	100.4	100.4
Q4	266297	236394	101.6	101.6	101.1	100.7	100.7	100.9	100.9
2003 Q1	270583	240537	103.2	103.4	102.3	101.4	101.4	101.8	102.0
Q2	274053	243452	104.6	104.6	101.6	101.9	101.8	102.6	102.7
Q3	278966	247512	106.4	106.4	102.8	102.9	102.9	103.4	103.4
Q4	282317	250231	107.7	107.5	103.9	103.9	103.9	103.7	103.5
2004 Q1	285940	253219	109.1	108.8	104.8	104.9	104.9	104.0	103.8
Q2	289204	256646	110.3	110.3	105.9	105.7	105.5	104.4	104.5
Q3	292359	259437	111.5	111.5	105.1	106.0	105.8	105.3	105.4
Q4	296439	263501	113.1	113.2	107.7	106.5	106.2	106.2	106.6
2005 Q1	298163	264857	113.8	113.8	106.6	106.8	106.5	106.6	106.9
Q2	301336	267483	115.0	114.9	108.0	107.3	107.0	107.2	107.4
Q3	304194	269358	116.1	115.8	..	107.7	107.4	107.7	107.7

Percentage change, quarter on corresponding quarter of previous year ${ }^{3}$

Quarterly									
2000 Q1	6.1	5.7	6.1	5.7	5.2	4.3	4.2	1.6	1.4
Q2	5.2	4.8	5.2	4.8	4.3	4.5	4.4	0.7	0.4
Q3	5.1	5.2	5.1	5.2	4.8	4.1	4.3	1.0	0.9
Q4	4.9	5.3	4.9	5.3	2.4	3.2	3.4	1.5	1.9
2001 Q1	4.6	4.9	4.6	4.9	2.9	2.6	2.6	2.0	2.1
Q2	5.0	5.5	5.0	5.5	3.1	2.3	2.2	2.7	3.2
Q3	4.1	4.6	4.1	4.6	2.6	2.0	1.5	2.1	3.0
Q4	4.5	4.9	4.5	4.9	3.8	2.1	1.6	2.5	3.3
2002 Q1	4.6	4.8	4.6	4.8	3.2	1.7	1.4	2.8	3.5
Q2	5.2	5.6	5.2	5.6	3.3	1.9	1.5	3.2	4.1
Q3	5.9	6.0	5.9	6.0	4.2	2.2	1.9	3.6	4.0
Q4	5.0	5.0	5.0	5.0	4.0	2.0	1.9	2.9	3.1
2003 Q1	5.3	5.5	5.3	5.5	3.6	2.2	2.1	2.9	3.3
Q2	5.0	4.9	5.0	4.9	2.4	2.2	2.2	2.7	2.7
Q3	5.6	5.6	5.6	5.6	1.8	2.5	2.5	3.0	3.0
Q4	6.0	5.9	6.0	5.9	2.8	3.2	3.1	2.8	2.6
2004 Q1	5.7	5.3	5.7	5.3	2.4	3.5	3.4	2.2	1.8
Q2	5.5	5.4	5.5	5.4	4.2	3.7	3.6	1.8	1.8
Q3	4.8	4.8	4.8	4.8	2.2	3.0	2.9	1.8	1.9
Q4	5.0	5.3	5.0	5.3	3.7	2.5	2.3	2.4	3.0
2005 Q1	4.3	4.6	4.3	4.6	1.7	1.8	1.6	2.5	3.0
Q2	4.2	4.2	4.2	4.2	2.0	1.5	1.4	2.7	2.8
Q3	4.0	3.8	4.0	3.8	..	1.6	1.6	2.3	2.2

1 "Money GDP." 3 These estimates of change are based in some cases on less rounded figures
2 Based on chained volume measures and current price estimates of expendi- than in the table. ture components of GDP

Source: Office for National Statistics; Enquiries 02075336031

2.2
 Gross domestic product : by category of expenditure
 Chained volume measures

	Domestic expenditure on goods and services at market prices								Gross final expenditure	less Imports of goods and services+	Statistical discrepancy (expenditure)	Gross domestic product at market prices
	Final consumption expenditure			Gross capital formation								
	Households	Nonprofit institutions ${ }^{2}$	General government	Gross fixed capital formation+	Changes in inventories ${ }^{3}$	Acquisitions less disposals of valuables	Total	Exports of goods and services+				
Annual												
	ABJR	HAYO	NMRY	NPQT	CAFU	NPJR	YBIM	IKBK	ABMG	IKBL	GIXS	ABMI
2000	625145	25270	198616	163709	5267	3	1017985	266536	1284619	279807	-	1005542
2001	644895	25247	201996	167563	6196	373	1046424	274274	1320810	293213	-	1027905
2002	667361	25998	210967	172558	2909	214	1080007	274945	1354952	306496	-	1048456
2003	684841	26229	220449	172573	4602	-6	1108689	278159	1386848	311990	-	1074858
2004	710243	26781	226159	181043	5148	-11	1149364	289007	1438371	330436	955	1108890
Quarterly												
2000 Q1	155841	6151	49110	40052	481	2	251678	64146	315800	67027	-	249056
Q2	155859	6272	49985	40010	1171	-1	253197	66418	319644	69313	-	250537
Q3	156783	6392	49956	41109	1789	-3	256003	66960	322977	70725	-	252424
Q4	156662	6455	49565	42538	1826	5	257107	69012	326198	72742	-	253525
2001 Q1	159089	6402	50036	42007	1040	-18	258590	70148	328833	73449	-	255459
Q2	160258	6323	49827	42160	1375	210	260275	69408	329749	73368	-	256450
Q3	162141	6280	50701	42249	1662	38	263114	67325	330410	73187	-	257301
Q4	163407	6242	51432	41147	2119	143	264445	67393	331818	73209	-	258695
2002 Q1	165301	6321	52654	41651	1177	74	267140	67640	334760	74838	-	259971
Q2	166424	6425	52249	42936	394	56	268495	70380	338897	77479	-	261381
Q3	167273	6587	52864	43562	480	70	270855	69894	340768	77678	-	263060
Q4	168363	6665	53200	44409	858	14	273517	67031	340527	76501	-	264044
2003 Q1	169079	6558	53929	43232	103	-	272901	71403	344304	78620	-	265684
Q2	171108	6554	54618	42843	-387	102	274837	68719	343556	76406	-	267150
Q3	171946	6564	55464	42459	2339	-60	278712	68495	347207	77429	-	269778
Q4	172708	6553	56438	44039	2547	-48	282239	69542	351781	79535	-	272246
2004 Q1	174946	6668	56469	44374	1151	117	283724	71097	354821	79953	186	275054
Q2	177551	6669	56444	45286	1177	-81	287046	71903	358948	82186	231	276993
Q3	178311	6703	56551	45520	1294	-86	288293	72592	360885	83393	262	277754
Q4	179435	6741	56695	45863	1526	39	290301	73415	363717	84904	276	279089
2005 Q1	179633	6810	56998	45843	1772	-142	290914	72910	363824	84250	241	279815
Q2	180272	6843	57283	46287	-54	95	290726	76082	366808	85855	242	281195
Q3	181107	6906	57455	46773	1058	-182	293117	76641	369758	87660	243	282340^{\dagger}

Percentage change, latest quarter on corresponding quarter of previous year

2000 Q1	5.8	6.1	3.5	1.7	3.8	10.2	5.1	8.0	4.3
Q2	4.8	8.9	3.9	3.6	4.6	10.7	5.8	10.8	4.4
Q3	4.5	10.1	3.9	3.1	4.6	7.0	5.1	8.6	4.2
Q4	2.6	9.4	3.3	5.7	3.3	8.8	4.5	8.8	3.2
2001 Q1	2.1	4.1	1.9	4.9	2.7	9.4	4.1	9.6	2.6
Q2	2.8	0.8	-0.3	5.4	2.8	4.5	3.2	5.9	2.4
Q3	3.4	-1.8	1.5	2.8	2.8	0.5	2.3	3.5	1.9
Q4	4.3	-3.3	3.8	-3.3	2.9	-2.3	1.7	0.6	2.0
2002 Q1	3.9	-1.3	5.2	-0.8	3.3	-3.6	1.8	1.9	1.8
Q2	3.8	1.6	4.9	1.8	3.2	1.4	2.8	5.6	1.9
Q3	3.2	4.9	4.3	3.1	2.9	3.8	3.1	6.1	2.2
Q4	3.0	6.8	3.4	7.9	3.4	-0.5	2.6	4.5	2.1
2003 Q1	2.3	3.7	2.4	3.8	2.2	5.6	2.9	5.1	2.2
Q2	2.8	2.0	4.5	-0.2	2.4	-2.4	1.4	-1.4	2.2
Q3	2.8	-0.3	4.9	-2.5	2.9	-2.0	1.9	-0.3	2.6
Q4	2.6	-1.7	6.1	-0.8	3.2	3.7	3.3	4.0	3.1
2004 Q1	3.5	1.7	4.7	2.6	4.0	-0.4	3.1	1.7	3.5
Q2	3.8	1.8	3.3	5.7	4.4	4.6	4.5	7.6	3.7
Q3	3.7	2.1	2.0	7.2	3.4	6.0	3.9	7.7	3.0
Q4	3.9	2.9	0.5	4.1	2.9	5.6	3.4	6.8	2.5
2005 Q1	2.7	2.1	0.9	3.3	2.5	2.6	2.5	5.4	1.7
Q2	1.5	2.6	1.5	2.2	1.3	5.8	2.2	4.5	1.5
Q3	1.6	3.0	1.6	2.8	1.7	5.6	2.5	5.1	1.7

1 Estimates given to nearest million but cannot be regarded as accurate to the 3 Quarterly alignment adjustment included in this series.
degree.
2 Non-profit making institutions serving households(NPISH).
Source: Office for National Statistics; Enquiries 02075336031

2.3

Gross domestic product and shares of income and expenditure

	Gross domestic product at market prices (£ million)	Gross final expenditure (£ million)	Percentage share of gross final expenditure				Percentage share of GDP by category of income				
			Final consumption expenditure		Gross capital formation	Exports of goods and services	Gross operating surplus		Compensation of employees	Mixed income	Taxes on production and imports
			Household and NPISH	General govern -ment			Corporations ${ }^{1}$	Other ${ }^{2}$			
Annual											
	YBHA	ABMF	IHXI	IHXJ	IHXK	IHXL	IHXM	IHXO	IHXP	IHXQ	IHXR
2002	1048456	1354952	51.2	15.6	13.0	20.3	21.7	3.0	56.1	6.3	12.9
2003	1105919	1419132	51.1	16.3	12.7	19.9	22.2	2.9	55.8	6.3	12.8
2004	1163942	1493073	51.0	16.5	13.1	19.5	22.5	2.8	55.7	6.3	12.8
Quarterly											
2002 Q1	257004	332338	51.4	15.4	12.8	20.4	21.8	2.8	56.0	6.3	13.0
Q2	261090	339079	50.9	15.4	12.8	20.9	21.2	3.7	56.1	6.3	12.8
Q3	264065	341177	51.0	15.6	13.0	20.4	21.9	2.8	56.1	6.3	12.8
Q4	266297	342358	51.4	15.8	13.3	19.4	21.8	2.7	56.3	6.3	12.8
2003 Q1	270583	349262	51.0	16.0	12.3	20.7	22.6	2.4	56.0	6.3	12.7
Q2	274053	350763	51.4	16.3	12.3	19.9	21.9	3.2	55.8	6.3	12.7
Q3	278966	356950	51.1	16.4	12.9	19.6	22.3	2.7	55.9	6.3	12.8
Q4	282317	362157	50.8	16.6	13.2	19.4	21.9	3.3	55.7	6.3	12.9
2004 Q1	285940	364578	51.3	16.5	12.8	19.4	22.0	2.9	55.9	6.3	12.9
Q2	289204	370638	51.2	16.3	13.1	19.4	22.9	2.5	55.6	6.3	12.8
Q3	292359	375781	50.9	16.5	13.2	19.5	22.4	3.0	55.6	6.3	12.8
Q4	296439	382076	50.6	16.6	13.1	19.7	22.8	2.6	55.8	6.2	12.6
2005 Q1	298163	383782	50.8	16.7	13.1	19.5	22.2	2.7	56.4	6.3	12.5
Q2	301336	388700	50.6	16.6	12.8	20.0	22.4	2.7	56.2	6.3	12.5
Q3	304194	394608

1 Non-financial and financial corporations.
2 Gross operating surplus of General government, and Households and
NPISH plus the adjustment for financial services.

2.4 Income, product and spending per head

	At current prices				Chained volume measures (reference year 2002)		
	Gross national income at market prices	Gross domestic product at market prices	Household and NPISH final consumption expenditure	Households' gross disposable income	Gross domestic product at market prices	Household and NPISH final consumption expenditure	Real households' disposable income
Annual							
	IHXS	IHXT	IHXU	IHXV	IHXW	IHXX	IHXZ
2002	18041	17674	11687	11971	17675	11688	11971
2003	18945	18570	12174	12500	18049	11940	12258
2004	19965	19537	12778	12928	18613	12371	12517
Quarterly							
2002 Q1	4409	4338	2886	2945	4389	2897	2956
Q2	4468	4404	2911	2994	4409	2915	2999
Q3	4564	4450	2929	3006	4433	2930	3006
Q4	4600	4482	2961	3026	4444	2946	3010
	4680	4549	2992	3061	4466	2953	3021
Q2	4678	4603	3030	3135	4487	2984	3087
Q3	4755	4682	3064	3130	4528	2996	3060
Q4	4832	4736	3088	3174	4568	3007	3090
2004 Q1	4894	4797	3136	3182	4615	3047	3092
Q2	4962	4853	3183	3220	4648	3091	3127
Q3	4976	4908	3210	3258	4663	3106	3152
Q4	5133	4979	3249	3268	4687	3127	3146
2005 Q1	5119	5003	3269	3296	4695	3129	3155
Q2	5208	5056	3297	3349	4718	3140	3189

Shares of income and expenditure
Gross final expenditure

General government
consumption

Gross capital
formation

	£ million, current prices							£ million, chained volume measures, reference year 2002		
	Hous befo	holds' me tax		Adjustment for the						Real
	Total	of which: Wages and salaries	households' disposable income ${ }^{2}$	equity of households in pension funds	Households' Total resources	final consumption expenditure	Households' saving ratio ${ }^{3}$ (percentage)+	households' disposable income ${ }^{4}$	final consumption expenditure+	disposable income (index 2002=100)
Annual										
	RPHP	ROYJ	RPHQ	RPQJ	RPQK	RPQM	NRJS	NRJR	NPSP	OSXS
2002	1015614	509546	710144	17906	728050	693359	4.8	710144	693359	100.0
2003	1067190	526949	744395	21586	765981	725012	5.3	730080	711070	102.8
2004	1116000	550878	770231	25692	795923	761223	4.4	745746	737024	105.0
Quarterly										
$\begin{array}{r} 2002 \text { Q1 } \\ \text { Q2 } \\ \text { Q4 } \end{array}$	249009	125136	174431	4005	178436	170968	4.2	175100	171624	98.6
	253005	126891	177530	4289	181819	172601	5.1	177785	172849	100.1
	255632	128052	178374	4740	183114	173836	5.1	178397	173859	100.5
	257968	129467	179809	4872	184681	175954	4.7	178862	175027	100.7
2003 Q1Q2Q3Q4	260307	130003	182099	5196	187295	177952	5.0	179729	175637	101.2
	266376	131002	186656	4046	190702	180420	5.4	183802	177662	103.5
	268894	132597	186481	6211	192692	182562	5.3	182341	178510	102.7
	271613	133347	189159	6133	195292	184078	5.7	184208	179261	103.8
$\begin{array}{r} 2004 \text { Q1 } \\ \text { Q2 } \\ \text { Q3 } \\ \text { Q4 } \end{array}$	274256	135417	189675	6688	196363	186903	4.8	184306	181614	103.8
	276861	136716	191880	5821	197701	189683	4.1	186352	184220	105.0
	281373	138257	194075	6129	200204	191212	4.5	187782	185014	105.8
	283510	140488	194601	7054	201655	193425	4.1	187306	186176	105.5
$\begin{array}{r} 2005 \text { Q1 } \\ \text { Q2 } \\ \text { Q3 } \end{array}$	288018	142596	196427	7477	203904	194787	4.5	188013	186443	105.9
	293339	143480	199574	7263	206837	196510	5.0	190033	187115	107.0
	198577	..		188013	
1 All households series include also Non-Profit Institutions Serving Households (NPISH). 2 Total household income less payments of income tax and other taxes, social contributions and other current transfers. 3 Households saving as a percentage of Total resources; this is the sum						of Gross household disposable income and the Adjustment for the change in net equity of households in pension funds (D.8).				
						4 Gross household disposable income revalued by the implied Household and NPISH final consumption expenditure deflator $(2002=100)$.				
						Sources	Office for Natio Columns 2-5,7	nal Statistics; En 8,10 0207533	quiries Column 027; Columns 6,	$\begin{aligned} & 102075336005 ; 902075335999 \\ & , 9020 \end{aligned}$

2.6

Household final consumption expenditure ${ }^{1,2}$
Chained volume measures

Reference year 2002, £ million															
	UK National ${ }^{4}$														
	UK Domestic ${ }^{5}$														
	Total	Net tourism	Total	Food \& drink	Alcohol \& tobacco	Clothing \& footwear	Housing	Household goods \& services	Health	Transport	Communication	Recreation \& culture	Education	Restaurants \& hotels	Miscellaneous
COICOP 3	-	-	0	01	02	03	04	05	06	07	08	09	10	11	12
Annual															
	ABJR	ABTH	ZAKW	ZWUN	ZAKY	ZALA	ZAVO	ZAVW	ZAWC	ZAWM	ZAWW	ZAXA	ZWUT	ZAXS	ZAYG
2002	667361	10563	656798	61493	25966	39092	121238	40448	10778	99797	14675	81363	9381	76298	76269
2003	684841	10638	674203	61883	26364	41993	122325	42745	11292	102055	15464	87734	8870	76422	77056
2004	710243	11143	699100	63238	26604	45847	125238	45186	11788	103965	16356	95625	8831	78255	78167
Quarters															
		2759	162544	14965	6432	9705	30106	10010	2637	24670	3607	20274	2419	18913	18791
Q2	166424	2544	163881	15168	6494	9724	30278	9994	2684	24996	3668	20202	2374	19109	19194
Q3	167273	2628	164644	15480	6505	9838	30335	10160	2718	25176	3688	20226	2349	19161	19015
Q4	168363	2632	165729	15880	6535	9825	30519	10284	2739	24955	3712	20661	2239	19115	19269
2003 Q1	169079	2821	166258	15339	6538	10066	30405	10514	2767	25372	3746	21055	2222	18881	19353
Q2	171108	2745	168363	15881	6556	10412	30476	10803	2796	25633	3846	21592	2211	18927	19230
Q3	171946	2639	169307	15412	6627	10741	30567	10604	2834	25558	3924	22323	2216	19333	19168
Q4	172708	2433	170275	15251	6643	10774	30877	10824	2895	25492	3948	22764	2221	19281	19305
2004 Q1	174946	2776	172170	15909	6662	11019	31136	10906	2886	25654	4000	22991	2218	19540	19249
Q2	177551	2822	174729	15618	6671	11423	31314	11312	2958	25804	3987	24125	2211	19677	19629
Q3	178311	2874	175437	15725	6616	11591	31311	11570	2964	26073	4155	24165	2206	19494	19567
Q4	179435	2671	176764	15986	6655	11814	31477	11398	2980	26434	4214	24344	2196	19544	19722
$\begin{array}{r} 2005 \text { Q1 } \\ \text { Q2 } \\ \text { Q3 } \end{array}$	179633	2904	176729	15994	6663	11845	31410	11439	2962	26316	4341	24606	2188	19996	18969
	180272	2581	177691	16093	6670	11925	31798	11373	2951	26696	4353	24625	2169	19997	19041
	181107

[^6]

Gross fixed capital formation
Chained volume measures

	Analysis by sector						Analysis by asset				
			Public corporations ${ }^{2}$	Priv	ate sector						
	Business investment ${ }^{1}$	General government	Transfer costs of non-produced assets	Dwellings	Transfer costs of non-produced assets	Total+	Transport equipment	Other machinery and equipment	Dwellings	Other building and structures ${ }^{3}$	Intangible fixed assets
Annual											
	NPEL	DLWF	DLWH	DFEA	DLWI	NPQT	DLWL	DLWO	DFEG	DLWT	EQDO
2000	108189	12008	8	28931	14468	163709	13487	56825	30797	57210	5091
2001	109792	13954	67	29195	14343	167563	14786	57545	32006	57928	5047
2002	110166	15580	-41	31455	15398	172558	16214	56421	34499	59836	5588
2003	107747	18244	-234	32474	14342	172573	14669	54104	36056	61934	5810
2004	111379	20239	-266	35547	14144	181043	14248	57091	38879	64629	6196
Quarterly											
2000 Q1	25974	2785	-1	7486	4091	40052	3324	13307	7926	14416	1234
Q2	26195	2950	1	7415	3462	40010	3297	13722	7868	13827	1286
Q3	27345	2886	-	7260	3527	41109	3284	14517	7715	14164	1277
Q4	28675	3387	8	6770	3388	42538	3582	15279	7288	14803	1294
2001 Q1	27875	2985	35	7312	3734	42007	3303	14720	7911	14686	1261
Q2	27726	3618	28	7155	3539	42160	3881	14262	7891	14830	1251
Q3	27586	3648	3	7522	3427	42249	3884	14460	8252	14343	1265
Q4	26605	3703	1	7206	3643	41147	3718	14103	7952	14069	1270
2002 Q1	27145	3726	4	7295	3440	41651	4045	13697	8006	14602	1306
Q2	27421	3832	10	7759	3924	42936	4009	14394	8396	14704	1404
Q3	27325	4029	-25	8104	4177	43562	4137	14279	8829	14896	1411
Q4	28275	3993	-30	8297	3857	44409	4023	14051	9268	15634	1467
2003 Q1	26670	4747	-13	7831	3997	43232	3871	13766	8824	15347	1424
Q2	27231	4079	-49	8031	3551	42843	3454	13043	8835	16074	1437
Q3	26424	4487	-98	8237	3409	42459	3633	13317	9165	14885	1459
Q4	27422	4931	-74	8375	3385	44039	3711	13978	9232	15628	1490
2004 Q1	27483	4693	-58	8753	3503	44374	3507	14297	9487	15575	1508
Q2	27527	5351	-75	8890	3593	45286	3688	14158	9747	16156	1537
Q3	28211	4979	-83	8898	3515	45520	3609	14197	9790	16362	1562
Q4	28158	5216	-50	9006	3533	45863	3444	14439	9855	16536	1589
2005 Q1	28268	5786	-90	8910	2969	45843	3512	14468	9730	16534	1599
Q2	28684	5188	-85	8905	3595	46287	3474	14669	9714	16815	1615
Q3	28761	46773

Percentage change, latest quarter on corresponding quarter of previous year

2000 Q1	1.2	-4.6	-0.2	27.6	1.7	-14.9	4.1	-0.2	5.2	4.5
Q2	3.4	6.0	4.2	0.2	3.6	-7.5	8.6	1.3	1.6	6.1
Q3	3.7	2.7	6.1	-10.3	3.1	-12.0	10.0	6.8	-2.4	4.2
Q4	9.5	21.7	-8.1	-20.1	5.7	-5.4	18.0	-7.2	1.1	2.7
2001 Q1	7.3	7.2	-2.3	-8.7	4.9	-0.6	10.6	-0.2	1.9	2.2
Q2	5.8	22.6	-3.5	2.2	5.4	17.7	3.9	0.3	7.3	-2.7
Q3	0.9	26.4	3.6	-2.8	2.8	18.3	-0.4	7.0	1.3	-0.9
Q4	-7.2	9.3	6.4	7.5	-3.3	3.8	-7.7	9.1	-5.0	-1.9
2002 Q1	-2.6	24.8	-0.2	-7.9	-0.8	22.5	-6.9	1.2	-0.6	3.6
Q2	-1.1	5.9	8.4	10.9	1.8	3.3	0.9	6.4	-0.8	12.2
Q3	-0.9	10.4	7.7	21.9	3.1	6.5	-1.3	7.0	3.9	11.5
Q4	6.3	7.8	15.1	5.9	7.9	8.2	-0.4	16.5	11.1	15.5
2003 Q1	-1.7	27.4	7.3	16.2	3.8	-4.3	0.5	10.2	5.1	9.0
Q2	-0.7	6.4	3.5	-9.5	-0.2	-13.8	-9.4	5.2	9.3	2.4
Q3	-3.3	11.4	1.6	-18.4	-2.5	-12.2	-6.7	3.8	-0.1	3.4
Q4	-3.0	23.5	0.9	-12.2	-0.8	-7.8	-0.5	-0.4	0.0	1.6
2004 Q1	3.0	-1.1	11.8	-12.4	2.6	-9.4	3.9	7.5	1.5	5.9
Q2	1.1	31.2	10.7	1.2	5.7	6.8	8.5	10.3	0.5	7.0
Q3	6.8	11.0	8.0	3.1	7.2	-0.7	6.6	6.8	9.9	7.1
Q4	2.7	5.8	7.5	4.4	4.1	-7.2	3.3	6.7	5.8	6.6
2005 Q1	2.9	23.3	1.8	-15.2	3.3	0.1	1.2	2.6	6.2	6.0
Q2	4.2	-3.0	0.2	0.1	2.2	-5.8	3.6	-0.3	4.1	5.1
Q3	1.9	2.8

[^7]

2,8 Gross value added, chained volume indices at basic prices, by category of output ${ }^{1,3}$

		Production					Service industries					Gross value added at basic prices	Gross value added excluding oil
	Agriculture, forestry, and fishing	Mining and quarrying including oil and gas extraction	Manufacturing	Electricity gas and water supply	Total	Construction	Distribution hotels and catering; repairs	Transport storage and communication	Business services and finance	Government and other services	Total		
2002 Weights ${ }^{1}$	10	24	159	18	201	59	157	80	264	229	730	1000	979
	GDQA	CKYX	CKYY	CKYZ	CKYW	GDQB	GDQE	GDQH	GDQN	GDQU	GDQS	CGCE	JUNT
2000	98.0	106.1	104.6	98.2	104.2	94.6	93.5	94.1	93.9	95.5	94.3	96.4	96.2
2001	89.1	100.3	103.2	100.5	102.6	96.3	95.6	97.8	98.4	97.5	97.4	98.3	98.3
2002	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2003	98.3	94.9	100.1	101.2	99.5	105.2	103.5	102.6	102.8	102.1	102.7	102.5	$102.7{ }^{+}$
2004	99.4	87.2	102.0	103.3	100.3	108.7	108.6	105.5	107.2	104.6	106.5	105.6	$106.1{ }^{\dagger}$
Quarterly													
2000 Q1	98.6	110.2	103.8	96.9	103.8	96.9	92.5	91.2	92.0	94.6	92.9	95.4	$95.0{ }^{\dagger}$
Q2	98.0	108.7	104.4	99.2	104.4	94.6	93.1	93.3	93.1	95.3	93.8	96.1	95.8
Q3	99.3	105.0	104.6	98.1	104.1	93.0	94.3	95.4	94.8	96.0	95.1	96.9	96.7
Q4	95.9	100.8	105.5	98.5	104.5	94.0	94.0	96.4	95.7	96.0	95.5	97.3	97.1
2001 Q1	89.8	99.3	105.5	102.1	104.5	95.5	94.7	97.7	96.6	96.5	96.3	97.9	97.8
Q2	88.2	101.9	103.2	101.1	102.9	95.8	95.1	98.0	98.4	97.1	97.2	98.2	98.1
Q3	88.0	100.8	103.0	99.9	102.4	96.4	95.7	97.4	98.7	97.7	97.6	98.4	98.4
Q4	90.2	99.2	100.9	98.8	100.4	97.6	97.0	98.0	99.8	98.6	98.6	98.8	98.8
2002 Q1	98.4	100.1	100.2	98.2	100.0	99.2	98.6	99.6	99.1	99.2	99.1	99.3	99.3
Q2	100.6	104.3	99.7	99.4	100.3	98.8	99.3	99.0	99.7	99.8	99.6	99.7	99.6
Q3	101.0	95.6	100.7	101.2	100.1	100.4	100.4	100.1	100.6	100.2	100.4	100.3	100.4
Q4	100.1	100.0	99.3	101.3	99.6	101.7	101.7	101.2	100.6	100.7	101.0	100.7	100.7
2003 Q1	97.9	99.6	99.4	99.3	99.4	102.0	101.7	101.5	101.8	101.0	101.5	101.4	101.4
Q2	97.8	95.2	99.5	100.2	99.1	104.0	103.0	102.3	101.8	101.6	102.0	101.8	102.0
Q3	98.7	93.5	100.2	101.6	99.5	107.1	104.1	103.1	102.9	102.5	103.1	102.9	103.1
Q4	98.8	91.1	101.1	103.5	100.1	107.7	105.3	103.4	104.8	103.4	104.3	103.9	104.2
2004 Q1	99.4	89.6	101.6	104.1	100.3	108.0	107.4	103.9	106.4	103.9	105.5	104.9	105.2
Q2	98.7	90.1	102.4	102.9	101.0	108.2	108.7	105.3	106.5	104.7	106.3	105.5	105.9
Q3	99.5	85.9	101.7	103.6	99.9	109.0	109.2	105.7	107.6	104.7	106.8	105.8	106.3
Q4	99.9	83.3	102.3	102.8	100.1	109.7	109.3	106.9	108.3	105.0	107.4	106.2	106.8
2005 Q1	99.1	82.7	101.5	101.5	99.2	109.9	109.0	107.6	109.3	105.8	108.0	106.5	107.1
Q2	100.1	83.0	101.3	102.5	99.2	110.6	109.4	107.7	110.2	106.5	108.6	107.0	107.6
Q3	99.6	76.6^{\dagger}	101.6	101.7^{\dagger}	98.6	111.2	$109.5{ }^{\dagger}$	108.7^{\dagger}	110.9	$107.4{ }^{\dagger}$	$109.3{ }^{\dagger}$	107.4	108.2

Percentage change, latest quarter on corresponding quarter of last year

2000 Q1	-0.6	1.6	2.8	1.9	2.6	4.9	2.8	8.8	3.3	4.5	4.3	4.3	$4.2{ }^{\dagger}$
Q2	-0.1	-0.9	3.0	4.1	2.8	2.0	2.9	9.6	4.4	4.2	4.6	4.3	4.5
Q3	1.4	-5.3	1.9	1.6	1.1	-1.2	3.4	11.1	6.0	3.7	5.2	4.3	4.5
Q4	-3.2	-7.9	2.2	1.2	1.2	-0.5	2.3	9.0	4.8	2.6	4.0	3.4	3.6
2001 Q1	-8.9	-9.9	1.6	5.4	0.7	-1.4	2.4	7.1	5.0	2.0	3.7	2.6	2.9
Q2	-10.0	-6.3	-1.1	1.9	-1.4	1.3	2.1	5.0	5.7	1.9	3.6	2.2	2.4
Q3	-11.4	-4.0	-1.5	1.8	-1.6	3.7	1.5	2.1	4.1	1.8	2.6	1.5	1.8
Q4	-5.9	-1.6	-4.4	0.3	-3.9	3.8	3.2	1.7	4.3	2.7	3.2	1.5	1.8
2002 Q1	9.6	0.8	-5.0	-3.8	-4.3	3.9	4.1	1.9	2.6	2.8	2.9	1.4	1.5
Q2	14.1	2.4	-3.4	-1.7	-2.5	3.1	4.4	1.0	1.3	2.8	2.5	1.5	1.5
Q3	14.8	-5.2	-2.2	1.3	-2.2	4.1	4.9	2.8	1.9	2.6	2.9	1.9	2.0
Q4	11.0	0.8	-1.6	2.5	-0.8	4.2	4.8	3.3	0.8	2.1	2.4	1.9	1.9
2003 Q1	-0.5	-0.5	-0.8	1.1	-0.6	2.8	3.1	1.9	2.7	1.8	2.4	2.1	2.1
Q2	-2.8	-8.7	-0.2	0.8	-1.2	5.3	3.7	3.3	2.1	1.8	2.4	2.1	2.4
Q3	-2.3	-2.2	-0.5	0.4	-0.6	6.7	3.7	3.0	2.3	2.3	2.7	2.6	2.7
Q4	-1.3	-8.9	1.8	2.2	0.5	5.9	3.5	2.2	4.2	2.7	3.3	3.2	3.5
2004 Q1	1.5	-10.0	2.2	4.8	0.9	5.9	5.6	2.4	4.5	2.9	3.9	3.5	3.7
Q2	0.9	-5.4	2.9	2.7	1.9	4.0	5.5	2.9	4.6	3.1	4.2	3.6	3.8
Q3	0.8	-8.1	1.5	2.0	0.4	1.8	4.9	2.5	4.6	2.1	3.6	2.8	3.1
Q4	1.1	-8.6	1.2	-0.7	0.0	1.9	3.8	3.4	3.3	1.5	3.0	2.2	2.5
2005 Q1	-0.3	-7.7	-0.1	-2.5	-1.1	1.8	1.5	3.6	2.7	1.8	2.4	1.5	1.8
Q2	1.4	-7.9	-1.1	-0.4	-1.8	2.2	0.6	2.3	3.5	1.7	2.2	1.4	1.6
Q3	0.1	$-10.8{ }^{\dagger}$	-0.1	$-1.8{ }^{\dagger}$	-1.3	2.0	$0.3{ }^{+}$	$2.8{ }^{+}$	3.1	$2.6{ }^{t}$	$2.3{ }^{\dagger}$	1.5	1.8

1 Estimates cannot be regarded as accurate to the last digit shown.
2 Weights may not sum to the totals due to rounding. The weights shown are in proportion to total gross value added (GVA) in 2002, and are used to combine the industry output indices to calculate the totals for 2003 and 2004. For 2002 and earlier, totals are calculated using the equivalent weights for the previous year (e.g. totals for 2002 use 2001 weights)

29 Gross value added chained volume indices at basic prices, by category of output: Service industries

	Distribution hotels and catering; repairs		Transport, storage and communication		Business services and finance			Government and other services				Adjustment for financial services ${ }^{4}$	Total services
	Motor trades; wholesale and retail trade; repairs	Hotels and restaurants	Transport and storage	Post and telecommunication	Financial intermediation ${ }^{3}$	Real estate, renting and business activities	Ownership of dwellings	PAD ${ }^{1}$	Education	Health and social work	Other services ${ }^{2}$		
2002 weights	124	34	48	31	68	162	78	50	60	67	52	-44	730
Annual													
	GDQC	GDQD	GDQF	GDQG	GDQI	GDQK	GDQL	GDQO	GDQP	GDQQ	GDQR	GDQJ	GDQS
2001	95.2	97.4	97.3	98.5	100.9	97.2	98.8	97.5	98.6	96.6	97.1	97.2	97.4
2002	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2003	102.9	105.9	100.8	105.4	101.8	105.7	102.2	103.5	100.5	103.2	101.2	110.8	102.7
2004	107.9	111.2	104.7	106.6	105.7	113.7	104.1	105.3	100.5	107.4	104.9	123.4	106.5
Quarterly													
2001 Q1	94.2	97.0	96.8	99.1	99.2	95.5	98.1	97.0	97.8	95.4	95.8	97.7	96.3
Q2	94.5	97.1	97.6	98.7	101.2	97.0	98.7	97.4	98.4	96.4	96.1	96.5	97.2
Q3	95.2	97.9	97.4	97.4	100.7	97.5	99.2	97.3	98.9	96.8	97.8	97.1	97.6
Q4	96.8	97.8	97.5	98.8	102.4	98.7	99.3	98.4	99.3	98.0	98.8	97.4	98.6
2002 Q1	98.7	98.3	99.3	100.1	99.5	98.3	99.4	98.9	99.9	98.2	100.2	97.4	99.1
Q2	99.5	98.5	99.3	98.6	98.9	99.8	99.7	99.8	99.9	100.1	99.5	99.0	99.6
Q3	100.4	100.3	100.5	99.5	100.9	100.8	100.0	100.2	100.0	100.7	99.8	100.4	100.4
Q4	101.4	102.8	100.9	101.8	100.8	101.1	100.8	101.1	100.2	101.0	100.6	103.2	101.0
2003 Q1	101.0	104.2	99.7	104.4	101.2	103.1	101.5	102.2	100.3	101.7	99.6	105.3	101.5
Q2	102.2	106.0	99.5	106.6	101.7	104.1	101.8	103.1	100.5	102.1	100.5	110.1	102.0
Q3	103.6	106.1	101.8	105.0	101.6	106.2	102.3	104.3	100.5	103.5	101.6	111.9	103.1
Q4	104.8	107.2	102.1	105.5	102.6	109.5	103.2	104.5	100.5	105.4	102.9	115.8	104.3
2004 Q1	106.8	109.5	103.0	105.2	105.2	111.8	103.6	105.2	100.4	107.1	102.5	119.8	105.5
Q2	108.0	111.3	105.0	105.6	103.7	112.9	104.0	105.1	100.4	106.5	107.1	121.1	106.3
Q3	108.6	111.3	104.3	107.9	105.9	114.3	104.1	105.4	100.7	107.5	105.0	123.6	106.8
Q4	108.3	112.6	106.5	107.7	107.9	115.9	104.7	105.6	100.6	108.5	105.2	129.0	107.4
2005 Q1	108.0	112.6	107.6	107.6	109.6	117.1	104.9	105.7	101.2	109.4	106.6	130.6	108.0
Q2	108.3	113.5	107.6	108.0	110.9	118.2	105.3	106.2	101.6	110.6	107.0	132.2	108.6
Q3	108.8	112.2	107.6	110.3	112.7	119.4	105.6	106.8	101.7	111.3	109.4	135.1	$109.3{ }^{\dagger}$

Percentage change, quarter on corresponding quarter of previous year
Quarterly

2001 Q1	3.7	-2.5	3.1	13.6	4.9	7.2	2.9	1.9	0.0	3.2	2.8	9.4	3.7
Q2	2.7	-0.5	1.8	10.4	6.0	6.0	3.9	1.5	0.5	2.6	2.8	4.0	3.6
Q3	2.0	-0.4	0.2	5.0	4.8	4.4	3.0	0.4	1.0	2.4	3.4	4.2	2.6
Q4	3.8	1.3	1.8	1.5	5.6	4.7	1.5	1.2	1.6	3.4	4.7	2.0	3.2
2002 Q1	4.8	1.3	2.6	1.0	0.3	2.9	1.3	2.0	2.1	2.9	4.6	-0.3	2.9
Q2	5.3	1.4	1.7	-0.1	-2.3	2.9	1.0	2.5	1.5	3.8	3.5	2.6	2.5
Q3	5.5	2.5	3.2	2.2	0.2	3.4	0.8	3.0	1.1	4.0	2.0	3.4	2.9
Q4	4.8	5.1	3.5	3.0	-1.6	2.4	1.5	2.7	0.9	3.1	1.8	6.0	2.4
2003 Q1	2.3	6.0	0.4	4.3	1.7	4.9	2.1	3.3	0.4	3.6	-0.6	8.1	2.4
Q2	2.7	7.6	0.2	8.1	2.8	4.3	2.1	3.3	0.6	2.0	1.0	11.2	2.4
Q3	3.2	5.8	1.3	5.5	0.7	5.4	2.3	4.1	0.5	2.8	1.8	11.5	2.7
Q4	3.4	4.3	1.2	3.6	1.8	8.3	2.4	3.4	0.3	4.4	2.3	12.2	3.3
2004 Q1	5.7	5.1	3.3	0.8	4.0	8.4	2.1	2.9	0.1	5.3	2.9	13.8	3.9
Q2	5.7	5.0	5.5	-0.9	2.0	8.5	2.2	1.9	-0.1	4.3	6.6	10.0	4.2
Q3	4.8	4.9	2.5	2.8	4.2	7.6	1.8	1.1	0.2	3.9	3.3	10.5	3.6
Q4	3.3	5.0	4.3	2.1	5.2	5.8	1.5	1.1	0.1	2.9	2.2	11.4	3.0
2005 Q1	1.1	2.8	4.5	2.3	4.2	4.7	1.3	0.5	0.8	2.1	4.0	9.0	2.4
Q2	0.3	2.0	2.5	2.3	6.9	4.7	1.3	1.0	1.2	3.8	-0.1	9.2	2.2
Q3	0.2	0.8	3.2	2.2	6.4	4.5	1.4	1.3	1.0	3.5	4.2	9.3	$2.3{ }^{t}$

[^8]

Summary capital accounts and net lending/net borrowing

	Non-financial corporations				Financial corporations				General Government			
	Gross saving ${ }^{1}$	Capital transfers (net receipts)	Gross capital formation ${ }^{2}$	Net acquisition of non-financial assets	Gross saving ${ }^{1}$	Capital transfers (net receipts)	Gross capital formation ${ }^{2}$	Net acquisition of non-financial assets	Gross saving 1	Capital transfers (net receipts)	Gross capital formation ${ }^{2}$	Net acquisition of non-financial assets
Annual												
	RPJV	GZQW	RQBZ	RQAX	RPPS	GZQE	RPYP	RPYO	RPQC	GZQU	RPZF	RPZE
2001	89893	2661	103976	1208	-9 450	-	7300	-43	25272	-4 081	13929	-916
2002	107576	2098	99453	1431	15325	-	6732	-36	1602	-3 674	15602	-1087
2003	116456	3316	99413	1241	18972	-	3452	-3	-13036	-5 525	18244	-957
2004	126726	3130	104693	1564	23498	-	3915	-6	-11668	-4877	20809	-1071
Quarterly												
2001 Q1	22815	599	25568	271	-5 721	-	2368	-9	8635	-749	2966	-222
Q2	21835	627	26171	305	-1717	-	2239	-11	6420	-1229	3621	-221
Q3	23676	719	26324	331	-2 789	-	1342	-11	6372	-1 152	3617	-234
Q4	21567	716	25913	301	777	-	1351	-12	3845	-951	3725	-239
2002 Q1	25584	517	25016	379	2755	-	843	-11	1880	-1 054	3803	-284
Q2	26944	350	24705	330	2068	-	1196	-10	192	-647	3900	-233
Q3	27663	561	24418	358	4060	-	3068	-9	1026	-971	4019	-238
Q4	27385	670	25314	364	6442	-	1625	-6	-1496	-1002	3880	-332
2003 Q1	29099	729	22061	282	6274	-	2120	-3	-2 249	-1560	4546	-205
Q2	27352	947	24024	332	3677	-	876	-	-2 759	-1468	4190	-256
Q3	29280	850	25990	364	3902	-	148	1	-2 867	-1304	4573	-252
Q4	30725	790	27338	263	5119	-	308	-1	-5 161	-1193	4935	-244
2004 Q1	31741	825	25710	350	4037	-	318	-	-3 104	-1118	4470	-249
Q2	31800	897	25862	395	5772	-	765	-2	-2 024	-1389	5441	-272
Q3	28661	680	26652	424	6368	-	1324	-2	-3 012	-1223	5244	-280
Q4	34524	728	26469	395	7321	-	1508	-2	-3 528	-1147	5654	-270
2005 Q1	30388	1714	27302	396	5973	-	-524	-2	-2 158	-1956	6060	-265
Q2	34609	1029	25653	411	4559	-	153	-1	-2 424	-1179	5695	-280

	Households \& NPISH				Net lending(+)/net borrowing (-) ${ }^{3}$					
	Gross saving ${ }^{1}$	Capital transfers (net receipts)	Gross capital formation ${ }^{2}$	Net acquisition of non-financial assets	Non-financial corporations	Financial corporations	General government	Households \& NPISH	Rest of the world ${ }^{4}$	Statistical Discrepancy
Annual										
	RPQL	GZQI	RPZV	RPZU	RQAW	RPYN	RPZD	RPZT	RQCH	DJDS
2001	44352	3023	43996	-152	-15981	-16707	8178	3531	20979	-
2002	34691	2876	50268	-176	4864	8629	-16587	-12525	15619	-
2003	40969	3876	55475	-210	15290	15523	-35 848	-10 420	15455	-
2004	34700	4238	62496	-276	20430	19589	-36 283	-23 282	21327	-1781
Quarterly										
2001 Q1	12161	418	10881	-25	-3 363	-8080	5142	1723	4578	-
Q2	11344	1266	10540	-36	-4 867	-3 945	1791	2106	4915	-
Q3	10640	747	11628	-44	-3 009	-4 120	1837	-197	5489	-
Q4	10207	592	10947	-47	-4 742	-562	-592	-101	5997	-
2002 Q1	7468	787	12028	-47	-68	1923	-2 693	-3726	4564	-
Q2	9218	556	12968	-45	1543	882	-4 122	-3149	4846	-
Q3	9278	697	12149	-43	2713	1001	-3726	-2 131	2143	-
Q4	8727	836	13123	-41	676	4823	-6 046	-3 519	4066	-
2003 Q1	9343	1156	13018	-46	6110	4157	-8150	-2 473	355	-
Q2	10282	779	13255	-49	3047	2801	-8161	-2 145	4457	-
Q3	10130	863	14525	-55	2938	3753	-8492	-3 477	5278	-
Q4	11214	1078	14677	-60	3195	4812	-11 045	-2 325	5365	-
2004 Q1	9460	1100	15318	-64	5698	3719	-8443	-4 694	4062	-342
Q2	8018	1197	15766	-68	5620	5009	-8582	-6 483	4864	-428
Q3	8992	935	15611	-71	1501	5046	-9 199	-5 613	8754	-489
Q4	8230	1006	15801	-73	7611	5815	-10 059	-6 492	3647	-522
2005 Q1	9117	1877	16863	-76	3055	6499	-9 909	-5 793	6604	-457
Q2	10327	926	17382	-79	8726	4407	-9 018	-6 050	2395	-460

1 Before providing for depreciation, inventory holding gains.
2 Comprises gross fixed capital formation and changes in inventories and ac-
3 This balance is equal to gross saving plus capital transfers
less gross fixed capital formation, less Net acquisition of non-financial assets, less changes in inventories.
4 Equals, the current balance of payments accounts, plus capital transfers.
Sources: Office for National Statistics;
Enquiries Part 1 (Upper) Columns 1,3-5,7-9,11,12 02075336031 .
Columns 2,6,10 0207533 5985;
Part 2 (Lower) Columns 1, 3-10 0207533 6031; Column 202075335985

2.11
 Private Non-Financial Corporations: Allocation of Primary Income Account

Resources						Uses				
Gross operating surplus						Property income payments			Gross balance of primary income	
Gross trading profits										
Continental shelf companies Others ${ }^{1}$	Rental of buildings	Inventory holding gains	Gross operating surplus+	Property income receipts	Total resources ${ }^{1,2}$	Total payments	of which Dividends	of which Interest		

Annual												
	CAGD	CAED	FCBW	-DLRA	CAER	RPBM	RPBN	RPBP	RVFT	ROCG	RPBO	NRJL
1995	12124	125151	9379	-4 489	142165	42948	185113	95631	46218	24098	89482	12.5
1996	15726	136579	8948	-958	160295	45712	206007	104695	51609	23965	101312	13.3
1997	14002	149176	9254	-361	172071	48067	220138	111546	56250	26541	108592	13.4
1998	11701	153282	9724	753	175460	49543	225003	110015	51578	31095	114988	13.2
1999	13669	157101	10742	-1801	179711	48045	227756	118244	61101	31016	109512	12.1
2000	20936	156678	11657	-2 941	186330	60525	246855	128508	55846	37912	118347	12.4
2001	19696	154292	12304	434	186726	72749	259475	145111	77516	39419	114364	11.4
2002	19132	161586	12885	-2 856	190747	66330	257077	126455	61580	36459	130622	12.2
2003	18631	172608	13652	-4 148	200743	72178	272921	135219	71336	36007	137702	12.2
2004	18897	186020	14225	-4113	215029	77738	292767	142343	70649	41104	150424	12.6

Quarterly

1995 Q1	2966	31468	2264	-1738	34960	9221	44181	21980	9747	5620	22201	12.6
Q2	3113	30827	2336	-1 588	34688	10022	44710	22293	9732	5959	22417	12.7
Q3	2934	31550	2379	-1 181	35682	11776	47458	25500	13092	6112	21958	12.2
Q4	3111	31306	2400	18	36835	11929	48764	25858	13647	6407	22906	12.5
1996 Q1	3529	32829	2331	-800	37799	10997	48796	27293	12654	6119	21503	11.5
Q2	3935	33170	2248	-102	39409	12005	51414	24196	11156	5964	27218	14.4
Q3	4087	34782	2192	-208	40849	10185	51034	25512	12420	5895	25522	13.3
Q4	4175	35798	2177	152	42238	12525	54763	27694	15379	5987	27069	14.0
1997 Q1	3891	36976	2247	-23	43124	10951	54075	25631	12345	6125	28444	14.4
Q2	3294	37239	2294	239	43083	11608	54691	27945	14723	6623	26746	13.2
Q3	3454	37747	2341	-506	43039	13883	56922	28519	15210	6627	28403	13.8
Q4	3363	37214	2372	-71	42825	11625	54450	29451	13972	7166	24999	12.1
1998 Q1	3161	36871	2414	107	43101	13795	56896	30385	15077	7545	26511	12.6
Q2	3105	37239	2424	53	42788	11590	54378	26444	11541	7735	27934	13.0
Q3	2780	39682	2435	315	44757	11711	56468	26385	11509	7965	30083	13.6
Q4	2655	39490	2451	278	44814	12447	57261	26801	13451	7850	30460	13.7
1999 Q1	2603	38895	2592	-302	44006	7978	51984	18758	7482	7464	33226	15.1
Q2	3018	40192	2647	-440	45681	14108	59789	36939	23479	7413	22850	10.2
Q3	3955	38736	2715	-645	44398	11297	55695	29934	14595	7806	25761	11.3
Q4	4093	39278	2788	-414	45626	14662	60288	32613	15545	8333	27675	12.0
2000 Q1	4626	38558	2801	-702	45649	14310	59959	32410	15181	8844	27549	11.7
Q2	5134	38494	2875	-830	46057	14446	60503	30455	12370	9405	30048	12.7
Q3	5407	38882	2953	-799	45922	15138	61060	31071	12127	9615	29989	12.5
Q4	5769	40744	3028	-610	48702	16631	65333	34572	16168	10048	30761	12.7
2001 Q1	5450	36936	3039	329	46265	17627	63892	34961	15759	10406	28931	11.7
Q2	5348	36862	3071	5	45747	18820	64567	36530	19491	9929	28037	11.2
Q3	4697	39808	3093	-52	46904	21158	68062	38796	21835	10107	29266	11.6
Q4	4201	40686	3101	152	47810	15144	62954	34824	20431	8977	28130	11.0
2002 Q1	4329	41071	3181	-733	47848	17375	65223	34242	18302	9077	30981	11.9
Q2	4774	41177	3193	-762	48382	16111	64493	31588	15336	9123	32905	12.4
Q3	4771	39943	3232	-384	47562	16242	63804	30462	14917	9083	33342	12.3
Q4	5258	39395	3279	-977	46955	16602	63557	30163	13025	9176	33394	12.2
2003 Q1	5116	41381	3337	-761	49073	17415	66488	31951	15883	9146	34537	12.4
Q2	4047	42817	3393	-1 286	48971	18853	67824	35453	19072	8851	32371	11.6
Q3	4951	44101	3442	-912	51582	18770	70352	35302	19538	8904	35050	12.4
Q4	4517	44309	3480	-1 189	51117	17140	68257	32513	16843	9106	35744	12.4
2004 Q1	4700	45273	3507	-908	52572	17688	70260	33098	16459	9585	37162	12.7
Q2	4718	45963	3534	-799	53416	18219	71635	33515	16016	10189	38120	12.9
Q3	4883	46990	3570	-1 051	54392	20562	74954	40240	21750	10569	34714	11.7
Q4	4596	47794	3614	-1355	54649	21269	75918	35490	16424	10761	40428	13.2
2005 Q1	4895	47471	3651	-1 143	54874	22469	77343	40076	21312	11227	37267	12.2
Q2	5270	47748	3687	-453	56252	23804	80056	38048	18156	11985	42008	13.5

[^9]Source: Office for National Statistics; Enquiries 02075336014

Private Non-financial Corporations :
Secondary Distribution of Income Account and Capital Account

Secondary Distribution of Income Account						Capital Account					
Resources			Uses			Changes in liabilities \& net worth		Changes in assets			
Gross balance of primary income	Other resources ${ }^{2}$	Total 1,3	Taxes on income	Other uses ${ }^{4}$	Gross disposable income ${ }^{1,5}$		Total ${ }^{1}$		Changes in inventories ${ }^{1}$	Other changes in assets	Net lending (+) or borrowing $(-)^{1,7}$

Annual

	RPBO	NROQ	RPKY	RPLA	NROO	RPKZ	NROP	RPXH	ROAW	DLQY	NRON	RQBV
1995	89482	7704	97186	18953	8104	70129	433	70562	64444	4542	388	1188
1996	101312	8420	109732	23080	9938	76714	428	77142	72778	1672	263	2429
1997	108592	7097	115689	28558	7576	79555	671	80226	81089	3949	401	-5213
1998	114988	8179	123167	26877	8623	87667	1081	88748	90180	4533	1287	-7252
1999	109512	7875	117387	22608	8444	86335	958	87293	94463	6174	1036	-14380
2000	118347	9990	128337	26188	10403	91746	405	92151	96873	5512	776	-11010
2001	114364	9229	123593	26061	9640	87892	1621	89513	98035	5941	1138	-15601
2002	130622	9889	140511	24432	10311	105768	1093	106861	96819	2677	1212	6153
2003	137702	10199	147901	23461	10633	113807	2692	116499	95556	3954	862	16127
2004	150424	10380	160804	26223	10826	123755	2603	126358	100325	4467	1119	20447

Quarterly

1995 Q1	22201	1825	24026	4252	1922	17852	127	17979	14794	-268	121	3332
Q2	22417	1936	24353	5420	2032	16901	98	16999	16117	2234	125	-1477
Q3	21958	1953	23911	4368	2049	17494	102	17596	16460	1695	87	-646
Q4	22906	1990	24896	4913	2101	17882	106	17988	17073	881	55	-21
1996 Q1	21503	2238	23741	6109	3336	14296	125	14421	17497	1218	63	-4 357
Q2	27218	2219	29437	5660	2369	21408	102	21510	17426	322	71	3691
Q3	25522	1994	27516	5944	2124	19448	96	19544	18437	1	57	1049
Q4	27069	1969	29038	5367	2109	21562	105	21667	19418	131	72	2046
1997 Q1	28444	1771	30215	7017	1888	21310	233	21543	19263	740	64	1476
Q2	26746	1757	28503	7763	1901	18839	164	19003	20458	515	94	-2 064
Q3	28403	1739	30142	6909	1848	21385	131	21516	20059	1714	103	-360
Q4	24999	1830	26829	6869	1939	18021	143	18164	21309	980	140	-4 265
1998 Q1	26511	2217	28728	6768	2328	19632	343	19975	21896	1376	256	-3 553
Q2	27934	2099	30033	6829	2210	20994	220	21214	22381	30	381	-1578
Q3	30083	1891	31974	6712	2002	23260	248	23508	23326	954	379	-1151
Q4	30460	1972	32432	6568	2083	23781	270	24051	22577	2173	271	-970
1999 Q1	33226	2037	35263	5543	2264	27456	344	27800	23303	2180	301	2016
Q2	22850	1925	24775	4841	2038	17896	199	18095	23035	861	315	-6116
Q3	25761	1608	27369	5868	1722	19779	216	19995	24096	1275	191	-5 567
Q4	27675	2305	29980	6356	2420	21204	199	21403	24029	1858	229	-4713
2000 Q1	27549	2475	30024	7059	2592	20373	315	20688	23769	1358	193	-4 632
Q2	30048	2429	32477	6410	2526	23541	20	23561	23549	1123	157	-1268
Q3	29989	2734	32723	6491	2833	23399	34	23433	24256	1481	158	-2 462
Q4	30761	2352	33113	6228	2452	24433	36	24469	25299	1550	268	-2 648
2001 Q1	28931	2253	31184	6489	2354	22341	200	22541	24862	734	238	-3 293
Q2	28037	2377	30414	6591	2480	21343	439	21782	24713	1424	326	-4 681
Q3	29266	2262	31528	6011	2365	23152	485	23637	24730	1606	297	-2 996
Q4	28130	2337	30467	6970	2441	21056	497	21553	23730	2177	277	-4 631
2002 Q1	30981	2392	33373	5709	2496	25168	333	25501	24196	828	336	141
Q2	32905	2396	35301	6282	2501	26518	300	26818	24183	529	282	1824
Q3	33342	2501	35843	6108	2607	27128	392	27520	24017	406	306	2791
Q4	33394	2600	35994	6333	2707	26954	68	27022	24423	914	288	1397
2003 Q1	34537	2562	37099	5964	2669	28466	541	29007	22504	-419	197	6725
Q2	32371	2616	34987	5479	2724	26784	653	27437	24478	-454	264	3149
Q3	35050	2602	37652	6378	2711	28563	786	29349	23775	2251	254	3069
Q4	35744	2419	38163	5640	2529	29994	712	30706	24799	2576	147	3184
2004 Q1	37162	2577	39739	5960	2687	31092	749	31841	25218	492	269	5862
Q2	38120	2734	40854	6987	2845	31022	742	31764	24668	1232	273	5591
Q3	34714	2614	37328	6644	2726	27958	537	28495	25367	1328	293	1507
Q4	40428	2455	42883	6632	2568	33683	575	34258	25072	1415	284	7487
2005 Q1	37267	2611	39878	7479	2754	29645	1561	31206	25590	1768	242	3606
Q2	42008	2964	44972	7674	3078	34220	879	35099	25730	-75	305	9139

[^10]5 Also known as gross saving.
6 Acquisitions less disposals of valuables and non-produced non-financial as-
sets.
Source: Office for National Statistics; Enquiries 02075336014

Balance of payments: current account

	Trade in goods and services									
	Exports of goods+	Imports of goods+	Balance of trade in goods	Exports of services	Imports of services	Services balance	Income balance	Current transfers balance	Current balance	$\begin{array}{r} \text { Current } \\ \text { balance as \% } \\ \text { of } G D P^{1} \end{array}$
Annual										
	BOKG	BOKH	BOKI	IKBB	IKBC	IKBD	HBOJ	IKBP	HBOP	AA6H
2000	187936	220912	-32 976	79411	65685	13726	4583	-9 752	-24 419	-2.6
2001	190055	230703	-40 648	83061	69358	13703	11371	-6 611	-22 185	-2.2
2002	186511	233598	-47 087	88434	72898	15536	23679	-8615	-16 487	-1.6
2003	188615	236479	-47 864	93616	76734	16882	24192	-9 961	-16 751	-1.5
2004	190950	251210	-60 260	100156	78924	21232	26464	-10 755	-23 319	-2.0
Quarterly										
2000 Q1	44374	51854	-7480	18999	15435	3564	1210	-1825	-4 531	-1.9
Q2	46851	54256	-7405	19342	16157	3185	510	-2 178	-5 888	-2.5
Q3	47445	56289	-8844	20227	16690	3537	2508	-2 723	-5 522	-2.3
Q4	49266	58513	-9 247	20843	17403	3440	355	-3 026	-8478	-3.5
2001 Q1	49523	58884	-9 361	21764	17534	4230	2182	-1807	-4756	-1.9
Q2	48329	58774	-10 445	21922	17464	4458	3202	-2 682	-5 467	-2.2
Q3	46561	56911	-10 350	18775	17495	1280	3355	29	-5 686	-2.3
Q4	45642	56134	-10 492	20600	16865	3735	2632	-2 151	-6 276	-2.5
2002 Q1	46192	57437	-11245	21716	17897	3819	4993	-2 269	-4 702	-1.8
Q2	49273	59820	-10 547	21475	18169	3306	4649	-2 396	-4 988	-1.9
Q3	46772	58663	-11891	22936	18449	4487	6521	-1404	-2 287	-0.9
Q4	44274	57678	-13 404	22307	18383	3924	7516	-2 546	-4 510	-1.7
2003 Q1	49034	59686	-10 652	23179	18993	4186	8126	-2 237	-577	-0.2
Q2	46813	57856	-11043	23082	18854	4228	5100	-2 898	-4 613	-1.7
Q3	46302	58602	-12 300	23635	19382	4253	4994	-2 501	-5 554	-2.0
Q4	46466	60335	-13 869	23720	19505	4215	5972	-2 325	-6 007	-2.1
2004 Q1	46184	59700	-13 516	24613	19131	5482	5992	-2 715	-4757	-1.7
Q2	47044	62092	-15 048	24905	19583	5322	6676	-2 395	-5 445	-1.9
Q3	48228	63823	-15 595	24884	19875	5009	4358	-2 776	-9 004	-3.1
Q4	49494	65595	-16101	25754	20335	5419	9438	-2 869	-4 113	-1.4
2005 Q1	49129	64864	-15 735	25627	21012	4615	7272	-3 488	-7 336	-2.5
Q2	52056	66646	-14590	25789	20977	4812	9228	-2 500	-3 050	-1.0
Q3	53176	69883	-16707	24727	20793	3934
Monthly										
2003 Jan	16537	20055	-3 518	7605	6299	1306
Feb	16460	19594	-3134	7762	6335	1427
Mar	16037	20037	-4 000	7812	6359	1453
Apr	16545	19139	-2 594	7669	6193	1476
May	15293	19405	-4 112	7712	6349	1363
Jun	14975	19312	-4337	7701	6312	1389
Jul	15675	19479	-3804	7792	6440	1352
Aug	15441	19037	-3 596	7921	6489	1432
Sep	15186	20086	-4900	7922	6453	1469
Oct	15729	20174	-4 445	7852	6275	1577
Nov	15110	19919	-4 809	7867	6501	1366
Dec	15627	20242	-4615	8001	6729	1272
2004 Jan	15077	20304	-5 227	8121	6440	1681
Feb	15254	19434	-4 180	8266	6386	1880
Mar	15853	19962	-4 109	8226	6305	1921
Apr	15720	20737	-5 017	8345	6466	1879
May	15455	20462	-5 007	8301	6510	1791
Jun	15869	20893	-5 024	8259	6607	1652
Jul	15896	21205	-5 309	8193	6574	1619
Aug	15901	21233	-5 332	8294	6639	1655
Sep	16431	21385	-4954	8397	6662	1735
Oct	16202	21741	-5 539	8543	6671	1872
Nov	16517	21805	-5 288	8616	6775	1841
Dec	16775	22049	-5 274	8595	6889	1706
2005 Jan	16270	21675	-5 405	8590	6934	1656
Feb	16153	21442	-5 289	8575	7011	1564
Mar	16706	21747	-5 041	8462	7067	1395
Apr	16992	22315	-5 323	8479	7008	1471
May	16895	21995	-5 100	8638	7120	1518
Jun	18169	22336	-4 167	8672	6849	1823
Jul	17350^{\dagger}	$22716{ }^{\dagger}$	$-5366{ }^{\dagger}$	8621	7040	1581
Aug	17734	23634	-5 900	7235	6951	284
Sep	18092	23533	-5 441	8586	7021	1565

1 Using series YBHA: GDP at current market prices

Balance of Payments : Current account

Balance of Trade in goods

2.14

Trade in goods (on a balance of payments basis)

	Volume indices (SA)		Price indices (NSA)		
	Exports	Imports	Exports	Imports	Terms of trade ${ }^{1}$
Annual					
	BQKU	BQKV	BQKR	BQKS	BQKT
2000	99.1	90.9	101.7	103.5	98.3
2001	101.7	95.9	100.0	102.6	97.5
2002	100.0	100.0	100.0	100.0	100.0
2003	99.7	102.0	101.8	99.3	102.5
2004	101.5	108.9	101.6	98.6	103.0
Quarterly					
2000 Q1	94.6	87.0	100.4	101.3	99.1
Q2	99.3	90.0	101.0	102.7	98.3
Q3	99.4	92.1	102.7	104.8	98.0
Q4	103.0	94.6	102.7	105.1	97.7
2001 Q1	104.2	95.9	101.6	104.7	97.0
Q2	101.8	95.8	101.8	104.6	97.3
Q3	100.9	95.4	99.3	101.7	97.6
Q4	100.0	96.4	97.4	99.5	97.9
2002 Q1	98.9	97.2	100.2	100.9	99.3
Q2	104.9	101.6	101.1	100.8	100.3
Q3	100.6	101.3	99.9	99.5	100.4
Q4	95.6	99.9	98.8	98.9	99.9
2003 Q1	103.5	102.9	101.8	99.5	102.3
Q2	99.0	99.7	102.2	99.2	103.0
Q3	97.6	100.9	102.2	99.6	102.6
Q4	98.9	104.4	101.1	98.8	102.3
2004 Q1	99.7	105.2	99.6	96.9	102.8
Q2	100.7	108.2	100.9	98.2	102.7
Q3	102.4	110.0	102.2	99.4	102.8
Q4	103.2	112.2	103.6	99.8	103.8
2005 Q1	102.1	110.2	104.2	100.6	103.6
Q2	109.0	112.9	104.6	101.1	103.5
Q3	110.5	116.3	107.4	103.9	103.4
Monthly					
2003 Jan	105.9	103.9	100.4	98.7	101.7
Feb	104.1	101.9	101.5	99.2	102.3
Mar	100.4	102.9	103.4	100.5	102.9
Apr	104.8	98.4	102.0	99.8	102.2
May	96.8	100.4	102.9	99.3	103.6
Jun	95.4	100.3	101.8	98.5	103.4
Jul	99.3	100.7	101.9	99.1	102.8
Aug	97.3	98.2	102.8	99.8	103.0
Sep	96.3	103.8	102.0	99.8	102.2
Oct	100.5	104.2	101.6	99.3	102.3
Nov	96.1	103.5	100.9	98.9	102.0
Dec	100.0	105.5	100.7	98.3	102.4
2004 Jan	97.1	107.3	99.7	97.2	102.6
Feb	99.4	103.3	98.7	96.0	102.8
Mar	102.5	104.9	100.4	97.6	102.9
Apr	101.1	108.7	100.7	97.8	103.0
May	99.0	106.5	101.7	98.9	102.8
Jun	102.1	109.4	100.3	98.0	102.3
Jul	102.4	110.8	100.6	98.3	102.3
Aug	101.1	110.0	102.3	99.6	102.7
Sep	103.7	109.3	103.7	100.4	103.3
Oct	100.3	110.9	105.3	101.1	104.2
Nov	102.7	111.3	103.9	99.9	104.0
Dec	106.5	114.4	101.7	98.3	103.5
2005 Jan	101.5	111.0	103.6	100.2	103.4
Feb	101.0	108.4	103.7	100.4	103.3
Mar	103.8	111.3	105.4	101.1	104.3
Apr	106.4	113.7	104.5	100.6	103.9
May	105.7	112.1	104.8	101.0	103.8
Jun	114.9	112.8	104.6	101.8	102.8
Jul	$107.3{ }^{\dagger}$	$113.1{ }^{\dagger}$	107.3	$104.2{ }^{\dagger}$	$103.0{ }^{\dagger}$
Aug	110.9	117.8	107.7^{\dagger}	104.0	103.6
Sep	113.4	117.9	107.1	103.6	103.4

1 Price index for exports expressed as a percentage of price index for imports.

	Summary measures						Export unit value index ${ }^{1,6}$				
	Relative export prices ${ }^{6}$	$\begin{array}{r} \text { Relative } \\ \text { wholesale } \\ \text { prices } \\ (1990=100) \\ \hline \end{array}$	IMF index of relative unit labour costs ${ }^{6}$		Import price competitiveness ${ }^{2,4}$	Relative profitability of exports ${ }^{2}$	United Kingdom	United States	Japan	France	Germany ${ }^{3}$
			Actual	Normalised							
	CTPC	CTPD	CTPE	CTPF	BBKM	BBKN	CTPI	CTPJ	CTPK	CTPL	CTPM
1997	111.4	114.7	130.4	123.6	105.9	97.4	98.7	101.2	83.8	86.0	80.3
1998	111.4	..	141.2	131.5	109.2	95.8	97.7	101.2	78.1	86.0	80.5
1999	114.2	..	141.7	133.9	109.7	94.4	97.4	101.1	82.7	81.4	76.7
2000	118.2	..	147.8	141.6	106.9	93.7	94.9	102.3	86.5	71.3	66.7
2001	117.0	..	143.9	141.4	105.6	95.8	90.7	102.3	78.3	69.5	64.7
2002	109.0	96.0
2000 Q1	119.4	..	149.4	142.1	108.7	92.0	99.3	102.1	86.2	76.0	71.5
Q2	118.2	.	148.9	141.2	108.6	93.2	95.8	102.5	86.2	72.1	67.5
Q3	116.7	..	146.2	140.2	107.0	94.6	93.0	102.6	87.2	70.1	65.4
Q4	117.9	..	146.8	142.7	105.4	94.9	91.4	102.3	86.5	67.6	62.8
2001 Q1	115.5	.	142.2	138.8	105.0	95.3	92.6	102.0	84.4	72.2	66.7
Q2	117.4	..	144.3	141.9	104.8	95.5	90.7	101.9	82.4	68.5	63.0
Q3	117.6	..	144.2	142.1	107.1	95.6	92.3	101.8	84.2	70.1	64.2
Q4	117.7	..	144.8	142.7	108.0	94.8	92.9	101.7	84.2	70.8	64.7
2002 Q1	109.2	95.9
Q2	109.4	96.8
Q3	108.0	95.7
Q4	109.3	94.6
2003 Q1	109.4	96.7
Percentage change, quarter on corresponding quarter of previous year											
2001 Q2	-0.7	..	-3.1	0.5	-3.5	2.5	-5.3	-0.6	-4.4	-5.0	-6.7
Q3	0.8	..	-1.4	1.4	0.1	1.1	-0.8	-0.8	-3.4	0.0	-1.8
Q4	-0.2	..	-1.4	0.0	2.5	-0.1	1.6	-0.6	-2.7	4.7	3.0
2002 Q1	4.0	0.6
Q2	4.4	1.4
Q3	0.8	0.1
Q4	1.2	-0.2
2003 Q1	0.2	0.8

	Wholesale price index ${ }^{1}(1990=100)$					Unit labour costs index ${ }^{1,6}$				
	United Kingdom	United States	Japan	France	Germany ${ }^{3}$	United Kingdom	United States	Japan	France	Germany ${ }^{3}$
	CTPN	CTPO	CTPP	CTPQ	CTPR	CTPS	CTPT	CTPU	CTPV	CTPW
1998	116.5	106.8	102.7	118.6	95.6	70.5	82.8	77.1
1999	115.1	108.4	114.1	.	..	116.2	95.1	77.9	79.3	73.7
2000	108.0	94.9	77.5	68.2	61.6
2001	103.3	100.8	71.1	66.4	59.5
1999 Q4	116.8	109.7	123.4	116.8	94.6	82.2	77.1	70.5
2000 Q1	115.6	94.0	81.3	73.1	67.2
Q2	109.8	94.1	78.8	69.0	62.9
Q3	104.6	94.9	76.1	66.8	59.5
Q4	102.2	96.5	74.0	64.3	57.5
2001 Q1	104.3	99.2	72.5	68.5	61.5
Q2	101.6	100.8	70.7	64.8	58.0
Q3	103.2	101.4	71.3	66.1	59.1
Q4	104.2	101.7	70.1	66.4	59.5
Percentage change, quarter on corresponding quarter of previous year										
1999 Q4	-0.6	2.7	12.2	-3.6	-1.0	5.8	-12.0	-15.3
2000 Q1	-2.3	-1.1	3.4	-12.6	-14.8
Q2	-5.3	-1.3	5.8	-12.3	-17.2
Q3	-8.3	-0.7	-0.8	-14.4	-16.8
Q4	-12.5	2.0	-10.0	-16.6	-18.4
2001 Q1	-9.8	5.5	-10.8	-6.3	-8.5
Q2	-7.5	7.1	-10.3	-6.1	-7.8
Q3	-1.3	6.8	-6.3	-1.0	-0.7
Q4	2.0	5.4	-5.3	3.3	3.5

[^11]

Not seasonally adjusted except series RNPE

	Consumer prices index Producer price index $(2000=100)$	$(1996=100)$$\quad$Pensioner price index ${ }^{6}$ (January 13, $1987=100)$

	Materials and fuel purchased by manufacturing industry (SA) ${ }^{1,2}$	Output: all manufactured products: home sales	All items		All items (RPI)		All items excluding mortgage interest payments (RPIX)		All items excluding mortgage interest payments \& indirect taxes (RPIY) ${ }^{5}$			Purchasingpowerof thepound2-person(NSA)household $(1985=100)$	
			Index	Percentage change on a year earlier	Index	Percentage change on a year earlier	Index	Percentage change on a year earlier	Index	Percentage change on a year earlier	1-person household		
Annual													
	RNPE	PLLU	CHVJ	CJYR	CHAW	CZBH	CHMK	CDKQ	CBZW	CBZX	CZIF	CZIU	FJAK
2001	98.8	99.7	106.9	1.2	173.3	1.8	171.3	2.1	163.7	2.4	152.7	158.5	55
2002	$94.4 r^{\dagger}$	† 99.8	108.3	1.3	176.2	1.7	175.1	2.2	167.5	2.3	155.3	160.9	54
2003	95.7 r	101.3	109.8	1.4	181.3	2.9	180.0	2.8	172.0	2.7	158.1	163.8	52
2004	99.5	103.8	111.2	1.3	186.7	3.0	184.0	2.2	175.5	2.0	160.9	166.4	51
Quarterly													
2001 Q1	$100.9{ }^{\dagger}$	99.7	105.7	0.9	171.8	2.6	168.9	1.9	161.1	1.6	150.6	156.5	55
Q2	101.8	100.1	107.3	1.5	173.9	1.9	171.8	2.3	164.1	2.6	153.3	159.3	54
Q3	98.2	99.8	107.3	1.5	174.0	1.8	172.1	2.4	164.6	2.8	153.0	158.9	54
Q4	94.2	99.3	107.4	1.0	173.8	1.0	172.4	2.0	165.0	2.4	153.9	159.3	55
2002 Q1	94.2	99.2	107.4	1.5	173.9	1.2	172.9	2.4	165.5	2.7	154.7	160.1	54
Q2	95.2 r	99.8	108.3	0.9	176.0	1.2	175.0	1.9	167.1	1.8	155.3	161.0	54
Q3	$94.2 r$	99.9	108.4	1.1	176.6	1.5	175.5	2.0	167.8	1.9	155.0	160.7	54
Q4	93.9 r	100.1	109.0	1.6	178.2	2.5	176.9	2.6	169.5	2.7	156.1	161.7	53
2003 Q1	95.9 r	100.9	109.0	1.5	179.2	3.0	177.9	2.9	170.6	3.1	156.7	162.6	53
Q2	94.8 r	101.1	109.7	1.3	181.3	3.0	180.1	2.9	171.8	2.8	157.9	163.7	52
Q3	95.4 r	101.3	109.9	1.4	181.8	2.9	180.5	2.8	172.3	2.7	158.3	164.0	52
Q4	96.7 r	101.7	110.5	1.3	182.9	2.6	181.5	2.6	173.2	2.2	159.4	165.0	52
2004 Q1	95.7 r	102.4	110.4	1.3	183.8	2.6	182.0	2.3	173.8	1.9	159.7	165.4	51
Q2	98.6 r	103.4	111.2	1.4	186.3	2.8	184.0	2.2	175.4	2.1	160.9	166.6	51
Q3	100.5r	104.2	111.2	1.2	187.4	3.1	184.3	2.1	175.6	1.9	160.5	166.1	50
Q4	103.1r	105.1	112.0	1.4	189.2	3.4	185.6	2.3	177.1	2.3	162.3	167.6	50
2005 Q1	105.8r	105.2	112.3	1.7	189.7	3.2	186.0	2.2	177.5	2.1	163.4	168.3	50
Q2	108.4	106.3	113.4	1.9	191.9	3.0	188.1	2.2	179.3	2.2	164.8	169.8	49
Q3	113.0\#	\# 107.4p	113.9	2.4	192.6	2.8	188.7	2.4	179.9	2.4	165.1	170.1	49
Monthly													
2004 Jan	$95.6 \mathrm{r}^{\dagger}$	$\dagger \quad 102.1$	110.1	1.4	183.1	2.6	181.4	2.4	173.2	2.0	.	..	52
Feb	94.9r	102.3	110.4	1.3	183.8	2.5	182.0	2.3	173.9	1.9	..	.	51
Mar	96.6 r	102.8	110.6	1.1	184.6	2.6	182.5	2.1	174.3	1.7	..		51
Apr	97.6 r	103.1	111.0	1.2	185.7	2.5	183.6	2.0	174.9	1.8	..		51
May	99.9 r	103.5	111.4	1.5	186.5	2.8	184.3	2.3	175.6	2.2	..		51
Jun	98.4 r	103.6	111.3	1.6	186.8	3.0	184.2	2.3	175.6	2.3	..	.	51
Jul	99.1	103.8	111.0	1.4	186.8	3.0	183.8	2.2	175.1	2.0	51
Aug	100.2r	104.2	111.3	1.3	187.4	3.2	184.3	2.2	175.7	2.0	..		50
Sep	102.3r	104.5	111.4	1.1	188.1	3.1	184.7	1.9	176.1	1.7	..		50
Oct	105.Or	105.2	111.7	1.2	188.6	3.3	185.1	2.1	176.6	2.0	..		50
Nov	103.2r	105.3	111.9	1.5	189.0	3.4	185.4	2.2	176.9	2.2	..		50
Dec	101.2	104.9	112.5	1.6	189.9	3.5	186.4	2.5	177.9	2.5	..	.	50
2005 Jan	105.Or	104.8	111.9	1.6	188.9	3.2	185.2	2.1	176.7	2.0	50
Feb	105.3r	105.1	112.2	1.6	189.6	3.2	185.9	2.1	177.4	2.0	.	.	50
Mar	107.2	105.8	112.7	1.9	190.5	3.2	186.8	2.4	178.3	2.3	..		50
Apr	107.6	106.5	113.1	1.9	191.6	3.2	187.8	2.3	179.0	2.3	49
May	107.5	106.3	113.5	1.9	192.0	2.9	188.2	2.1	179.4	2.2	..		49
Jun	110.1	106.2	113.5	2.0	192.2	2.9	188.3	2.2	179.5	2.2	..	.	49
Jul	113.2	107.0	113.6	2.3	192.2	2.9	188.3	2.4	179.5	2.5	49
Aug	113.1r	107.3	114.0	2.4	192.6	2.8	188.6	2.3	179.8	2.3	..		49
Sep	112.6p	- 108.0p	114.2	2.5	193.1	2.7	189.3	2.5	180.5	2.5	49
Oct	112.9p	- 107.9p	114.3	2.3	193.3	2.5	189.5	2.4	180.7	2.3	..	.	49

[^12]

4.1
 Labour Market Activity ${ }^{1,2}$
 United Kingdom

Thousands, seasonally adjusted ${ }^{\circ}$

	Employment categories					Unemployment	Total economically active	Economically inactive	Total aged 16 and over	Employment rate: age $16-59 / 64^{4}$
	Employees	Self employed	Unpaid family workers	Government training and employment programmes	Total employment					
TOTAL										
	MGRN	MGRQ	MGRT	MGRW	MGRZ	MGSC	MGSF	MGSI	MGSL	MGSU
2003 Q1	24452	3435	83	94	28065	1524	29588	17358	46946	74.6
Q2	24456	3555	88	93	28191	1463	29654	17366	47020	74.8
Q3	24360	3647	108	107	28222	1499	29721	17377	47098	74.6
Q4	24388	3659	99	108	28254	1458	29712	17470	47183	74.6
2004 Q1	24550	3628	103	116	28398	1432	29830	17438	47268	74.8
Q2	24518	3670	98	125	28410	1434	29844	17509	47352	74.7
Q3	24660	3585	91	128	28465	1392	29857	17586	47443	74.7
Q4	24712	3643	97	126	28577	1418	29995	17549	47544	74.9
2005 Q1	24806	3627	104	126	28663	1408	30071	17574	47646	74.9
Q2	24841	3618	100	116	28675	1434	30109	17638	47747	74.7
Q3	24942	3656	93	107	28798	1433	30231	17615	47846	74.9
Percentage change on quarter										
2005q2 to 2005q3	0.4	1.1	-7.5	-7.4	0.4	-0.1	0.4	-0.1	0.2	
Percentage chang 2004q3 to 2005q3	year 1.1	2.0	2.7	-16.4	1.2	2.9	1.3	0.2	0.8	
MALE										
	MGRO	MGRR	MGRU	MGRX	MGSA	MGSD	MGSG	MGSJ	MGSM	MGSV
2003 Q1	12594	2505	26	56	15181	926	16107	6586	22694	79.1
Q2	12602	2604	32	53	15291	886	16177	6560	22738	79.5
Q3	12512	2672	41	61	15285	896	16180	6602	22783	79.3
Q4	12482	2680	38	60	15261	879	16140	6691	22830	79.0
2004 Q1	12581	2657	42	68	15348	841	16190	6688	22878	79.4
Q2	12544	2695	41	73	15353	841	16195	6731	22926	79.2
Q3	12628	2653	35	75	15391	815	16206	6769	22976	79.3
Q4	12646	2685	37	75	15443	834	16277	6754	23031	79.3
2005 Q1	12700	2666	41	70	15477	830	16306	6780	23086	79.3
Q2	12697	2659	38	71	15465	834	16299	6842	23141	79.1
Q3	12735	2675	34	63	15507	849	16356	6840	23196	79.1
Percentage change on quarter										
2005q2 to 2005q3	0.3	0.6	-9.4	-11.3	0.3	1.8	0.3	0.0	0.2	
Percentage chang 2004q3 to 2005q3	near 0.8	0.8	-2.8	-15.4	0.8	4.2	0.9	1.0	1.0	
FEMALE										
	MGRP	MGRS	MGRV	MGRY	MGSB	MGSE	MGSH	MGSK	MGSN	MGSW
2003 Q1	11858	930	57	38	12883	598	13481	10771	24252	69.7
Q2	11853	951	56	40	12900	578	13477	10805	24283	69.7
Q3	11848	975	67	46	12937	603	13541	10775	24315	69.7
Q4	11906	979	61	47	12993	579	13572	10780	24352	69.8
2004 Q1	11969	971	61	48	13049	591	13640	10749	24390	70.0
Q2	11974	975	57	52	13057	592	13649	10778	24427	69.8
Q3	12032	933	55	53	13073	577	13650	10817	24467	69.9
Q4	12066	958	59	50	13134	584	13718	10795	24513	70.1
2005 Q1	12106	962	63	55	13186	578	13765	10795	24559	70.1
Q2	12144	959	63	44	13210	600	13810	10796	24606	70.1
Q3	12207	981	59	44	13291	584	13875	10775	24650	70.4
Percentage change on quarter										
2005q2 to 2005q3	0.5	2.4	-6.3	-1.1	0.6	-2.7	0.5	-0.2	0.2	
Percentage change on year										

1 The data in this table have been adjusted to reflect the latest revisions to 3 Seasonally adjusted estimates are revised in September each year.
mid-year population data.
Data are from the Labour Force Survey which uses the definitions recom-
mended by the International Labour Organisation (ILO), an agency of the
United Nations. For details see the Guide to Labour Market Statistics
Releases.

4 The employment rate equals those in employment aged 16-64 (male) and 16-59 (female), as a percentage of all in these age groups. The underlying data are available on request.

Source: Office for National Statistics; Enquiries 02075336094

4.2
 Labour Market Activity ${ }^{1,2}$
 United Kingdom

Thousands, not seasonally adjusted

	Employment categories					Unemployment	Total economically active	Economically inactive	Total aged 16 and over	Employment rate: age $16-59 / 64^{3}$
	Employees	Self employed	Unpaid family workers	Government training and employment programmes	Total employment					
TOTAL										
	MGTA	MGTD	MGTG	MGTJ	MGTM	MGTP	MGTS	MGTV	MGSL	MGUH
2003 Q1	24363	3426	83	99	27971	1525	29497	17450	46946	74.3
Q2	24412	3545	86	91	28134	1416	29550	17470	47020	74.6
Q3	24441	3670	110	101	28321	1572	29892	17202	47098	74.9
Q4	24433	3660	100	110	28303	1422	29724	17445	47183	74.7
2004 Q1	24463	3615	104	121	28302	1429	29731	17513	47268	74.6
Q2	24454	3659	96	121	28330	1387	29717	17601	47352	74.5
Q3	24713	3603	91	123	28530	1463	29993	17399	47443	75.0
Q4	24719	3642	97	127	28586	1378	29963	17502	47544	75.0
2005 Q1	24683	3606	105	130	28524	1398	29922	17616	47646	74.7
Q2	24720	3600	98	112	28529	1383	29912	17699	47747	74.6
Q3	25018	3682	91	102	28893	1508	30401	17444	47846	75.2
Percentage change on year$2004 q 3$ to 2005q3										
MALE										
	MGTB	MGTE	MGTH	MGTK	MGTN	MGTQ	MGTT	MGTW	MGSM	MGUI
2003 Q1	12521	2499	27	59	15107	938	16045	6649	22694	78.7
Q2	12576	2594	31	52	15253	864	16116	6621	22738	79.3
Q3	12587	2685	41	58	15371	921	16292	6489	22783	79.8
Q4	12502	2689	38	62	15291	855	16146	6679	22830	79.2
2004 Q1	12511	2647	44	70	15273	851	16124	6745	22878	79.0
Q2	12510	2684	40	71	15305	819	16124	6789	22926	79.0
Q3	12691	2664	35	73	15462	840	16302	6653	22976	79.7
Q4	12648	2692	37	77	15454	808	16262	6735	23031	79.5
2005 Q1	12615	2649	43	72	15379	835	16213	6824	23086	79.0
Q2	12633	2644	36	69	15383	808	16191	6888	23141	78.9
Q3	12806	2692	33	61	15591	877	16468	6727	23196	79.5
Percentage change on year										
FEMALE										
	MGTC	MGTF	MGTI	MGTL	MGTO	MGTR	MGTU	MGTX	MGSN	MGUJ
2003 Q1	11843	927	55	40	12865	587	13452	10801	24252	69.6
Q2	11836	952	55	39	12881	552	13434	10849	24283	69.6
Q3	11854	984	69	43	12950	650	13600	10713	24315	69.7
Q4	11930	971	62	48	13011	567	13578	10766	24352	70.0
2004 Q1	11952	967	60	51	13029	578	13608	10767	24390	69.9
Q2	11945	975	56	50	13025	568	13593	10812	24427	69.7
Q3	12022	940	56	50	13068	623	13691	10746	24467	70.0
Q4	12071	950	60	51	13132	570	13702	10767	24513	70.2
2005 Q1	12068	957	62	58	13146	563	13709	10792	24559	70.1
Q2	12086	956	62	42	13147	575	13721	10811	24606	70.0
Q3	12212	991	59	41	13302	631	13933	10717	24650	70.5
Percentage change on year										

1 The data in this table have been adjusted to reflect the latest revisions to 3 The employment rate equals those in employment aged 16-64 (male) and
2 Data are from the Labour Force Survey which uses the definitions recom-6-59 (female), as a percentage of all in these age groups. The underlying data mended by the International Labour Organisation (ILO) an agency of the United Nations. For details see the Guide to Labour Market Statistics Releases.

UNEMPLOYMENT RATE (seasonally adjusted)
Percentage

TOTAL EMPLOYMENT (seasonally adjusted)
Quarter on previous quarter percentage change

$4 \begin{aligned} & \text { Labour Market Activity by age }{ }^{1,2} \text { United Kingdom }\end{aligned}$

	Total aged 16 and over			Age groups ${ }^{4}$							
	Total	Male	Female	16-24		25-49		50-59/64		60/65 and over	
				Male	Female	Male	Female	Male	Female	Male	Female
In employment											
	MGRZ	MGSA	MGSB	MGUR	MGUS	MGUU	MGUV	MGUX	MGUY	MGVA	MGVB
2003 Q3	28222	15285	12937	2118	1945	9145	7800	3687	2561	335	631
Q4	28254	15261	12993	2124	1983	9113	7833	3691	2535	332	643
2004 Q1	28398	15348	13049	2151	2011	9149	7828	3714	2558	334	651
Q2	28410	15353	13057	2166	1978	9127	7856	3721	2554	340	669
Q3	28465	15391	13073	2157	1987	9159	7871	3736	2561	338	653
Q4	28577	15443	13134	2157	1993	9182	7886	3759	2589	345	666
2005 Q1	28663	15477	13186	2171	1984	9177	7923	3773	2587	356	693
Q2	28675	15465	13210	2159	1977	9178	7937	3774	2592	355	704
Q3	28798	15507	13291	2149	1971	9195	8003	3800	2611	363	708
Unemployed											
	MGSC	MGSD	MGSE	MGVG	MGVH	MGVJ	MGVK	MGVM	MGVN	MGVP	MGVQ
2003 Q3	1499	896	603	342	238	404	288	141	71		
Q4	1458	879	579	331	221	399	284	139	65	10	.
2004 Q1	1432	841	591	329	233	370	285	133	64	10	
Q2	1434	841	592	328	246	368	281	136	56		
Q3	1392	815	577	342	248	331	262	133	59		
Q4	1418	834	584	350	248	342	269	131	60	11	.
2005 Q1	1408	830	578	341	231	346	278	134	60		
Q2	1434	834	600	362	249	341	278	123	64		10
Q3	1433	849	584	370	237	335	270	133	63	10	14
Economically inactive											
	MGSI	MGSJ	MGSK	MGVV	MGVW	MGVY	MGVZ	MGWB	MGWC	MGWE	MGWF
2003 Q3	17377	6602	10775	905	1124	792	2471	1316	1171	3589	6009
Q4	17470	6691	10780	932	1119	832	2446	1325	1206	3602	6008
2004 Q1	17438	6688	10749	929	1095	827	2453	1318	1188	3614	6014
Q2	17509	6731	10778	936	1132	853	2432	1320	1203	3622	6010
Q3	17586	6769	10817	950	1136	864	2442	1318	1197	3638	6042
Q4	17549	6754	10795	960	1142	841	2433	1310	1171	3642	6049
2005 Q1	17574	6780	10795	972	1180	855	2399	1306	1176	3647	6039
Q2	17638	6842	10796	981	1182	870	2398	1327	1169	3664	6047
Q3	17615	6840	10775	998	1211	870	2352	1305	1154	3666	6058
Economic activity rate (per cent) ${ }^{5}$											
	MGWG	MGWH	MGWI	MGWK	MGWL	MGWN	MGWO	MGWQ	MGWR	MGWT	MGWU
2003 Q3	63.1	71.0	55.7	73.1	66.0	92.3	76.6	74.4	69.2	8.7	9.6
Q4	63.0	70.7	55.7	72.5	66.3	92.0	76.8	74.3	68.3	8.7	9.8
2004 Q1	63.1	70.8	55.9	72.7	67.2	92.0	76.8	74.5	68.8	8.7	9.9
Q2	63.0	70.6	55.9	72.7	66.3	91.8	77.0	74.5	68.4	8.8	10.1
Q3	62.9	70.5	55.8	72.5	66.3	91.7	76.9	74.6	68.6	8.7	9.9
Q4	63.1	70.7	56.0	72.3	66.2	91.9	77.0	74.8	69.3	8.9	10.0
2005 Q1	63.1	70.6	56.0	72.1	65.2	91.8	77.4	74.9	69.2	9.1	10.4
Q2	63.1	70.4	56.1	72.0	65.3	91.6	77.4	74.6	69.4	9.0	10.6
Q3	63.2	70.5	56.3	71.6	64.6	91.6	77.9	75.1	69.8	9.2	10.6
Unemployment rate (per cent) ${ }^{6}$											
	MGSX	MGSY	MGSZ	MGWZ	MGXA	MGXC	MGXD	MGXF	MGXG	MGXI	MGXJ
2003 Q3	5.0	5.5	4.5	13.9	10.9	4.2	3.6	3.7	2.7		
Q4	4.9	5.4	4.3	13.5	10.0	4.2	3.5	3.6	2.5	3.0	.
2004 Q1	4.8	5.2	4.3	13.3	10.4	3.9	3.5	3.5	2.4	2.8	..
Q2	4.8	5.2	4.3	13.2	11.1	3.9	3.5	3.5	2.2		
Q3	4.7	5.0	4.2	13.7	11.1	3.5	3.2	3.4	2.2		..
Q4	4.7	5.1	4.3	14.0	11.1	3.6	3.3	3.4	2.3	3.0	.
2005 Q1	4.7	5.1	4.2	13.6	10.4	3.6	3.4	3.4	2.3	.	
Q2	4.8	5.1	4.3	14.4	11.2	3.6	3.4	3.2	2.4		1.3
Q3	4.7	5.2	4.2	14.7	10.7	3.5	3.3	3.4	2.4	2.7	1.9

1 The data in this table have been adjusted to reflect the latest revisions to 3 Seasonally adjusted estimates are revised in September each year. mid-year population data. 4 Data for more detailed age groups are published in Labour Market Trends.
2 Data are from the Labour Force Survey which uses the definitions recomm- 5 The activity rate is the percentage of people in each age group who are ended by the International Labour Organisation (ILO), an agency of the Unit- economically active.
ed Nations. For details see the Guide to Labour Market Statistics Releases. 6 Unemployment rate is the percentage of economically active people who are unemployed on the ILO measure.

Source: Office for National Statistics; Enquiries 02075336094

4.4
 Jobs and claimant count
 United Kingdom

Thousands

	Jobs ${ }^{1}$					Claimant count ${ }^{5,6,8}$			Vacancies: average for three months ending in month shown ${ }^{9}$
	Workforce jobs ${ }^{2,3,4}$	Employee jobs ${ }^{3,4}$					Percentage of workforce jobs and claimant count ${ }^{7}$	Total Not seasonally adjusted	
		All industries	Manufacturing industry	Production industry	Service industries	Total			
Annual									
	DYDC	BCAJ	YEJA	YEJF	YEID	BCJD	BCJE	BCJA	AP2Y
2002	29875	25990	3599	3801	20771	946.6	3.1	958.8	..
2003	30213	26105	3415	3602	21064	933.3	3.0	945.9	..
2004	30440	26264	3282	3459	21309	853.6	2.7	866.1	..
2005	30590	26450	3184	3361	21548
Quarterly									
2002 Q1	29845	26024	3648	3854	20719	952.5	3.1	1014.6	..
Q2	29875	25990	3599	3801	20771	950.6	3.1	958.1	..
Q3	29911	25989	3552	3747	20840	946.5	3.1	951.8	..
Q4	29991	26046	3512	3701	20934	937.0	3.0	910.6	..
2003 Q1	30065	26031	3469	3655	20953	939.0	3.0	1001.1	..
Q2	30213	26105	3415	3602	21064	945.3	3.0	954.3	.
Q3	30311	26108	3367	3549	21088	934.6	3.0	939.0	..
Q4	30396	26191	3330	3508	21192	914.2	2.9	889.2	..
2004 Q1	30412	26219	3301	3478	21239	885.8	2.8	947.2	..
Q2	30440	26264	3282	3459	21309	861.3	2.8	871.8	..
Q3	30405	26268	3257	3434	21334	836.3	2.7	839.0	..
Q4	30547	26384	3241	3418	21411	831.1	2.7	806.7	..
2005 Q1	30639	26489	3222	3399	21518	820.9	2.6	879.8	..
Q2	30590	26450	3184	3361	21548	853.8	2.8	865.9	..
Q3	3163	3341	..	870.0^{\dagger}	2.8	874.4	..
Monthly									
2004 Jan	3315	3493	..	893.2	2.9	952.4	608.3
Feb	..		3310	3487		884.2	2.8	957.0	611.2
Mar	..	26219	3301	3478	21239	879.9	2.8	932.0	616.4
Apr	3294	3471	..	871.5	2.8	905.2	623.3
May	3287	3464	..	860.9	2.8	869.7	628.4
Jun	..	26264	3282	3459	21309	851.5	2.7	840.5	632.6
Jul	3274	3451	..	838.2	2.7	841.5	646.5
Aug	3264	3442		834.8	2.7	847.6	647.2
Sep	..	26268	3257	3434	21334	836.0	2.7	827.8	$643.2+$
Oct	3249	3425	..	836.4	2.7	806.8	$638.4{ }^{\dagger}$
Nov	..		3241	3418		831.9	2.7	803.0	640.7
Dec	.	26384	3241	3418	21406	825.0	2.6	810.2	648.0
2005 Jan	3238	3415	..	813.8	2.6	872.1	655.0
Feb	3229	3405	..	817.7	2.6	885.0	647.4
Mar	..	26489	3222	3399	21518	831.3	2.7	882.3	636.9
Apr	3214	3390	..	842.1	2.7	871.8	632.9
May	..		3197	3373		856.1	2.7	867.6	639.1
Jun	..	26450	3184	3361	21548	863.2	2.8	858.2	640.9
Jul	3175	3352	..	864.6	2.8	871.0	635.8
Aug	3166	3343	..	867.3	2.8	880.7	628.7
Sep	3163	3341	..	$878.0{ }^{\dagger}$	2.8	871.5	621.8
Oct	890.1	2.8	864.8	605.1

1 Estimates of employee jobs and workforce jobs for Great Britain now use the Annual Business Inquiry as a benchmark on which quarterly movements are based. For further information see Labour Market Statistics First Release, April 2001 which is held on the National Statistics website www.statistics.gov.uk The Northern Ireland component of workforce jobs and employee jobs has not changed.
2 Workforce jobs comprise employee jobs, self-employed jobs, HM Forces and participants in work-related government supported training, which includes the Project Work Plan
3 For all dates, individuals with two jobs as employees of different employers are counted twice.
4 Annual estimates relate to mid-year. Figures for the four quarters relate to March, June, September and December. For claimant count, unlike employment and workforce figures, the annual figure is an annual average.
5 Unadjusted claimant count figures have been affected by changes in the coverage. The seasonally adjusted figures however, as given in this table are estimated on the current basis, allowing for the discontinuities, except for the effect of the Jobseeker's Allowance introduced in October 1996 (see also below)

The seasonally adjusted figures now relate only to claimants aged 18 or over in order to maintain the consistent series, available back to 1971 (1974 for the regions), allowing for the effect of the change in benefit regulations for under 18 year olds from September 1988. (See pages 398-400 of November 1995 Labour Market Trends.)
6 Claimant count figures do not include students claiming benefit during a vaca tion who intend to return to full-time education.
7 The denominator used to calculate claimant count unemployment rates is comprised of the workforce jobs plus the claimant count.
Quarterly and annual values are now the mean of the monthly and quarterly data respectively.
The ONS Vacancy Survey, a monthly business survey of the number of job vacancies held by employers across the UK economy, has been running since April 2001. The results were adopted as National Statistics in June 2003.

Sources: Office for National Statistics,
Enquiries Columns 1-5 01633 812079; Columns 6-9 02075336094 also 24 hour recorded headline service on 02075336176

4.5
 Regional claimant count rates ${ }^{1,2}$
 by Government Office Region

Percentages

	North East	North West ${ }^{3}$	Yorkshire and the Humber	East Midlands	West Midlands	East	London	South East
Quarterly								
	DPDM	IBWC	DPBI	DPBJ	DPBN	DPDP	DPDQ	DPDR
2000 Q1	6.6	4.4	4.6	3.5	4.1	2.6	4.0	2.0
Q2	6.4	4.2	4.4	3.4	4.0	2.4	3.8	1.9
Q3	6.2	4.0	4.2	3.3	4.0	2.3	3.6	1.8
Q4	6.0	3.9	4.1	3.3	3.9	2.2	3.5	1.7
2001 Q1	5.9	3.8	4.1	3.2	3.9	2.1	3.3	1.6
Q2	5.6	3.7	4.0	3.1	3.8	2.0	3.2	1.5
Q3	5.5	3.6	3.9	3.0	3.6	2.0	3.2	1.5
Q4	5.5	3.6	3.8	3.0	3.6	2.0	3.5	1.6
2002 Q1	5.3	3.5	3.7	2.9	3.5	2.0	3.5	1.6
Q2	5.2	3.5	3.6	2.8	3.5	2.1	3.6	1.6
Q3	5.1	3.5	3.6	2.8	3.5	2.1	3.6	1.7
Q4	4.8	3.4	3.6	2.8	3.5	2.1	3.6	1.7
2003 Q1	4.7	3.3	3.4	2.8	3.5	2.1	3.6	1.7
Q2	4.6	3.3	3.4	2.9	3.5	2.1	3.7	1.7
Q3	4.5	3.2	3.3	2.9	3.5	2.1	3.7	1.7
Q4	4.4	3.1	3.2	2.8	3.5	2.1	3.6	1.7
2004 Q1	4.2	3.0	3.0	2.7	3.4	2.0	3.6	1.7
Q2	4.1	2.9	2.9	2.5	3.3	2.0	3.5	1.6
Q3	3.9	2.8	2.8	2.5	3.2	1.9	3.4	1.6
Q4	3.9	2.8	2.8	2.5	3.2	1.9	3.4	1.6
2005 Q1	3.8	2.7	2.8	2.4	3.1	1.9	3.4	1.6
Q2	3.9	2.9	3.0	2.6	3.5	2.1	3.4	1.6
Q3	4.1	3.0	3.1^{\dagger}	$2.7{ }^{\dagger}$	3.6	2.1	3.5	1.7

	South West	England	Wales	Scotland	Great Britain	Northern Ireland	United Kingdom
Quarterly							
	DPBM	VASQ	DPBP	DPBQ	DPAJ	DPBR	BCJE
2000 Q1	2.7	3.6	4.5	4.8	3.7	5.5	3.8
Q2	2.5	3.4	4.4	4.6	3.6	5.3	3.6
Q3	2.4	3.3	4.3	4.4	3.4	5.1	3.5
Q4	2.3	3.2	4.3	4.3	3.4	5.2	3.4
2001 Q1	2.1	3.1	4.2	4.1	3.2	5.0	3.3
Q2	2.1	3.0	4.0	4.0	3.1	4.9	3.2
Q3	2.0	2.9	3.8	3.9	3.1	4.8	3.1
Q4	2.0	3.0	3.8	4.0	3.1	4.7	3.1
2002 Q1	2.0	2.9	3.6	3.9	3.1	4.6	3.1
Q2	2.0	2.9	3.6	3.9	3.0	4.5	3.1
Q3	1.9	2.9	3.6	3.9	3.0	4.3	3.1
Q4	1.9	2.9	3.5	3.8	3.0	4.3	3.0
2003 Q1	1.9	2.9	3.4	3.8	3.0	4.2	3.0
Q2	1.9	2.9	3.4	3.8	3.0	4.2	3.0
Q3	1.9	2.9	3.3	3.8	3.0	4.2	3.0
Q4	1.8	2.8	3.2	3.7	2.9	4.1	2.9
2004 Q1	1.7	2.7	3.1	3.6	2.8	3.9	2.8
Q2	1.6	2.6	3.1	3.5	2.7	3.7	2.8
Q3	1.5	2.6	3.0	3.4	2.7	3.5	2.7
Q4	1.5	2.5	3.0	3.4	2.6	3.5	2.7
2005 Q1	1.5	2.5	2.9	3.3	2.6	3.4	2.6
Q2	1.6	2.7	3.1	3.3	2.7	3.5	2.8
Q3	1.6	2.7	$3.2{ }^{\dagger}$	3.2	2.8	3.3	2.8

Note: Quarterly claimant count figures relate to the average of the three months in each quarter.
Government Office Regions came into effect in April 1994. It was decided that from May 1997 sub-national data should be published for these areas rather than standard statistical regions (SSRs). Data by standard statistical regions are available on request
the effect of the change in benefit regulations for under 18 year olds from September 1988. (See pages 398-400 of the November 1995 Labour Market Trends.) The denominators used to calculate claimant count rates are the sum of the appropriate mid-year estimates of employee jobs, the self-employed, Government-supported trainees, HM Forces and claimants of unemploymentrelated benefits.

The seasonally adjusted figures now relate only to claimants aged 18 or 3 Includes Merseyside
over in order to maintain the consistent series, available back to 1971 for
Source: Office for National Statistics; Enquiries 02075336094
,
Scotland; 1986 for the Government Office Regions), allowing for

Percentages, seasonally adjusted ${ }^{4}$

[^13]

4.6
 Average earnings (including bonuses)
 Great Britain

$2000=100$

	Whole economy+	3 month average 2	Private sector	3 month average ${ }^{2}$	Public sector	3 month average ${ }^{2}$	Manufacturing industries ${ }^{3}$	3 month average ${ }^{2,3}$	Production industries	3 month average ${ }^{2}$	Service industries	3 month average ${ }^{2}$	Private sector services	3 month average ${ }^{2}$
Annual														
	LNMQ		LNKY		LNNJ		LNMR		LNMS		LNMT		JJGH	
2001	104.5		104.3		105.0		104.3		104.2		104.4		104.2	
2002	108.2		107.9		109.3		108.0		107.9		108.1		107.8	
2003	111.9		111.3		114.8		111.9		111.7		112.0		110.9	
2004	116.7		116.0		119.8		116.0		115.8		116.7		115.7	
Monthly														
		LNNC		LNND		LNNE		LNNG		LNNF		LNNH		JJGJ
2001 Jan	103.1	4.5	103.3	4.7	102.3	3.9	102.9	4.6	103.0	4.3	103.3	4.5	103.4	4.7
Feb	103.6	4.7	103.7	4.8	102.7	3.6	103.4	4.8	103.7	4.6	103.7	4.7	103.8	4.9
Mar	103.6	4.7	103.5	4.7	103.3	3.7	102.5	4.5	102.6	4.5	103.7	4.7	103.7	4.7
Apr	103.9	5.0	103.8	5.0	104.6	4.3	104.1	5.0	103.9	4.9	103.8	5.0	103.6	5.0
May	104.0	5.1	103.8	5.1	104.9	5.2	104.1	4.7	103.9	4.7	103.9	5.1	103.6	5.1
Jun	104.3	5.3	104.1	5.3	105.2	5.5	104.3	5.0	104.2	4.9	104.2	5.3	103.9	5.3
Jul	104.4	5.2	104.2	5.1	105.6	5.6	104.5	4.8	104.3	4.6	104.3	5.2	103.9	5.1
Aug	104.9	4.9	104.7	4.8	105.9	5.6	104.9	4.8	104.7	4.6	104.9	4.9	104.5	4.7
Sep	105.1	4.6	104.9	4.4	105.9	5.7	105.3	4.6	105.1	4.4	105.0	4.6	104.7	4.2
Oct	105.3	4.3	105.0	4.0	106.5	5.6	105.4	4.4	105.2	4.3	105.2	4.2	104.8	3.8
Nov	105.6	3.9	105.4	3.7	106.5	5.4	105.3	3.8	105.1	3.7	105.5	3.9	105.2	3.5
Dec	105.8	3.3	105.5	2.9	106.9	5.2	105.5	3.3	105.3	3.2	105.7	3.2	105.5	2.7
2002 Jan	106.0	2.9	105.9	2.5	107.1	4.9	106.1	3.0	106.2	2.9	106.0	2.8	105.5	2.2
Feb	106.8	2.7	106.6	2.3	107.3	4.8	106.1	2.8	105.9	2.6	106.9	2.7	106.7	2.1
Mar	106.4	2.8	105.9	2.6	107.9	4.6	105.8	3.0	106.2	2.9	106.2	2.7	105.7	2.2
Apr	107.9	3.2	108.0	3.1	108.3	4.1	107.0	2.9	106.8	2.8	107.9	3.2	107.8	2.9
May	108.0	3.5	107.8	3.4	108.6	3.8	107.7	3.2	107.5	3.2	108.0	3.4	107.8	3.3
Jun	108.2	3.8	108.1	3.9	108.9	3.5	108.2	3.3	108.0	3.3	108.2	3.9	108.1	4.0
Jul	108.5	3.8	108.3	3.9	109.7	3.6	108.4	3.6	108.2	3.6	108.6	3.9	108.1	4.0
Aug	108.7	3.8	108.6	3.8	109.0	3.4	108.9	3.7	108.8	3.8	108.6	3.8	108.4	3.9
Sep	109.0	3.8	108.8	3.8	110.0	3.6	108.9	3.7	108.9	3.8	108.9	3.8	108.6	3.8
Oct	109.3	3.7	109.0	3.8	110.9	3.7	109.5	3.8	109.4	3.9	109.2	3.7	108.7	3.7
Nov	110.1	4.0	109.7	3.9	111.7	4.3	109.7	3.9	109.6	4.0	110.2	4.0	109.7	3.9
Dec	109.5	3.9	108.6	3.6	112.2	4.7	110.0	4.1	109.9	4.2	108.9	3.8	108.1	3.5
2003 Jan	109.0	3.5	108.6	3.2	112.6	5.0	110.2	4.1	110.2	4.1	108.9	3.4	107.4	2.9
Feb	109.8	3.0	109.0	2.6	112.9	5.1	110.6	4.1	110.3	4.1	109.5	2.7	108.3	1.9
Mar	110.9	3.3	110.1	2.9	113.3	5.1	111.8	4.6	112.0	4.5	110.4	3.0	109.2	2.2
Apr	110.7	3.2	110.0	2.7	113.9	5.1	110.3	4.4	110.2	4.3	110.8	3.0	109.7	2.2
May	111.4	3.3	110.9	2.9	113.6	4.9	111.1	4.0	110.9	4.0	111.6	3.3	111.0	2.7
Jun	111.7	3.0	111.1	2.5	114.7	5.0	111.4	3.1	111.3	3.2	111.9	3.1	110.9	2.5
Jul	112.6	3.4	111.9	3.0	115.6	5.1	111.8	3.1	111.7	3.1	113.0	3.6	111.9	3.0
Aug	112.6	3.5	111.9	3.0	115.5	5.6	112.2	3.0	112.0	3.1	112.8	3.8	111.8	3.1
Sep	113.2	3.7	112.5	3.3	116.0	5.6	112.8	3.2	112.6	3.2	113.2	4.0	112.3	3.4
Oct	113.4	3.7	112.8	3.3	116.1	5.4	113.0	3.3	112.9	3.2	113.4	3.9	112.5	3.4
Nov	113.7	3.6	113.1	3.3	116.4	4.8	113.7	3.5	113.5	3.4	113.7	3.7	112.8	3.3
Dec	114.3	3.8	113.9	3.9	117.0	4.4	113.6	3.4	113.4	3.3	114.5	4.1	113.4	3.7
2004 Jan	115.6	4.6	115.0	4.6	117.2	4.2	114.3	3.5	114.1	3.4	115.7	4.8	115.4	5.0
Feb	113.8	4.7	113.0	4.8	117.8	4.3	114.5	3.5	114.4	3.5	113.4	5.0	111.9	5.2
Mar	115.7	4.7	114.9	4.6	118.3	4.3	115.5	3.5	115.4	3.4	115.7	4.8	114.6	5.2
Apr	115.7	4.2	115.1	4.2	118.5	4.3	115.4	3.8	115.3	3.8	115.6	4.2	114.6	4.2
May	116.1	4.4	115.5	4.4	118.7	4.3	116.0	4.1	115.7	4.0	115.8	4.3	115.0	4.3
Jun	116.4	4.3	115.7	4.3	119.9	4.4	116.0	4.4	115.8	4.3	116.4	4.1	115.3	4.0
Jul	$116.4+$	3.9	$115.5{ }^{\dagger}$	3.8	119.9	4.2	116.1^{\dagger}	$4.1+$	$115.9{ }^{\dagger}$	4.0	116.2^{\dagger}	$3.6{ }^{+}$	$114.8{ }^{\dagger}$	3.4
Aug	$117.3{ }^{\dagger}$	3.9	$116.5{ }^{\dagger}$	3.8	+120.7	4.2	115.9	$3.8{ }^{\dagger}$	115.8	3.7	117.3	$3.6{ }^{\dagger}$	116.2	3.5
Sep	117.8	3.8	117.0	$3.8{ }^{\dagger}$	+ 121.2	4.2	116.2	3.4	116.1	3.4	+ 118.0	3.7	117.0	3.5
Oct	118.3	$4.2+$	117.6	4.1	121.7	4.6	116.9	3.3	116.7	$3.2{ }^{\dagger}$	† 118.5	4.2	117.4	4.1
Nov	118.8	$4.3{ }^{\dagger}$	118.1	4.2	121.9	4.7	117.0	3.1	116.9	3.1	118.9	4.4	117.9	4.3
Dec	119.1	4.3	118.5	4.2	122.2	4.7	117.8	3.3	117.6	3.4	119.3	4.4	118.3	4.4
2005 Jan	120.1	4.2	119.4	4.1	122.7	4.6	117.8	3.2	117.7	3.3	120.2	4.3	119.6	4.1
Feb	120.2	4.6	119.6	4.6	123.3	4.6	118.6	3.5	118.5	3.5	120.5	4.8	119.5	4.9
Mar	120.3	4.5	119.5	4.6	123.3	4.5	120.0	3.5	119.6	3.5	120.7	4.8	119.5	4.9
Apr	120.6	4.6	119.7	4.6	124.3	4.6	118.9	3.5	118.7	3.4	120.8	5.0	119.6	5.1
May	120.8	4.1	119.3	3.8	127.8	5.6	118.2	3.0	118.1	2.9	121.2	4.5	119.4	4.1
Jun	121.1	4.1	120.2	3.7	125.0	5.6	119.3	2.6	119.0	2.6	121.4	4.5	120.1	4.1
Jul	121.6	4.2	120.7	3.9	$125.2+$	5.5	120.1	2.8	119.8	2.7	121.8	4.6	120.6	4.4
Aug	122.0	4.2	121.1	4.1	$125.8{ }^{\dagger}$	4.3	120.9	3.5	120.6	3.5	122.0	4.4	120.9	4.4
Sep ${ }^{1}$	122.1	4.1	121.3	4.0	126.0	4.2	121.6	4.1	121.3	4.0	122.0	4.1	120.8	4.1

1 Provisional.
2 The 3 month average is the change in the average seasonally adjusted in-
dex values for the last 3 months compared with the same period a year ago.
3 ONS regrets that the series have been withdrawn for the period 1963-1982,
owing to an irregularity.

4.7
 Productivity and Unit Wage costs ${ }^{1}$
 United Kingdom

$2002=100$

	Productivity jobs			Output per worker ${ }^{2}$ Whole economy	Output per filled job ${ }^{3}$			Output per hour worked ${ }^{4}$			Unit wage costs ${ }^{5}$	
	Whole economy	Total production industries	Manufacturing industries		Whole economy	Total production industries	Manufacturing industries	Whole economy	Total production industries	Manufacturing industries	Whole economy	Manufacturing industries
Annual												
	LNNM	LNOJ	LNOK	A4YM	LNNN	LNNW	LNNX	LZVB	LZVK	LZVF	LNNK	LNNQ
2002	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2003	100.9	95.3	95.2	101.5	101.6	104.4	105.1	102.0	104.2	104.8	101.7	98.5
2004	101.6	91.8	91.7	103.6	103.9	109.3	111.2	104.6	108.5	110.4	103.4	$96.5{ }^{\dagger}$
Quarterly												
2002 Q1	99.6	101.6	101.6	99.8	99.7	98.5	98.7	99.3	97.8	98.0	99.0	99.4
Q2	99.9	100.8	100.8	99.7	99.8	99.5	98.9	100.1	100.3	99.8	99.9	100.8
Q3	100.1	99.3	99.3	100.3	100.2	100.8	101.4	100.1	101.5	102.1	100.2	99.2
Q4	100.5	98.4	98.4	100.2	100.2	101.2	101.0	100.4	100.4	100.2	100.9	100.6
2003 Q1	100.6	97.3	97.2	100.9	100.8	102.2	102.3	101.2	101.8	101.8	100.9	100.4
Q2	100.8	95.9	95.7	100.9	101.1	103.3	104.0	101.2	103.3	103.8	101.6	98.7
Q3	101.0	94.7	94.5	101.8	101.8	105.1	106.0	102.2	104.4	105.3	102.4	98.0
Q4	101.1	93.5	93.4	102.6	102.7	107.1	108.2	103.6	107.3	108.3	102.0	97.0
2004 Q1	101.4	92.7	92.6	103.1	103.4	108.2	109.6	104.0	108.0	109.4	102.4	96.9
Q2	101.6	92.2	92.2	103.7	103.9	109.5	111.1	104.9	108.6	110.1	102.9	96.5
Q3	101.6	91.5	91.5	103.8	104.1	109.2	111.1	104.9	108.0	109.9	103.4	96.7
Q4	101.9	90.8	90.7	103.8	104.2	110.2	112.9	104.5	109.4	112.1	104.8	96.1
2005 Q1	102.2	90.2	90.1	103.7	104.2	110.0	112.6	104.5	108.6	111.4	106.0	97.7
Q2	102.4	89.2	89.1	104.2	104.5	111.1	113.6	105.2	110.0	112.7	106.1	96.8
Q3	88.2	115.3	97.1

Monthly

2004 Jan	92.7	109.4	96.7
Feb	92.6	109.0	97.2
Mar	92.6	110.5	96.8
Apr	92.3	111.0	96.2
May	92.2	111.1	96.6
Jun	92.2	111.1	96.6
Jul	91.9	110.3	$97.4{ }^{\dagger}$
Aug	91.5	111.0	96.7
Sep	91.1	$112.0{ }^{\dagger}$	96.0
Oct	90.9	111.5	97.0
Nov	90.6	113.3	95.5
Dec	..	.	90.5	113.8	95.8
2005 Jan	90.3	113.0	96.5
Feb	90.1	113.1	97.0
Mar	89.8	111.7	99.5
Apr	89.5	112.9	97.5
May	89.1	113.6	96.3
Jun	88.7	114.4	96.6
Jul	88.4	115.2	96.5
Aug	$88.2{ }^{\dagger}$	115.3	97.0
Sep	87.9	115.2	97.6

Percentage change, quarter on corresponding quarter of previous year

Quarterly												
	LNNO	LNNR	LNNS	A4YN	LNNP	LNNT	LNNU	LZVD	LZVM	LZVH	LOJE	LOJF
2003 Q1	1.0	-4.2	-4.3	1.1	1.1	3.8	3.6	1.9	4.1	3.9	1.9	1.0
Q2	0.9	-4.9	-5.0	1.1	1.2	3.8	5.1	1.0	2.9	4.0	1.7	-2.0
Q3	0.9	-4.7	-4.8	1.4	1.6	4.3	4.5	2.1	2.9	3.2	2.1	-1.2
Q4	0.6	-5.0	-5.0	2.5	2.5	5.8	7.2	3.2	6.8	8.1	1.1	-3.5
2004 Q1	0.8	-4.7	-4.7	2.2	2.6	5.9	7.2	2.8	6.1	7.4	1.5	-3.5
Q2	0.8	-3.8	-3.7	2.8	2.8	5.9	6.8	3.7	5.2	6.1	1.2	-2.3
Q3	0.6	-3.4	-3.2	2.0	2.2	3.9	4.8	2.7	3.4	4.3	1.0	-1.3
Q4	0.8	-2.9	-2.9	1.1	1.5	2.9	4.3	0.9	2.0	3.5	2.8	-0.9
2005 Q1	0.8	-2.7	-2.7	0.6	0.8	1.6	2.7	0.4	0.5	1.9	3.6	0.8
Q2	0.9	-3.2	-3.3	0.5	0.5	1.5	2.3	0.3	1.3	2.4	3.1	0.3
Q3	-3.6	3.7	0.4

[^14]Index of Output per filled job

5.1. Output of production industries ${ }^{1}$

$2002=100$

	Broad industry groups				By main industrial groupings			
	Total production industries+	Mining and quarrying	Electricity, gas and water supply	Total manufacturing industries+	Consumer durables	Consumer non-durables	Capital goods	Intermediate goods and energy
2002 weights	1000	121	88	790	37	269	213	481
Annual								
	CKYW	CKYX	CKYZ	CKYY	UFIU	UFJS	UFIL	JMOH
2000	104.2	106.1	98.2	104.6	96.3	98.8	110.2	105.5
2001	102.6	100.3	100.5	103.2	98.7	100.0	108.4	102.0
2002	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2003	99.5	94.9	101.2	100.1	99.2	100.0	101.4	98.4
2004	100.3	87.2	103.3	102.0	104.7	99.9	105.3	98.0
Quarterly								
2000 Q1	103.8	110.2	96.9	103.8	96.6	99.0	108.2	105.3
Q2	104.4	108.7	99.2	104.4	96.2	99.2	109.6	105.9
Q3	104.1	105.0	98.1	104.6	96.0	98.5	110.3	105.5
Q4	104.5	100.8	98.5	105.5	96.3	98.3	112.6	105.3
2001 Q1	104.5	99.3	102.1	105.5	99.6	100.0	113.8	103.6
Q2	102.9	101.9	101.1	103.2	98.2	99.6	108.4	102.8
Q3	102.4	100.8	99.9	103.0	98.1	100.3	108.0	101.8
Q4	100.4	99.2	98.8	100.9	98.9	100.1	103.4	99.7
2002 Q1	100.0	100.1	98.2	100.2	102.0	100.4	99.6	99.9
Q2	100.3	104.3	99.4	99.7	99.1	100.1	99.6	100.8
Q3	100.1	95.6	101.2	100.7	98.8	100.6	101.4	99.4
Q4	99.6	100.0	101.3	99.3	100.1	98.9	99.4	100.0
2003 Q1	99.4	99.6	99.3	99.4	98.3	99.1	99.9	99.4
Q2	99.1	95.2	100.2	99.5	99.0	99.5	100.7	98.1
Q3	99.5	93.5	101.6	100.2	99.2	100.6	101.6	98.1
Q4	100.1	91.1	103.5	101.1	100.3	101.0	103.4	98.1
2004 Q1	100.3	89.6	104.1	101.6	102.0	100.4	103.5	98.7
Q2	101.0	90.1	102.9	102.4	104.8	100.4	105.2	99.1
Q3	99.9	85.9	103.6	101.7	107.0	98.9	105.9	97.4
Q4	100.1	83.3	102.8	102.3	104.9	100.0	106.5	96.9
2005 Q1	99.2	82.7	101.5	101.5	104.4	99.4	104.6	96.3
Q2	99.2	83.0	102.5	101.3	103.4	99.5	105.2	95.9
Q3	98.6	$76.6{ }^{\dagger}$	101.7^{\dagger}	101.6	103.6	99.5	106.7	94.2
Monthly								
2003 Jul	99.9	94.7	100.7	100.6	100.5	101.1	101.9	98.4
Aug	99.0	93.3	101.5	99.7	97.6	100.2	100.5	97.8
Sep	99.6	92.5	102.5	100.4	99.3	100.4	102.4	98.1
Oct	100.8	93.1	105.0	101.5	99.9	101.9	103.2	99.2
Nov	99.4	90.8	102.0	100.5	101.0	100.1	103.1	97.3
Dec	100.1	89.4	103.6	101.4	99.9	100.9	104.0	97.9
2004 Jan	100.1	90.1	103.0	101.4	100.9	100.5	103.2	98.5
Feb	99.8	88.6	105.1	101.0	101.5	99.9	102.9	98.3
Mar	101.0	90.1	104.0	102.3	103.6	101.0	104.3	99.4
Apr	101.0	89.7	103.1	102.4	104.6	101.5	104.5	98.8
May	100.8	88.9	103.0	102.4	104.2	99.7	106.0	98.9
Jun	101.1	91.8	102.5	102.4	105.7	100.1	105.2	99.5
Jul	100.4	91.7	103.0	101.4	108.4	97.7	105.8	98.8
Aug	99.7	84.7	104.2	101.5	106.4	99.4	105.0	97.0
Sep	99.7	81.3	103.5	102.1	106.3	99.5	106.8	96.2
Oct	99.1	81.8	102.5	101.4	105.4	99.3	105.7	95.6
Nov	100.4	83.5	103.4	102.7	103.4	100.4	106.9	97.3
Dec	100.7	84.6	102.4	102.9	105.8	100.1	106.9	97.8
2005 Jan	99.6	82.7	100.9	102.1	103.4	100.4	105.1	96.5
Feb	99.5	82.3	101.4	102.0	105.6	100.0	105.1	96.3
Mar	98.4	83.3	102.2	100.3	104.2	98.0	103.7	95.9
Apr	99.1	83.3	103.2	101.1	105.5	98.4	104.9	96.5
May	99.3	84.4	102.3	101.3	103.0	99.6	105.1	96.3
Jun	99.1	81.3	102.0	101.5	101.9	100.6	105.6	95.1
Jul	$99.0{ }^{\dagger}$	$78.6{ }^{\dagger}$	$101.6{ }^{\dagger}$	$101.9{ }^{\dagger}$	$102.4{ }^{+}$	$100.4{ }^{+}$	106.7^{\dagger}	$94.6{ }^{\dagger}$
Aug	98.2	73.2	101.0	101.7	$103.5{ }^{\dagger}$	$99.2{ }^{\dagger}$	106.9	93.3
Sep	98.6	78.1	102.4	101.4	104.9	98.9	106.4	94.6

1 The figures contain, where appropriate, an adjustment for stock changes.
Source: Office for National Statistics; Enquiries 01633812059

5.2
 Engineering and construction : output and orders
 Seasonally adjusted Index numbers at constant prices ${ }^{1}$

	Engineering (2000=100)									$\begin{aligned} & \text { Construction(GB) }{ }^{5} \\ & (2000=100) \end{aligned}$	
	Total			Home			Export				
	Orders ${ }^{2}$ on Hand	$\begin{gathered} \text { New }^{3} \\ \text { Orders } \end{gathered}$	Turnover	Orders ${ }^{2}$ on Hand	New^{3} Orders	Turnover	Orders ${ }^{2}$ on Hand	New^{3} Orders	Turnover	Gross output+ ${ }^{4}$	Orders received
Annual											
	JIQI	JIQH	JIQJ	JIQC	JIQB	JIQD	JIQF	JIQE	JIQG	SFZX	SGAA
2000	103.4	100.0	100.0	104.9	100.0	100.0	100.8	100.0	100.0	100.0	100.0
2001	94.4	89.5	95.3	104.6	94.5	98.4	77.2	82.9	91.2	102.0	99.5
2002	92.7	80.8	84.5	104.8	88.0	91.8	72.1	71.2	74.8	106.3	102.5
2003	92.7	78.9	81.6	108.7	87.9	90.2	65.5	66.8	70.3	111.7	97.8
2004	89.3	78.3	82.1	103.2	83.9	89.2	65.9	70.8	72.6	115.2	104.8
Quarterly											
2000 Q1	96.2	95.9	94.1	96.6	96.2	95.1	95.7	95.5	92.8	102.4	97.5
Q2	100.6	101.6	99.9	100.2	101.0	100.3	101.3	102.4	99.3	99.4	106.9
Q3	102.7	100.7	101.5	101.8	99.2	101.0	104.4	102.8	102.2	98.3	102.1
Q4	103.4	101.8	104.5	104.9	103.6	103.6	100.8	99.4	105.7	99.9	93.5
2001 Q1	104.4	102.1	104.4	106.2	102.2	104.7	101.3	102.0	104.2	101.2	108.4
Q2	102.0	91.0	97.1	108.2	97.8	99.0	91.3	81.9	94.5	101.3	95.6
Q3	99.9	86.6	92.0	107.6	91.5	96.0	86.9	79.9	86.6	102.1	103.6
Q4	94.4	78.5	87.8	104.6	86.4	93.9	77.2	67.8	79.6	103.5	90.5
2002 Q1	94.9	81.5	85.3	105.0	87.8	92.1	77.9	73.2	76.2	105.3	107.6
Q2	93.6	80.4	84.7	105.4	89.3	92.5	73.8	68.5	74.5	104.7	90.7
Q3	93.8	81.8	84.4	106.4	89.4	91.7	72.6	71.7	74.8	106.8	109.2
Q4	92.7	79.5	83.6	104.8	85.5	91.1	72.1	71.3	73.6	108.5	102.5
2003 Q1	90.9	76.4	81.1	103.4	85.3	90.7	69.8	64.4	68.5	108.7	104.7
Q2	91.7	79.7	81.5	104.9	88.9	90.4	69.3	67.4	69.7	110.4	95.8
Q3	91.5	78.7	81.6	106.0	88.1	90.2	66.8	66.0	70.2	113.5	98.0
Q4	92.7	80.8	82.2	108.7	89.3	89.3	65.5	69.5	72.6	114.4	92.7
2004 Q1	93.7	78.6	80.3	108.7	83.1	86.6	68.3	72.7	72.0	117.1	108.5
Q2	92.5	78.4	82.5	106.3	82.2	88.8	69.2	73.2	74.1	114.2	106.2
Q3	90.2	77.4	82.8	103.7	83.1	89.9	67.3	69.6	73.4	115.1	99.8
Q4	89.3	78.9	82.7	103.2	87.3	91.6	65.9	67.7	71.0	114.3	104.8
2005 Q1	89.4	78.2	80.8	100.8	82.9	89.4	70.1	71.9	69.4	114.2	106.5
Q2	89.3	78.4	81.2	99.9	84.9	89.5	71.3	69.8	70.3	115.2	115.8
Q3	91.2	81.0	81.9	102.2	88.7	89.8	72.6	70.6	71.4	..	106.7
Monthly											
2003 Aug	91.7	77.7	80.3	106.1	90.5	88.5	67.2	60.5	69.4	.	80.7
Sep	91.5	78.4	81.8	106.0	86.7	90.5	66.8	67.3	70.3	.	102.3
Oct	92.3	82.6	82.5	107.3	92.1	90.7	66.8	69.8	71.6	..	87.3
Nov	94.0	84.6	81.3	110.0	95.5	88.8	66.9	70.0	71.4	.	102.7
Dec	92.7	75.3	82.7	108.7	80.2	88.5	65.5	68.7	74.9	..	88.2
2004 Jan	94.0	81.3	80.0	108.9	84.1	87.1	68.7	77.6	70.7	..	90.2
Feb	91.6	68.9	79.8	106.6	72.1	84.4	66.2	64.5	73.7	..	126.1
Mar	93.7	85.7	81.0	108.7	93.0	88.2	68.3	76.0	71.5	..	109.2
Apr	92.0	72.3	81.1	105.0	69.6	87.2	69.9	75.9	73.0	..	103.4
May	92.8	82.9	82.6	105.7	88.1	88.9	71.0	76.0	74.4	..	111.3
Jun	92.5	79.9	83.7	106.3	89.0	90.4	69.2	67.6	74.9	.	103.9
Jul	92.8	81.7	83.5	106.8	89.0	90.6	69.1	72.0	74.1	..	109.5
Aug	91.1	73.2	82.0	104.5	76.2	88.3	68.2	69.1	73.7	..	100.6
Sep	90.2	77.2	82.9	103.7	84.2	90.9	67.3	67.8	72.3	..	89.2
Oct	89.2	75.3	81.8	102.5	82.5	90.6	66.5	65.7	70.0	..	101.3
Nov	88.8	79.5	83.5	102.3	88.7	93.3	66.0	67.2	70.6	..	107.6
Dec	89.3	82.0	82.9	103.2	90.7	90.9	65.9	70.3	72.3	..	105.5
2005 Jan	89.5	79.4	81.3	104.0	90.4	90.7	65.0	64.7	68.9	..	103.5
Feb	89.5	78.4	81.3	103.0	83.2	90.5	66.5	71.8	69.2	..	99.7
Mar	89.4	76.8	79.7	100.8	75.1	87.1	70.1	79.2	70.0	..	$116.4{ }^{\dagger}$
Apr	88.8	77.5	82.3	101.9	90.8	89.9	66.5	59.7	72.4	.	106.7
May	89.4	80.2	80.6	101.1	82.0	88.8	69.7	77.8	69.8	..	128.6
Jun	89.3	77.5	80.7	99.9	81.8	89.9	71.3	71.8	68.6	.	112.1
Jul	$89.9{ }^{\dagger}$	$79.4{ }^{\dagger}$	81.1^{\dagger}	$100.1{ }^{\dagger}$	$85.2{ }^{\dagger}$	$89.5{ }^{\dagger}$	$72.7{ }^{\dagger}$	$71.6{ }^{\dagger}$	$69.9{ }^{\dagger}$..	104.4
Aug	92.0	87.0	82.4	102.9	98.1	90.9	73.6	72.0	71.2	..	112.9
Sep	91.2	76.6	82.1	102.2	82.8	88.9	72.6	68.3	73.2	..	102.7

1 The figures shown represent the output of United Kingdom based manufac- 3 Net of cancellations.
turers classified to Subsections DK and DL of the Standard Industrial Clas- 4 This index is based upon a gross output series which includes repair and sification (2003).
maintenance estimates, unrecorded output by self-employed workers and smal
2 For Orders on Hand, the annual and quarterly index values represent the firms and output by the direct labour departments of the public sector.
value at the end of the period in question, rather than the average value for 5 Data are subject to revisions following changes to the deflation methodology. that period, so the annual value shown for 2000 may not equal 100 .

Sources: Office for National Statistics; Enquiries Columns 1-9 01633812540

5.3 Motor vehicle and steel production

	Passenger cars ${ }^{1}$				Commercial vehicles ${ }^{1}$				Crude steel production $(\mathrm{NSA})^{2}$ (thousand tonnes)
	Not seasonally adjusted		Seasonally adjusted		Not seasonally adjusted		Seasonally adjusted		
	Total production (thousands)	of which for export (thousands)	Total production (thousands)	of which for export (thousands)	Total production (thousands)	$\begin{array}{r} \text { of which } \\ \text { for export } \\ \text { (thousands) } \end{array}$	Total production (thousands)	of which for export (thousands)	
Annual									
	FFAA	FFAB	FFAO	FFAP	FFAC	FFAD	FFAQ	FFAR	BCBS
2000	136.8	88.6	136.8	88.6	14.3	6.3	14.4	6.4	15154.6
2001	124.4	74.5	124.4	74.5	16.1	8.0	16.1	8.0	13542.7
2002	135.7	87.3	135.8	87.3	15.9	9.5	15.9	9.5	11667.1
2003	138.1	95.3	138.1	95.3	15.7	8.6	15.7	8.6	13128.4
2004	137.2	98.3	137.2	98.3	17.4	10.7	17.4	10.7	13765.8
Quarterly									
2000 Q1	164.8	105.0	150.9	98.9	16.7	8.4	15.3	7.8	4442.5
Q2	144.4	97.6	141.9	92.6	17.3	8.2	16.7	8.0	4019.8
Q3	111.7	63.2	126.4	79.4	9.5	3.5	11.9	4.5	3288.7
Q4	126.3	88.6	127.9	83.4	13.7	5.2	13.6	5.1	3403.6
2001 Q1	129.0	75.5	119.5	73.3	17.2	6.6	15.5	6.1	3651.7
Q2	124.1	76.5	120.1	71.3	16.6	7.7	15.6	7.2	3729.6
Q3	111.9	61.0	124.8	76.1	14.5	7.4	17.9	9.3	3205.5
Q4	132.4	85.1	133.1	77.4	16.1	10.3	15.3	9.5	2955.9
2002 Q1	149.9	85.0	139.4	83.5	16.7	8.4	15.3	8.0	3046.3
Q2	133.5	94.0	126.6	84.7	14.8	9.4	14.4	8.9	3060.0
Q3	130.6	80.7	147.0	97.1	14.9	9.3	17.4	10.8	2801.9
Q4	128.7	89.3	130.3	83.7	17.3	10.9	16.7	10.3	2758.9
2003 Q1	141.4	91.5	129.8	86.4	16.5	9.3	15.2	9.0	3081.0
Q2	144.4	101.3	139.1	94.8	15.5	8.3	15.0	8.0	3258.7
Q3	130.4	85.8	144.8	101.0	13.4	6.9	15.5	8.1	3264.3
Q4	136.2	102.7	138.8	99.1	17.6	9.7	17.2	9.2	3524.4
2004 Q1	148.5	101.2	136.8	96.3	19.3	10.4	17.9	10.1	3380.7
Q2	142.7	102.3	137.5	96.0	16.9	11.2	16.5	10.7	3681.4
Q3	126.3	88.3	137.9	100.7	15.6	9.7	18.0	11.1	3405.2
Q4	131.4	101.5	136.7	100.1	17.9	11.4	17.4	10.8	3298.5
2005 Q1	144.3	99.1	138.4	99.6	18.4	11.3	17.1	10.7	3310.9
Q2	138.7	105.3	$131.7{ }^{+}$	97.0	18.2	10.7	18.1	$10.4{ }^{+}$	$3523.8{ }^{+}$
Q3	125.7	91.5	$138.8{ }^{\dagger}$	$104.9{ }^{\dagger}$	14.9	9.2	17.7	$10.9{ }^{\dagger}$	3106.0^{\dagger}
Monthly									
2003 Jul	146.3	93.1	144.1	98.3	15.2	7.6	16.6	8.4	$1245.8 *$
Aug	91.4	57.5	145.0	100.4	7.8	3.8	14.9	7.6	977.8
Sep	153.5	106.8	145.3	104.3	17.1	9.2	15.0	8.3	1040.7
Oct	153.4	113.8	138.6	96.8	16.8	9.5	15.4	8.6	1 198.0*
Nov	142.9	110.5	134.8	99.3	19.0	9.8	17.2	9.5	1117.8
Dec	112.4	83.8	142.9	101.1	17.0	9.9	19.0	9.6	$1208.6 *$
2004 Jan	141.3	96.4	138.7	97.9	20.5	9.6	19.6	11.0	1009.3
Feb	141.1	93.0	131.9	92.2	17.3	10.0	16.4	9.9	1024.9
Mar	163.1	114.3	139.7	98.8	20.2	11.7	17.7	9.3	1346.5^{*}
Apr	129.6	95.7	136.6	98.1	15.7	10.1	16.0	10.2	1155.5
May	143.1	102.3	139.3	92.9	16.9	11.9	17.4	11.5	1160.7
Jun	155.5	108.9	136.7	97.1	18.2	11.6	16.2	10.5	1365.2^{*}
Jul	140.5	100.5	145.2	107.4	14.9	10.1	16.7	11.3	1042.6
Aug	83.2	56.7	132.5	97.2	10.2	5.7	18.1	9.8	1015.8
Sep	155.3	107.6	136.0	97.6	21.7	13.3	19.1	12.2	$1346.8 *$
Oct	135.1	107.2	134.1	102.0	18.6	12.2	18.1	11.4	1091.5
Nov	149.3	114.4	140.4	102.1	20.1	12.3	17.0	10.3	1001.4
Dec	109.7	82.8	135.7	96.3	14.9	9.7	17.0	10.6	$1205.6 *$
2005 Jan	136.0	89.2	137.0	95.1	17.7	10.7	17.0	11.0	1033.5
Feb	143.5	98.3	138.8	100.6	18.0	10.7	17.2	10.5	1016.8
Mar	153.3	109.9	139.4	103.1	19.6	12.6	17.2	10.5	1260.6 *
Apr	139.8	105.1	140.1	100.3	18.9	11.4	20.1	11.9	1161.8
May	132.0	99.1	130.2	94.3	17.5	10.7	17.9	10.1	1147.5
Jun	144.3	111.7	124.9	96.5	18.3	10.0	16.3	9.3	$1214.5 *$
Jul	130.2	93.8	$134.7{ }_{+}$	99.9	14.2	8.5	17.3	10.4	966.4
Aug	97.1	71.8	146.0^{\dagger}	$114.2{ }^{\dagger}$	10.8	6.8	$18.2 \begin{aligned} & \\ & \\ & \end{aligned}$	$11.2+$	$1180.2^{*} \dagger$
Sep	149.9	108.9	135.7	100.5	19.7	12.4	17.5	11.2 	959.4
Oct	124.8	99.4	126.2	95.7	18.4	12.4	16.9	10.4	995.7^{3}

1 Annual and quarterly figures are monthly averages.
2 The totals are for 'usable steel' in accordance with the system used by the EC and the IISI, but in a change from previous publications, figures are actual production totals based on a four or five week period (not seasonally adjusted).

Indicators of fixed investment in dwellings

	Fixed investment in dwellings (£ million, chained volume measures, reference year 2002)	Orders received by contractors for new houses (GB) (£ million, 2000 prices)	Housing starts (NSA) ${ }^{1}$ (GB)			Housing completions (NSA) ${ }^{1}$ (GB)			Mix-adjusted price of new dwellings at mortgage completion stage $(\text { NSA })^{3}(£)$
			Private enterprise (thousands)	Registered Social Landlords ${ }^{2}$ (thousands)	Local Authorities (thousands)	Private enterprise (thousands)	Registered Social Landlords ${ }^{2}$ (thousands)	Local Authorities (thousands)	
Annual									
	DFEG	SGAB	FCAB	CTOR	CTOV	FCAD	CTOT	CTOX	WMPS
2001	32006	7122	162.7	16.8	0.3	139.9	20.9	0.3	134234
2002	34499	7805	164.5	16.2	0.2	149.2	19.3	0.2	161533
2003	36056	8219	177.4	16.2	0.3	158.2	17.2	0.3	186427
2004	38879	9472	193.6	19.0	0.2	166.1	19.6	0.1	205818
Quarterly									
2001 Q1	7911	1767	39.2	5.7	0.2	32.5	5.6	0.1	130771
Q2	7891	1772	43.7	4.2	-	34.4	4.7	0.1	130774
Q3	8252	1822	43.5	3.2	-	35.5	4.6	0.1	135507
Q4	7952	1761	36.3	3.7	0.1	37.5	5.9	0.1	137368
2002 Q1	8006	1916	41.7	5.4	0.1	33.6	5.1	-	143996
Q2	8396	1782	42.5	3.8	0.1	36.8	4.6	0.2	157646
Q3	8829	2031	44.0	3.4	-	36.4	4.7	-	164293
Q4	9268	2075	36.3	3.6	-	42.4	4.9	-	173254
2003 Q1	8824	2095	44.2	5.0	0.1	34.6	4.5	0.1	175947
Q2	8835	2108	46.9	4.4	0.2	39.3	4.1	0.1	187676
Q3	9165	1894	45.8	3.8	-	37.5	4.5	-	188711
Q4	9232	2123	40.6	3.0	0.1	46.8	4.1	0.1	193373
$2004 \text { Q1 }$	9487	2346	46.9	6.5	-	34.0	5.1	-	194276
Q2	9747	2287	52.0	4.3	0.1	43.0	4.1	0.1	204679
Q3	9790	2488	51.2	3.6	-	43.5	4.7	-	212505
Q4	9855	2351	43.5	4.6	-	45.6	5.8	-	211812
2005 Q1	9730	$2234{ }^{\dagger}$	214704
Q2	9714	2698	216780
Q3	9813	2611	220607
Monthly									
2003 Jul	..	692	186807
Aug	..	597	191100
Sep	..	605	188227
Oct	..	724	195551
Nov	..	743	189913
Dec	..	656	194655
2004 Jan	..	796	195238
Feb	..	754	192165
Mar	..	796	195426
Apr	..	880	201796
May	..	697	203015
Jun	.	710	209225
Jul	..	758	211663
Aug	..	889	211314
Sep	..	841	214537
Oct	..	742	214509
Nov	..	805	212354
Dec	..	803	208574
2005 Jan	..	$650{ }^{\dagger}$	212952
Feb	..	776	213093
Mar	..	809	218067
Apr	..	963	213950
May	..	777	217361
Jun	.	958	219029
Jul	..	958	221548
Aug	..	805	220141
Sep	..	848	220132

1 Monthly data collection ceased after March 2003. Great Britain seasonally adjusted data are no longer updated. Seasonally adjusted data for England are available from the website of the Office of the Deputy Prime Minister: www.odpm.gov.uk
2 Includes registered and non-registered social landlords.
3 Series is based on mortgage lending by all financial institutions rather than building societies only, as previously published. This change has been made necessary because of the mergers. takeovers and conversions to plc status affecting the building society sector.

The series is based on the Office of the Deputy Prime Ministers' survey of mortgage lenders (at completion stage), but now includes all mortgage lenders rather than building societies only. From February 2002, monthly data have been obtained from the enlarged survey and quarterly data from 2002q2 are based on monthly prices. From September 2005, figures are based on the new Regulated Mortgage Survey (CML/BankSearch). Prices have been chain-linked to adjust for the structural change arising from the new survey.

Sources: Office for National Statistics; Enquiries Column 10207533 6010;
Department of Trade and Industry ; Column 20207944 5583; Office of the Deputy Prime Minister:
Columns 3-8 0117372 8055; Column 902079443325

5.5 Number of property transactions ${ }^{12,2,3}$

Thousands

	Number of property transactions				Number of property transactions		
	Not seasonally adjusted England \& Wales	Seasonally adjusted England \& Wales ${ }^{4,5}$	Not seasonally adjusted England, Wales \& N. Ireland		Not seasonally adjusted England \& Wales	Seasonally adjusted England \& Wales ${ }^{4,5}$	Not seasonally adjusted England, Wales \& N . Ireland
	FTAP		FTAR	May	137	140	140
2001	1458		1497	Jun	129	135	132
2002	1586		1627				
2003	1345		1397	Jul	152	134	154
2004	1786		1830	Aug	166	149	171
				Sep	139	134	144
		FTAQ		Oct	147	131	151
2001 Q1	327	346	337	Nov	127	124	131
Q2	347	363	360	Dec	118	131	122
Q3	396	369	405				
Q4	387	379	396	2003 Jan	131	121	137
				Feb	103	120	109
2002 Q1	342	374	351	Mar	106	119	113
Q2	395	410	404	Apr	101	113	108
Q3	457	417	468	May	101	106	105
Q4	392	385	404	Jun	103	105	107
2003 Q1	340	361	359	Jul	132	115	135
Q2	306	323	320	Aug	112	106	116
Q3	358	327	369	Sep	114	106	118
Q4	340	333	349	Oct	120	108	124
				Nov	110	109	113
2004 Q1	447	470	457	Dec	111	116	113
Q2	452	459	463				
Q3	491	447	504	2004 Jan	157	151	160
Q4	396	411	406	Feb	148	171	152
				Mar	142	147	145
2005 Q1	322	351	329	Apr	140	151	143
Q2	363	358	375	May	145	152	148
Q3	464	416	478	Jun	167	156	172
2001 Jan	123	113	127	Jul	175	151	179
Feb	99	117	102	Aug	159	148	163
Mar	105	116	108	Sep	158	148	162
Apr	101	115	105	Oct	138	142	142
May	121	122	126	Nov	124	132	128
Jun	125	125	128	Dec	134	136	136
Jul	132	120	135	2005 Jan	108	107	109
Aug	140	125	143	Feb	112	126	114
Sep	124	124	127	Mar	102	119	105
Oct	140	125	143	Apr	112	117	115
Nov	137	131	141	May	113	119	116
Dec	110	123	112	Jun	139	123	144
2002 Jan	131	120	134	Jul	137	127	141
Feb	108	127	110	Aug	157	137	162
Mar	104	127	106	Sep	170	152	175
Apr	129	135	132	Oct	146	141	151

1 The figures are based on counts of the relevant administrative forms successfully processed each month. For completions up to and including November 2003 the relevant form was the Particulars Delivered form. Since December 2003 the relevant form is the Land Transaction Return associated with the introduction of Stamp Duty Land Tax (although in December 2003 most forms processed were still Particulars Delivered forms). The count of Land Transaction Return forms is based on the month when the Stamp Duty Land Tax certificate is issued. The figures for the the latest month includes estimates for returns where a certificate has been issued but the form was not captured on the database at the time the count was taken. The figure is therefore subject to revision next month
2 Because of the change in administrative arrangements associated with the introduction of Stamp Duty Land Tax, the figures from December 2003 onwards may not be comparable with the earlier series. In particular Land Transaction Returns in respect of transactions subject to Stamp Duty Land Tax are being submitted more promptly by conveyancers than Particulars Delivered forms in respect of transactions subject to stamp duty. The overhang of particulars delivered forms into the first quarter of 2004 has boosted the total property transactions processed figures in that quarter.

Other reasons for higher figures since the introduction of Stamp Duty Land Tax include (1) there are some types of transaction which require a Land Transaction Return which did not require a Particulars Delivered form and (2) there are higher numbers of registering commercial transactions.
3 Because of the time lags involved, the series above should be lagged by one month to give a broad representation of transactions completed in the month However this relationship was weaker in the second quarter of 2002, because of the operational pressures in the network of Stamp Offices which delayed the processing of a proportion of property transactions.
4 The Jubilee celebrations meant that the late May bank holiday was taken in June 2002. Seasonal features in the data arising from the May Bank holiday will therefore not automatically be removed by the process of seasonal adjustment Caution should therefore be taken when interpreting monthly movements involving May or June 2002 data
5 The sum of seasonally adjusted components does not exactly match the unadjusted (definitive) annual total.
6 On 19 July the Inland Revenue ended the arrangement under which a Stamp Duty Land Tax certificate could be issued even though some of the required information had not been provided (the 'light touch' process). This is likely to have reduced the transaction count for July and August by a few thousand.

Source: HM Revenue and Customs; Enquiries 02071472941

5 6 Change in inventories

Chained volume measures ${ }^{1}$

	Mining and quarrying	Reference year 2002, £ million								
		Manufacturing industries				Electricity, gas and water supply	Distributive trades		Other industries ${ }^{3}$	
		Materials and fuel	Work in progress	Finished goods	Total		Wholesale ${ }^{2}$	Retail ${ }^{2}$		
Level of inventories at end-December 2004	1034	16155	15931	19676	51762	1726	27873	26080	45284	153759
Quarterly										
	FAEA	FBNF	FBNG	FBNH	DHBM	FAEB	FAJX	FBYN	DLWX	CAFU
2001 Q1	63	-652	325	-133	-459	-214	566	-130	1215	1040
Q2	-45	-200	331	224	354	190	-76	-160	1112	1375
Q3	93	352	271	32	656	88	519	229	76	1662
Q4	-15	93	-413	45	-275	-15	-299	1076	1647	2119
2002 Q1	48	118	36	615	769	-63	13	674	-264	1177
Q2	-30	-82	-159	-128	-369	140	810	1112	-1269	394
Q3	-20	-115	341	-263	-37	-66	431	-74	246	480
Q4	-26	-311	-222	-588	-1 121	-110	-643	-94	2852	858
2003 Q1	-25	540	137	34	711	67	169	167	-986	103
Q2	53	-385	-130	-215	-730	-5	-583	455	423	-387
Q3	-86	-213	-246	279	-180	-41	275	274	2097	2339
Q4	1	-34	-266	-228	-528	-1	369	247	2459	2547
2004 Q1	7	-89	60	-613	-642	156	40	1047	543	1151
Q2	-4	-96	-356	361	-91	-165	1441	-617	613	1177
Q3	-41	100	-80	219	239	5	-398	794	695	1294
Q4	-1	-24	-271	-38	-333	-82	181	405	1356	1526
2005 Q1	-	265	175	-31	409	-108	-10	-168	1649	1772
Q2	-28	-213	-69	-245	-527	225	12	-192	456	-54
Q3	-24	23	-51	34	6	-39	-49	-10	1174	1058

1 Estimates are given to the nearest $£$ million but cannot be regarded as accu- 3 Quarterly alignment adjustment included in this series. For description see rate to this degree notes to the Economic Trends Annual Supplement For details of adjustments see notes section in the Sector and Financial Accounts article in UK Economic Accounts.

Sources: Office for National Statistics; Enquiries Columns 1-8 0207533 6264; Columns 9-10 02075336031

5.7

Inventory ratios

	Manufacturers' inventories ${ }^{1}$ to manufacturing production				Retail inventories ${ }^{1}$ to retail sales ${ }^{2}$	Total inventories ${ }^{1,3}$ to gross value added
	Materials and fuel	Work in progress	Finished goods	Total inventories		
Quarterly						
	FAPG	FAPH	FAPI	FAPF	FAPC	FDCA
2001 Q1	97.6	101.0	99.3	99.3	98.9	100
Q2	98.6	105.3	102.8	102.3	96.3	101
Q3	100.9	107.1	103.0	103.6	95.6	102
Q4	103.6	106.8	105.5	105.3	99.2	103
2002 Q1	101.8	104.5	106.1	104.2	100.5	103
Q2	101.8	104.0	106.0	104.1	103.5	103
Q3	100.1	105.0	103.6	103.0	102.4	102
Q4	99.7	105.2	102.0	102.3	100.1	103
2003 Q1	102.8	105.9	102.1	103.5	102.0	102
Q2	100.4	105.0	100.9	102.0	102.6	101
Q3	98.4	102.8	101.6	101.0	102.7	102
Q4	97.3	100.2	99.5	99.1	101.7	103
2004 Q1	96.4	100.2	96.1	97.5	104.3	102
Q2	95.1	97.3	97.1	96.5	99.7	102
Q3	96.3	97.4	98.8	97.6	102.1	103
Q4	95.6	95.2	98.0	96.4	103.7	103
2005 Q1	97.9	97.0	98.6	97.9	103.1	104
Q2	96.8	96.8	97.6	97.1	101.7	104

[^15][^16]
5.8

Retail sales, new registrations of cars and credit business (Great Britain)

1 Great Britain only. The motor trades are excluded. Information for periods 4 Covers all institutions providing finance for consumers; including loans by
earlier than those shown is available from ONS Newport (tel 01633 812509).
2 The retail sales index has been rebased using detailed information from the 2000 Annual Business inquiry. Further information is available via the National Statistics website: www.statistics.gov.uk
3 Net lending equals changes in amounts outstanding adjusted to remove distortions arising from revaluations of debt such as write-offs.
banks on personal accounts and on bank credit cards and charge cards, by in surance companies, retailers and other specialist lenders, but excluding loans for house purchase.
5 Seasonally adjusted data are not published in Economic Trends. Data up to 1998 are published in the Economic Trends Annual Supplement.
6 See Table 6.6, note 2.

5.9
 Inland energy consumption: primary fuel input basis

Million tonnes of oil equivalent

	Seasonally adjusted and temperature corrected ${ }^{7}$ (annualised rates)						
			Natural gas ${ }^{3}$	Primary electricity ${ }^{5}$			
	Coal ${ }^{1}$	Petroleum ${ }^{2}$		Nuclear	Wind and natural flow Hydro ${ }^{4}$	Net imports ${ }^{6}$	Total
Annual							
	FDAI	FDAJ	FDAK	FDAL	FDAM	FDAW	FDAH
2000	40.0	77.8	98.6	19.7	0.5	1.2	237.8
2001	43.1	76.6	96.7	20.8	0.4	0.9	238.6
2002	40.0	75.3	98.7	20.0	0.5	0.7	235.3
2003	42.9	74.9	97.7	20.0	0.4	0.2	236.1
2004	42.0	77.4	100.0	18.1	0.6	0.6	238.9
Quarterly							
2000 Q1	38.9	81.3	110.8	20.1	0.6	1.1	252.8
Q2	40.6	74.4	95.3	19.8	0.4	1.3	231.8
Q3	40.2	77.8	85.4	19.4	0.5	1.3	224.5
Q4	40.5	77.6	103.1	19.4	0.5	1.2	242.2
2001 Q1	45.6	75.8	108.8	19.9	0.3	1.1	251.5
Q2	44.6	73.3	93.1	19.0	0.4	0.9	231.3
Q3	42.5	79.4	84.6	21.8	0.5	0.9	229.7
Q4	39.8	77.8	100.6	22.6	0.5	0.7	242.0
2002 Q1	42.1	77.9	108.2	21.2	0.6	0.6	250.6
Q2	35.8	76.3	95.9	20.0	0.7	1.0	229.6
Q3	38.4	76.2	88.3	19.9	0.5	0.2	223.5
Q4	43.6	70.8	102.6	18.9	0.4	1.1	237.4
2003 Q1	42.9	72.7	108.1	21.0	0.3	0.3	245.3
Q2	44.9	78.5	92.7	20.6	0.5	0.1	237.3
Q3	41.9	73.8	85.6	19.7	0.5	-0.1	221.4
Q4	41.8	74.6	104.5	18.6	0.4	0.4	240.3
2004 Q1	43.5	71.0	111.2	20.2	0.5	0.4	246.8
Q2	40.6	79.4	97.2	17.2	0.6	0.6	235.5
Q3	41.0	77.1	86.8	17.9	0.8	0.7	224.4
Q4	42.9	82.1	105.1	17.3	0.6	0.8	$248.8{ }^{\dagger}$
2005 Q1	45.2	$80.0+$	$108.3+$	19.3	0.5	0.5	253.8
Q2	40.4	$74.9{ }^{\dagger}$	$93.3{ }^{\dagger}$	18.3	0.6	0.7	228.3
Percentage change, quarter on corresponding quarter of previous year							
Quarterly							
	FDAP	FDAQ	FDAR	FDAS	FDAT	FDAX	FDAO
2000 Q1	3.9	-0.2	5.4	-13.8	12.1	-10.6	1.5
Q2	7.7	-5.0	5.4	-14.6	-25.9	1.9	0.2
Q3	5.1	3.5	1.3	-9.9	-12.3	12.9	1.6
Q4	3.1	2.0	-0.2	-7.7	6.2	-5.1	0.4
2001 Q1	17.2	-6.7	-1.8	-1.0	-43.8	-	-0.5
Q2	9.9	-1.5	-2.3	-4.2	-9.6	-30.3	-0.3
Q3	5.7	2.1	-1.0	12.8	4.7	-29.0	2.3
Q4	-1.6	0.3	-2.4	16.6	6.1	-45.0	-0.1
2002 Q1	-7.7	2.7	-0.5	6.8	73.8	-43.7	-0.4
Q2	-19.8	4.1	3.0	5.6	73.5	5.5	-0.7
Q3	-9.6	-4.1	4.4	-8.8	11.4	-75.5	-2.7
Q4	9.4	-9.0	2.1	-16.3	-32.7	67.6	-1.9
2003 Q1	1.9	-6.7	-	-1.3	-42.4	-56.2	-2.1
Q2	25.5	2.9	-3.3	2.9	-29.6	-89.0	3.4
Q3	9.1	-3.1	-3.0	-0.9	-13.6	-	-0.9
Q4	-4.0	5.3	1.8	-1.6	-2.7	-59.6	1.2
2004 Q1	1.5	-2.3	2.8	-3.9	58.6	61.0	0.6
Q2	-9.7	1.1	4.9	-16.5	16.7	-	-0.8
Q3	-2.0	4.5	1.3	-9.1	66.1	-	1.3
Q4	2.5	10.1	0.6	-7.3	64.6	92.5	3.5
2005 Q1	3.8	$12.7{ }^{+}$	$-2.6+$	-4.1	-7.0	8.8	2.8
Q2	-0.4	$-5.6{ }^{+}$	-4.0^{\dagger}	6.5	1.6	26.1	-3.1

1 Includes solid renewable sources (wood, straw, waste), and net foreign 4 Includes generation by solar PV. Excludes generation from pumped storage trade and stock changes in other solid fuels.
2 Excludes non-energy use
3 Includes gas used during production, colliery methane, landfill gas and Not temperature corrected.
Includes gas used during production, colliery methane, landfill gas and 6 Not seasonally adjusted.
sewage gas. Excludes gas flared or re-injected and non energy-use of gas.
7 For details of temperature correction see DTI energy statistics website at www.dti.gov.uk/energy/inform/dukes/dukes2003/01longterm.pdf

Source: Department of Trade and Industry; Enquiries 02072152698

6.1. sterling exchange rates and UK reserves ${ }^{4}$

Not seasonally adjusted

	Sterling exchange rate against major currencies ${ }^{1}$								UK inter-	
	Japanese yen	$\begin{aligned} & \text { US } \\ & \text { dollar } \end{aligned}$	Swiss franc	Euro ${ }^{2}$	Danish kroner	Norwegian kroner	Swedish kronor	Hong Kong dollar	$\begin{array}{r} \text { reserves }^{3} \\ \text { at end } \\ \text { of period } \\ \text { (} £ \text { million) } \end{array}$	$\begin{array}{r} \text { exchange } \\ \text { rate } \\ \text { index } \\ 1990=100 \\ \hline \end{array}$
Annual										
	AJFO	AUSS	AJFD	THAP	AJFK	AJFJ	AJFI	AJFU	THFE	AGBG
2001	174.90	1.4400	2.430	1.6087	11.987	12.944	14.886	11.2335	27773	105.8
2002	187.84	1.5026	2.334	1.5909	11.821	11.953	14.570	11.7265	26566	106.0
2003	189.34	1.6346	2.197	1.4456	10.742	11.562	13.189	12.7337	25724	100.2
2004	198.10	1.8320	2.276	1.4739	10.965	12.342	13.453	14.2707	25908	104.1
Quarterly										
2001 Q1	172.26	1.4584	2.424	1.5814	11.7988	12.965	14.230	11.3765	30457	104.5
Q2	174.19	1.4208	2.487	1.6280	12.1436	13.039	14.847	11.0866	30632	106.4
Q3	174.67	1.4380	2.432	1.6152	12.0231	12.928	15.203	11.2092	29662	106.1
Q4	178.45	1.4428	2.375	1.6111	11.9887	12.845	15.264	11.2548	27773	106.1
2002 Q1	188.79	1.4260	2.396	1.6263	12.0863	12.700	14.895	11.1230	28053	106.9
Q2	185.29	1.4630	2.329	1.5923	11.8379	11.956	14.564	11.4015	28623	105.3
Q3	184.85	1.5495	2.305	1.5747	11.6973	11.662	14.538	12.0871	27950	105.7
Q4	192.42	1.5720	2.304	1.5716	11.6733	11.494	14.285	12.2547	26566	106.0
2003 Q1	190.67	1.6017	2.189	1.4937	11.0987	11.313	13.709	12.5030	26388	102.3
Q2	191.90	1.6194	2.163	1.4256	10.5851	11.344	13.032	12.6352	25199	99.1
Q3	189.14	1.6108	2.209	1.4300	10.6264	11.794	13.103	12.5605	26954	99.2
Q4	185.64	1.7065	2.228	1.4334	10.6591	11.796	12.913	13.2305	25724	100.2
2004 Q1	197.07	1.8391	2.306	1.4708	10.9571	12.703	13.507	14.2983	25266	104.1
Q2	198.21	1.8052	2.305	1.4992	11.1529	12.387	13.712	14.0831	25178	105.2
Q3	199.95	1.8189	2.285	1.4877	11.0633	12.478	13.627	14.1861	25382	104.8
Q4	197.18	$1.8648{ }^{\dagger}$	2.206	1.4388	10.6958	11.798	12.966	14.5080	25908	102.4
2005 Q1	197.53	1.8904	2.234	1.4424	10.7362	11.889	13.092	14.7449	25801	102.9
Q2	199.56	1.8559	2.276	1.4744	10.9788	11.863	13.572	14.4506	26844	104.3
Q3	198.44	1.7844	2.273	1.4635	10.9160	11.534	13.709	13.8685	26728	102.9
Monthly										
2003 Jul	192.72	1.6242	2.209	1.4277	10.613	11.828	13.130	12.6671	25785	99.4
Aug	189.42	1.5950	2.200	1.4286	10.617	11.800	13.186	12.4395	26550	99.0
Sep	185.29	1.6131	2.219	1.4338	10.649	11.755	12.994	12.5590	26954	99.2
Oct	183.76	1.6787	2.220	1.4334	10.651	11.807	12.917	12.9962	26131	99.8
Nov	184.47	1.6901	2.250	1.4426	10.729	11.832	12.973	13.1201	26617	100.4
Dec	188.70	1.7507	2.214	1.4246	10.602	11.749	12.850	13.5923	25724	100.3
2004 Jan	193.82	1.8234	2.262	1.4447	10.760	12.425	13.203	14.1598	25329	102.4
Feb	199.16	1.8673	2.324	1.4774	11.008	12.983	13.566	14.5165	24689	104.8
Mar	198.22	1.8267	2.332	1.4890	11.092	12.701	13.752	14.2349	25266	105.0
Apr	194.04	1.8005	2.337	1.5022	11.182	12.458	13.775	14.0381	25377	105.2
May	200.69	1.7876	2.293	1.4894	11.082	12.222	13.594	13.9374	24819	104.6
Jun	199.91	1.8275	2.285	1.5050	11.189	12.482	13.767	14.2499	25178	105.8
Jul	201.66	1.8429	2.294	1.5023	11.170	12.730	13.818	14.3740	24579	105.9
Aug	200.87	1.8216	2.297	1.4933	11.105	12.437	13.725	14.2077	25189	105.2
Sep	197.32	1.7922	2.265	1.4676	10.916	12.268	13.337	13.9777	25382	103.3
Oct	196.54	1.8065	2.229	1.4455	10.751	11.895	13.093	14.0707	25557	102.2
Nov	194.76	1.8603	2.177	1.4311	10.635	11.658	12.877	14.4662	25757	101.7
Dec	200.23	1.9275	2.212	1.4401	10.705	11.841	12.928	14.9890	25908	103.2
2005 Jan	193.97	1.8764	2.217	1.4331	10.664	11.783	12.979	14.6292	25840	102.1
Feb	198.10	1.8871	2.248	1.4499	10.791	12.064	13.172	14.7185	26080	103.3
Mar	200.51	1.9078	2.237	1.4440	10.753	11.821	13.126	14.8801	25801	103.2
Apr	203.34	1.8960	2.267	1.4652	10.916	11.980	13.433	14.7865	26103	104.4
May	197.70	1.8538	2.258	1.4611	10.877	11.805	13.428	14.4439	26595	103.6
Jun	197.64	1.8179	2.302	1.4952	11.132	11.805	13.854	14.1362	26844	104.9
Jul	195.99	1.7509	2.267	1.4547	10.850	11.523	13.717	13.6141	25950	102.1
Aug	198.48	1.7943	2.266	1.4592	10.885	11.551	13.631	13.9444	25437	102.8
Sep	200.86	1.8081	2.287	1.4761	11.009	11.527	13.779	14.0356	26728	103.9
Oct	202.62	1.7640	2.273	1.4674	10.950	11.490	13.835	13.6823	..	103.1

[^17]

6.2 Monetary aggregates ${ }^{1,3}$

	M0				M4			
	$\begin{gathered} \text { Amount } \\ \text { outstanding }^{2} \text { (NSA) } \end{gathered}$		Amount outstanding (£ million) +	Velocity of circulation: ratio	Amount outstanding (NSA)		Amount outstanding (£ million) +	Velocity of circulation: ratio
	£ million	Annual percentage change			£ million	Annual percentage change		
Annual								
	AVAD	VQNB	AVAE	AVAM	AUYM	VQLC	AUYN	AUYU
2001	37319	8.0	$35097{ }^{\dagger}$	29.75	942433	6.7	943666^{\dagger}	1.09
2002	39540	6.0	37230	28.98	1008678	7.3	1009880	1.08
2003	42317	7.0	39931	$28.50{ }^{\dagger}$	1081121	7.3	1082344	1.07
2004	44466	5.1	42249	28.27	1179089	9.3	1180401	1.03
Quarterly								
						VQRY		
2001 Q1	32489	8.4	$33114{ }^{\dagger}$	29.92	905800	8.3	$905449{ }^{\dagger}$	1.10
Q2	32896	6.5	33284	30.01	921571	7.6	917966	1.10
Q3	33797	6.2	33941	29.67	937071	8.4	939726	1.08
Q4	37319	8.0	35097	29.40	942433	6.7	943666	1.08
2002 Q1	35157	8.2	35549	29.06	955196	5.7	955342	1.09
Q2	36225	10.1	36644	29.12	975699	6.1	971352	1.09
Q3	36511	8.0	36675	$28.95{ }^{\dagger}$	989473	5.9	992481	1.08
Q4	39540	6.0	37230	28.78	1008678	7.3	1009880	1.07
2003 Q1	37184	5.8	37897	28.84	1020595	7.1	1021075	1.07
Q2	38403	6.0	38910	28.36	1047982	7.9	1042952	$1.06{ }^{\dagger}$
Q3	39348	7.8	39515	28.42	1051120	6.6	1054479	1.07
Q4	42317	7.0	39931	28.37	1081121	7.3	1082344	1.06
2004 Q1	39812	7.1	40590	28.43	1101901	7.9	1102592	1.05
Q2	41109	7.0	41419	28.25	1133485	8.0	1127755	1.04
Q3	41748	6.1	41803	28.21	1148459	9.0	1152340	1.03
Q4	44466	5.1	42249	28.21	1179089	9.3	1180401	1.02
2005 Q1	42395	6.5	42672	28.05	1216926	10.6	1217714	1.00
Q2	42656	3.8	42981	28.17	1251251^{\dagger}	10.6	1244747	0.98
Q3	43969	5.3	44061	..	1275136	11.4	1279635	..
Monthly								
						VQLC		
2003 Jul	38938	8.0	$39188{ }^{\dagger}$..	1036608	7.3	1038494^{\dagger}	..
Aug	39579	7.9	39402	..	1040203	6.2	1039255	..
Sep	39348	7.8	39515	..	1051120	6.6	1050845	..
Oct	39416	7.3	39695	..	1054713	6.4	1053986	.
Nov	40149	8.0	39992	..	1070453	7.1	1068081	..
Dec	42317	7.0	39931	..	1081121	7.3	1080018	.
2004 Jan	40222	8.0	40190	..	1080398	8.7	1089838	..
Feb	39448	6.8	40255	..	1087970	8.4	1096201	..
Mar	39812	7.1	40590	.	1101901	7.9	1099297	..
Apr	40799	5.7	40778	..	1109089	7.6	1106245	..
May	40668	4.7	41055	..	1121331	8.3	1117954	..
Jun	41109	7.0	41419	..	1133485	8.1	1125108	.
Jul	41115	5.6	41357	..	1133394	9.2	1133484	..
Aug	41489	4.8	41402	..	1143082	9.8	1143949	..
Sep	41748	6.1	41803	..	1148459	9.0	1147954	..
Oct	41721	5.8	42002	..	1158196	9.6	1158794	..
Nov	42222	5.2	42053	.	1166521	8.9	1165475	.
Dec	44466	5.1	42249	..	1179089	9.3	1175026	..
2005 Jan	42700	6.2	42460	..	1177416	9.2	1189349	..
Feb	41757	5.9	42622	..	1188970	9.5	1199830	..
Mar	42395	6.5	42672	..	1216926	10.6	1213566	..
Apr	42188	3.4	42718	..	1223991	10.5	1222055	..
May	42426	4.3	42811	.	1242306	11.1	1239711	.
Jun	42656	3.8	42981	.	1251251^{\dagger}	10.6	1241371	..
Jul	43127	4.9	43362	..	1256010	11.1	1255598	..
Aug	44078	6.2	43931	..	1254261	$9.9{ }^{\dagger}$	1255615	..
Sep	43969	5.3	44061	.	1275136	11.4	1272664	.

1 A fuller range of monetary aggregates is published monthly in the ONS pub- 2 The monthly figures for MO give the average of the amounts outstanding each lication Financial Statistics.

> Wednesday during the calendar month.

3 These figures fall outside the scope of National Statistics .
Source: Bank of England; Enquiries 02076015467

6.3 counterparts to changes in money stock $M 4^{1,4}$

		Purchases by the M4 ${ }^{2}$ private sector of:		External and foreign currency financing of public sector			Banks' and Building Societies' sterling lending to the M4 private sector	$\begin{array}{r} \text { External and } \\ \text { foreign } \\ \text { currency } \\ \text { trans- } \\ \text { actions } \\ \text { of UK } \\ \text { banks } \\ \text { and } \\ \text { building } \\ \text { soc- } \\ \text { ieties } \\ \hline \end{array}$	Net nondeposit sterling liabilities of UK banks and building societies		
	Public Sector Net Cash Requirement+ ${ }^{3}$	Central government debt	Other public sector debt	Purchase of British government stocks by overseas sector	Other	Public sector contribution M4				External and foreign currency counterparts	M4
	1	2	3	4	5	6	7	8	9	10	11
Annual											
	ABEN	RCMD	AVBV	AVBZ	AQGA	AVBF	AVBS	AVBW ${ }_{+}$	AVBX	VQLP	AUZI
2001	-2 756	7532	191	318	4194	8842	82446	$-21607{ }^{\dagger}$	$-10815{ }^{\dagger}$	-17 $732{ }^{\dagger}$	58868
2002	18286	-9118	-110	-897	1588	11543	107655	-25 113	-25 149	-22 627	68936
2003	38857	-31990	-473	10378	-3 067	-7 048	127712	-27 161	-20 341	-40 602	73163
2004	41406	-30 713	-1257	2235	-158	7042	156087	4435	-67477	2042	100087
Quarterly											
2001 Q2	6413	2980	233	4549	1000	6078	21194	-7262^{\dagger}	-4325^{\dagger}	-10811^{\dagger}	15685
Q3	-6 101	4437	95	-2 931	1287	2648	15710	7221	-8836	11438	16744
Q4	9372	-3160	131	1056	-1827	3459	14467	-13 847	1092	-16 730	5172
2002 Q1	-6 213	2907	-260	-1 045	2398	-124	24732	-7 089	-3172	-3 646	14347
Q2	7093	-4 272	101	-266	-1 001	2188	24507	1613	-8 069	879	20239
Q3	393	-2 114	93	-1960	208	540	34214	-8547	-11 077	-6 379	15131
Q4	17013	-5 639	-44	2374	-17	8939	24202	-11090	-2 831	-13 481	19219
2003 Q1	-332	-4 234	31	1934	430	-6 038	21783	2357	-4 432	854	13670
Q2	16293	-8454	-210	2855	-2 099	2676	34559	-1532	-6 969	-6 485	28735
Q3	5860	-10 530	-184	980	-1222	-7 056	30591	-2 300	-17 743	-4 501	3492
Q4	17036	-8772	-110	4609	-176	3370	40779	-25 686	8803	-30 470	27266
2004 Q1	240	-11916	-534	978	1670	-11519	34934	30405	-33 204	31096	20616
Q2	11746	-1830	-413	2204	-136	7162	37475	4663	-16 199	2323	33101
Q3	7259	-11 045	-79	125	-1441	-5 431	51828	-15 856	-16 348	-17422	14193
Q4	22161	-5 922	-231	-1 072	-251	16830	31850	-14777	-1726	-13 955	32177
2005 Q1	-2 522	-4 802	-388	8258	1411	-14558	$31683{ }^{\dagger}$	18326	2000	11479	$37451{ }^{\dagger}$
Q2	$16559{ }^{\dagger}$	-6 033	-282	5428	-302	4514^{\dagger}	33826	18100	-19 863	12370	36577
Q3	8337	755	154	12155	-866	-3774	52743	-10975	-14000	-23 996	23994
Monthly											
2003 Aug	3482	-5 703	53	228	-771	-3166	5309	-9 972 ${ }^{\dagger}$	$11432{ }^{\dagger}$	-10 971 ${ }^{\dagger}$	3603
Sep	8464	-2 375	-3	2091	-1331	2665	17557	8572	-17823	5151	10971
Oct	-1582	-5 265	-96	-1161	3016	-2 766	23106	-21906	5433	-17729	3867
Nov	5593	1029	-41	7050	-49	-518	9928	8850	-2 980	1751	15281
Dec	13024	-4536	28	-1280	-3143	6654	7744	-12630	6350	-14 492	8118
2004 Jan	-14 395	513	-292	-786	3019	-10 368	20959	7287	-18931	11092	-1 054
Feb	-82	-4 648	237	1267	225	-5 536	4713	12060	-3 581	11018	7656
Mar	14716	-7 781	-479	497	-1574	4386	9263	11057	-10 691	8986	14014
Apr	-2 229	-2 119	-170	-1908	80	-2 530	10350	6592	-7 175	8580	7237
May	3234	-1609	-61	1168	-68	328	8737	3242	325	2006	12631
Jun	10741	1898	-182	2944	-148	9364	18389	-5 171	-9 349	-8264	13234
Jul	-6966	-4350	243	-947	-117	-10 243	14260	941	-5 114	1771	-156
Aug	3302	2306	-164	3248	409	2605	15348	-6 241	-1700	-9 080	10013
Sep	10922	-9 001	-157	-2 176	-1733	2208	22219	-10 556	-9 534	-10 113	4337
Oct	-1531	-2 344	-61	1345	-56	-5 337	14820	-5 618	5877	-7 018	9742
Nov	9019	188	-36	-1944	286	11401	2130	-1 085	-2 775	1145	9671
Dec	14673	-3766	-134	-473	-480	10766	14901	-8074	-4828	-8082	12764
2005 Jan	-16823	-4 508	6	927	1714	-20 539	16670	-3 695	6033	-2 908	-1530
Feb	669	2050	-187	2650	-406	-523	4483	14841	-7241	11785	11560
Mar	13632	-2 344	-207	4681	103	6504	$1053{ }^{\dagger}$	7180	3208	2602	27422^{\dagger}
Apr	-946	1293	-281	1939	-37	-1909	8526	2701	-2 250	726	7068
May	${ }^{5175}{ }^{\text {¢ }}$	-4 125	170	-677	-129	$1768{ }^{+}$	13408	19025	-13644	19573	20557
Jun	$12331{ }^{\dagger}$	-3 202	-172	4166	-135	4655^{\dagger}	11892	-3627	-3969	-7929	8951
Jul	-8459	$1180{ }^{\dagger}$	112	$2820{ }^{\dagger}$	-552	-10 539	18286	-2 408	-575	-5 780	4763
Aug	4797	2803	110^{\dagger}	4042	-160	3507	5028	-14183	3905	-18385	-1743
Sep	12000	-3 228	-67	5293	-154	3258	29429	5617	-17330	170	20974

[^18]
*Private sector other than banks and building societies

6.4 Public sector receipts and expenditure

	Public sector current expenditure							Public sector current receipts								
	Current expenditure on goods and services	Subsidies	Net Social Benefits	Net current grants abroad	Other current grants	Interest paid to private sector and RoW	Total current expenditure	Operating surplus	Taxes on production	Taxes on income and wealth	Taxes on capital	Other Current taxes	Compulsory social contributions	Interest/divide from private/RoW	Rent and other current transfers	Total current receipts
Annual																
	GZSN	NMRL	ANLY	GZSI	NNAI	ANLO	ANLT	ANBP	NMYE	ANSO	NMGI	MJBC	ANBO	ANBQ	ANBS	ANBT
2002	210654	5266	123288	-539	24218	21534	384421	16278	138328	142716	2381	20360	63410	4852	2426	390751
2003	231543	6243	130308	-855	28780	22721	418740	17293	145759	144021	2416	22555	71540	4836	2123	410543
2004	245922	6779	138562	-428	30984	23613	445432	17512	154272	155918	2881	24310	77345	5470	1908	439616
Quarterly																
2002 Q1	50871	1204	30075	12	5409	5236	92807	4037	32658	45805	556	4812	17103	1158	670	106799
Q2	52712	1332	29977	-126	6067	5437	95399	3933	33908	28544	607	5172	15142	1187	512	89005
Q3	53264	1360	30500	-375	6845	4631	96225	4099	35794	35492	619	5221	15278	1230	743	98476
Q4	53807	1370	32736	-50	5897	6230	99990	4209	35968	32875	599	5155	15887	1277	501	96471
2003 Q1	56276	1207	30829	-75	7227	5321	100785	4217	34044	46210	545	5204	17222	1243	661	109346
Q2	57925	2044	31540	-185	7388	5813	104525	4118	36439	29368	606	5686	17670	1169	484	95540
Q3	58272	1461	32810	-295	6709	5398	104355	4269	36514	36110	631	5823	18245	1173	491	103256
Q4	59070	1531	35129	-300	7456	6189	109075	4689	38762	32333	634	5842	18403	1251	487	102401
2004 Q1	60282	1489	32922	-222	8197	5465	108133	4443	36806	47567	650	5850	20830	1260	487	117893
Q2	60702	1848	34103	-187	7275	5680	109421	4130	38359	32050	731	6115	18284	1348	484	101501
Q3	61831	1567	34551	-36	8305	5799	112017	4193	38727	39641	759	6214	18836	1397	469	110236
Q4	63107	1875	36986	17	7207	6669	115861	4746	40380	36660	741	6131	19395	1465	468	109986
2005 Q1	63897	1932	33891	-374	9103	6441	114890	4460	37361	54710	713	6172	21763	1452	465	127096
Q2	65022	1577	35816	71	7189	6519	116194	4174	39541	35244	804	6528	19410	1287	445	107433

	Surplus on current budget ${ }^{2}$		Net investment ${ }^{3}$		Net borrowing ${ }^{4}$		Net cash requirement		Public sector net debt	
	General Government	Public Sector	$£$ billion 6	\% of GDP ${ }^{7}$						
Annual										
	ANLW	ANMU	-ANNV	-ANNW	NNBK	ANNX	RUUS	RURQ	RUTN	RUTO
2002	-5 100	-7 365	10752	9972	-15 852	-17 337	16421	18227	345.2	32.1
2003	-20 694	-22 422	15037	14489	-35731	-36 911	$38214+$	38965	376.9	33.2
2004	-19 575	-21 079	16708	15664	-36726	-36743	$41337{ }^{\dagger}$	41284	419.0	35.3
Quarterly										
2002 Q1	11257	10703	4891	4713	6366	5990	-6 383	-6 323	311.7	30.1
Q2	-9 200	-9 763	1068	785	-10 268	-10 548	7126	7069	318.7	30.4
Q3	-764	-1179	2618	2224	-3 382	-3 403	-145	402	321.8	30.3
Q4	-6 393	-7126	2175	2250	-8568	-9 376	15823	17079	345.2	32.1
2003 Q1	5806	4956	5942	6285	-136	-1 329	-1305	-413	342.4	31.4
Q2	-12 006	-12 493	2015	1613	-14021	-14 106	16404	16286	350.8	31.7
Q3	-4 285	-4 624	3444	3200	-7 729	-7824	6036	5923	356.1	31.8
Q4	-10 209	-10 261	3636	3391	-13845	-13652	17079	17169	376.9	33.2
2004 Q1	6542	6122	5515	5430	1027	692	$506{ }^{\dagger}$	115	377.3	32.8
Q2	-11223	-11797	2931	2588	-14351	-14 385	11518	11655	390.2	33.5
Q3	-5 173	-5 850	3695	3316	-9 222	-9 166	6966	7335	396.4	33.7
Q4	-9 721	-9 554	4567	4330	-14 180	-13 884	22347	22179	419.0	35.3
2005 Q1	8752	8315	8367	8710	284	-395	-2 094	-2 568	416.7	34.6
Q2	-11906	-12 745	3157	2820	-15 234	-15 565	15438	16712	432.5	35.5
Q3	..	-1841	..	5456	-7649	-7 297	8354	8209	440.0	35.5

[^19]

6.6

	Consumer credit								Loans secured on dwellings (NSA ${ }^{\top}$)
	Total consumer credit	of which		Banks	Building Societies' Class 3 Loans	Other specialist lenders	Retailers	Insurance companies	
		credit cards ${ }^{2}$	other ${ }^{2}$						
Amounts outstanding: quarterly									
	VZRI	VZRJ	VZRK	VRVV	VZRG	VZRH	RLBO	VZQZ	AMWT
2000 Q1	119280	33450	85870	$86029{ }^{\dagger}$	315	28852	2663	1415	503376
Q2	$122010{ }^{+}$	34930	87106	88720	315	28937	2613	1310	514638
Q3	124317^{\dagger}	36290	88063	91039	349	29130	$2555{ }^{\dagger}$	1273	525523
Q4	127329	37620	89585	94313	392	29009	2503	1197	535391
2001 Q1	129068	38009	91127	95812	412	29122	2523	1229	546179
Q2	132927	39416	93517	100285	424	28329	2509	1221	561121
Q3	136046	40001	96048	103451	447	28473	2522	1206	576957
Q4	140984	41758	99175	107849	436	29103	2478	1178	591152
2002 Q1	144262	43396	$100930{ }^{+}$	110985	463	29191	2505	1183	606222
Q2	147173	43429	$103743{ }^{\dagger}$	113135	460	29630	2574	1193	625670
Q3	153010	45957	107007	118383	523	30414	2561	1196	652553
Q4	157124	47246	109890	121003	610	31833	2532	1182	675180
2003 Q1	156480	43798	112665	116730	625	35664	2522	1033	695615
Q2	161135	45788	115300	119667	672	37427	2220	933	718271
Q3	164397	47632	116725	121946	736	38778	2167	824	746267
Q4	166398	47760	118755	122890	766	39971	2144	701	774548
2004 Q1	170180	48970	121165	127063	751	39685	2072	690	798753
Q2	174539	50440	124050	130760	777	40077	2040	698	826107
Q3	178392	51754	126630	134006	836	40901	1989	676	853731
Q4	182254	53696	128656	137289	904	41570	1936	661	876879
2005 Q1	186626	55219	131353	140383	949	$42818{ }^{\dagger}$	1867	651	892817
Q2	189216	55791	133370	141669	980	43970	1811	642	916638
Q3	190689	56017	134712	141840	1068	45358	1772	629	..
Amounts outstanding: monthly									
2003 Jan	157707^{\dagger}	$47483{ }^{\dagger}$	$110224{ }^{\dagger}$	121302^{\dagger}	601	32033	2542	1143	..
Feb	154713	43611	111102	119902	617	30348	$2539{ }^{\dagger}$	1089	
Mar	156100	43673	112427	116312	$633{ }^{\dagger}$	35462	2511	1033	
Apr	157440	44151	113289	116896	658	36549	2492	990	
May	159226	45019	114207	118219	657	36706	2471	959	
Jun	160738	45640	115099	119310	684	37534	2214	933	.
Jul	162213	46321	115893	120836	698	37697	2198	904	.
Aug	163370	46900	116469	121747	714	37677	2194	868	.
Sep	164187	47620	116567	121746	726	38821	2158	824	.
Oct	165610	48061	117549	122053	733	39884	2153	776	.
Nov	166178	47904	118274	122742	731	40128	2152	732	
Dec	166195	47535	118660	122757	739	39994	2140	701	.
2004 Jan	167540	48106	119434	125407	747	38524	2090	686	.
Feb	169150	48538	120612	126821	753	38831	2040	684	
Mar	169927	48865	121061	126955	759	39491	2065	690	.
Apr	171533	49805	121727	128497	770	39534	2064	697	..
May	172475	49861	122615	129110	785	39794	2039	700	
Jun	174252	50292	123960	130701	788	40208	2034	698	.
Jul	176080	51367	124713	132157	801	40353	2021	692	.
Aug	177227	51462	125765	132650	809	40772	1989	684	.
Sep	178280	51699	126581	134026	824	40991	1980	676	.
Oct	179632	52345	127287	135401	835	41000	1969	669	..
Nov	181249	53017	128232	136537	851	41526	1947	664	..
Dec	182115	53454	128661	137093	877	41498	1932	661	.
2005 Jan	184008	54345	129663	138494	894	41755	1909	658	.
Feb	185304	54868	130435	139388	913	42128	1882	655	..
Mar	186407	55118	131289	140437	961	42668	1860	651	..
Apr	186926	54963	131963	140653	942	42936	1834	648	..
May	188189	55498	132691	141489	966	43129	1821	645	..
Jun	188933	55656	133277	141714	993	44099	1805	642	.
Jul	189631	55828	133803	142092	1031	44152	1786	638	..
Aug	190445	56123	134322	142216	1050	$44419{ }^{+}$	1785	634	..
Sep	190645	55890	134755	141704	1056	$45480{ }^{\text {¢ }}$	1763	629	.
Oct	191406	56334	135072	141228	1079	46636	1742	624	..

[^20]

6.7
 Analysis of bank lending to UK residents ${ }^{1,3}$
 Amounts outstanding

[^21]

6,8 Interest rates and yields ${ }^{4}$

								ercentage rat
			Last Friday				Last working day	Average of working days
	Treasury bill yield ${ }^{1}$	Interbank 3 months	$\begin{array}{r} \text { Inter- } \\ \text { bank } \\ 3 \text { months } \\ \text { offer rate }{ }^{2} \end{array}$	$\begin{array}{r} \text { Sterling certif- } \\ \text { icates } \\ \text { of deposit } \\ 3 \text { months } \\ \text { bid rate } \\ \hline \end{array}$	Sterling certificates of deposit 3 months offer rate	Selected retail banks: base rate		British government securities: long dated ${ }^{3}$ - 20 years
Annual								
	AJRP	HSAJ	HSAK	HSAL	HSAM	ZCMG	AJIB	AJLX
2002	3.92	3.94	3.96	3.90	3.94	..	1.35	4.83
2003	3.90	3.95	3.98	3.95	3.98	.	1.10	4.64
2004	4.75	4.81	4.84	4.78	4.82	..	2.56	4.77
Monthly								
2002 Jan	3.90	3.97	4.03	3.97	3.99	4.00	1.86	4.81
Feb	3.91	3.97	4.00	3.91	3.95	4.00	1.85	4.83
Mar	4.04	4.09	4.16	4.09	4.11	4.00	2.00	5.11
Apr	3.98	4.06	4.13	4.05	4.06	4.00	1.86	5.13
May	4.04	4.09	4.13	4.09	4.11	4.00	1.82	5.18
Jun	3.97	4.06	4.09	4.05	4.07	4.00	1.83	5.02
Jul	3.75	3.94	3.97	3.92	3.94	4.00	1.75	4.90
Aug	3.86	3.91	3.97	3.91	3.93	4.00	1.80	4.64
Sep	3.81	3.88	3.91	3.85	3.86	4.00	1.74	4.45
Oct	3.73	3.88	3.91	3.85	3.87	4.00	1.64	4.59
Nov	3.86	3.94	3.98	3.94	3.95	4.00	1.42	4.64
Dec	3.92	3.94	3.96	3.90	3.94	4.00	1.35	4.62
2003 Jan	3.79	3.88	3.91	3.88	3.89	4.00	1.29	4.44
Feb	3.49	3.59	3.64	3.60	3.62	3.75	1.30	4.39
Mar	3.51	3.57	3.61	3.57	3.59	3.75	1.25	4.54
Apr	3.47	3.55	3.58	3.54	3.56	3.75	1.28	4.67
May	3.44	3.54	3.57	3.55	3.55	3.75	1.22	4.46
Jun	3.50	3.55	3.59	3.55	3.56	3.75	1.09	4.39
Jul	3.32	3.36	3.40	3.36	3.38	3.50	1.06	4.65
Aug	3.53	3.54	3.57	3.54	3.56	3.50	1.11	4.68
Sep	3.59	3.66	3.67	3.63	3.65	3.50	1.13	4.76
Oct	3.81	3.86	3.90	3.85	3.87	3.50	1.13	4.88
Nov	3.86	3.90	3.94	3.90	3.92	3.75	1.12	4.95
Dec	3.90	3.95	3.98	3.95	3.98	3.75	1.10	4.83
2004 Jan	4.00	4.05	4.10	4.06	4.08	3.75	1.08	4.75
Feb	4.11	4.11	4.16	4.12	4.14	4.00	1.07	4.78
Mar	4.24	4.30	4.33	4.30	4.32	4.00	1.05	4.67
Apr	4.31	4.35	4.39	4.35	4.37	4.00	1.11	4.87
May	4.54	4.56	4.59	4.55	4.59	4.25	1.24	4.98
Jun	4.65	4.77	4.79	4.74	4.78	4.50	1.56	5.00
Jul	4.80	4.86	4.89	4.87	4.88	4.50	1.64	4.92
Aug	4.77	4.88	4.90	4.88	4.90	4.75	1.78	4.81
Sep	4.73	4.82	4.86	4.83	4.85	4.75	1.98	4.76
Oct	4.73	4.81	4.84	4.82	4.84	4.75	2.14	4.68
Nov	4.69	4.77	4.80	4.76	4.80	4.75	2.38	4.58
Dec	4.75	4.81	4.84	4.78	4.82	4.75	2.56	4.44
2005 Jan	4.71	4.79	4.81	4.77	4.81	4.75	2.75	4.44
Feb	4.79	4.87	4.90	4.86	4.90	4.75	2.90	4.53
Mar	4.82	4.90	4.93	4.88	4.92	4.75	3.04	4.74
Apr	4.75	4.86	4.88	4.85	4.89	4.75	3.18	4.60
May	4.70	4.79	4.81	4.78	4.82	4.75	3.31	4.41
Jun	4.57	4.69	4.73	4.69	4.73	4.75	3.51	4.29
Jul	4.48	4.54	4.56	4.53	4.57	4.75	3.67	4.33
Aug	4.43	4.52	4.54	4.51	4.55	4.50	3.84	4.34
Sep	4.45	4.52	4.55	4.52	4.56	4.50	4.07	4.26
Oct	4.47	4.54	4.56	4.53	4.57	4.50	4.24	4.36

1 Average discount rate expressed as the rate at which interest is earned dur- 3 Averages of Wednesdays until February 1980; from March 1980 figures are the average of all observations (3 a week); from January 1982 average of working
2 Spread of rates over the day in the inter-bank sterling market; from June days. Calculated gross redemption yields - see Financial Statistics Explanatory 1982 rates are the spread at 10.30 am . Handbook.
4 These figures fall outside the scope of National Statistics.

6.9 a selection of asset prices

Not seasonally adjusted

	Producer price indices$(2000=100)$		Housing:ODPM all lenders mix adjusted house price index$(2002=100)$			
	Plant and machinery bought as fixed assets by Motor vehicle industry	Manufactured output Motor vehicle industry	New dwellings ${ }^{1}$	Secondhand dwellings ${ }^{1}$	All dwellings ${ }^{1}$	Average price of agricultural land in England $(1995=100)^{2}$
Annual						
	PVJL	PQIR	WMPN	WMPP	WMPQ	BAJI
2001	102.0	95.4	90.3	95.7	95.1	155
2002	100.2	95.2	108.7	111.6	111.2	144
2003	99.5	94.6	126.4	129.0	128.7	147
2004	98.9	96.1	138.6	144.6	143.9	162
Quarterly						
2001 Q1	102.9	95.4	90.8	92.1	92.1	$156{ }^{3}$
Q2	103.1	95.5	90.8	96.0	95.4	$148{ }^{3}$
Q3	101.2	95.4	94.1	99.4	98.8	$160{ }^{3}$
Q4	101.1	95.4	95.4	96.9	96.8	$154{ }^{3}$
2002 Q1	101.0	95.6	100.0	100.0	100.0	130^{3}
Q2	100.5	95.5	106.5	108.4	108.2	1393
Q3	100.0	94.9	111.0	116.1	115.5	152^{3}
Q4	99.2	94.9	117.1	121.8	121.3	148^{3}
2003 Q1	99.1	94.6	119.3	124.0	123.4	$136{ }^{3}$
Q2	99.7	94.1	127.2	127.3	127.2	$146{ }^{3}$
Q3	99.9	94.5	127.9	131.1	130.7	$168{ }^{3}$
Q4	99.5	95.1	131.8	133.7	133.4	142^{3}
2004 Q1	98.8	95.5	130.8	135.2	134.6	$158{ }^{3}$
Q2	99.3	96.2	137.8	143.1	142.5	$157{ }^{3}$
Q3	98.9	96.3	143.1	149.6	148.9	$174{ }^{3}$
Q4	98.8	96.5	142.6	150.7	149.8	$160{ }^{3}$
2005 Q1	99.2	96.9	145.1	150.1	149.5	..
Q2	$99.0{ }_{+}$	97.0	146.5	151.6	150.9	..
Q3	$99.6 p^{\dagger}$	97.5p	149.1	154.5	153.8	.
Monthly						
2004 Jan	98.8	95.0	131.5	136.0	135.4	.
Feb	98.2	95.4	129.4	134.7	134.1	.
Mar	99.3	96.2	131.6	134.8	134.4	..
Apr	99.1	96.3	135.9	141.1	140.5	.
May	99.5	96.3	136.7	142.9	142.2	.
Jun	99.2	95.9	140.9	145.3	144.7	..
Jul	98.8	96.2	142.5	148.5	147.8	.
Aug	98.9	96.3	142.3	150.4	149.5	..
Sep	99.1	96.3	144.5	149.9	149.2	.
Oct	98.9	96.5	144.4	151.1	150.3	.
Nov	99.1	96.5	143.0	150.9	150.1	.
Dec	98.4	96.5	140.4	150.1	149.0	.
2005 Jan	98.9	96.6	143.9	149.6	148.9	.
Feb	99.4	96.9	144.0	148.7	148.1	..
Mar	99.2	97.1	147.4	151.9	151.3	.
Apr	$98.9{ }^{\dagger}$	96.9	144.6	150.8	150.1	.
May	99.2	97.1	146.9	151.3	150.8	.
Jun	98.9	97.1	148.0	152.6	152.0	.
Jul	99.9 p	97.4p	149.7	154.3	153.7	.
Aug	99.5p	97.4 p	148.8	154.4	153.7	.
Sep	99.5 p	97.6 p	148.8	154.8	154.1	..
Oct	99.6p	97.6p

1 Series based on mortgage lending by all financial institutions rather than 2 Please note that because of some changes in coverage, the revised series
building societies only, as previously published. This change has been made necessary because of the mergers, takeovers and conversions to plc status affecting the building society sector. The series is based on the Office of the Deputy Prime Ministers' 5\% survey of mortgage lenders (at completion stage), but now includes all mortgage lenders rather than building societies stage), but now includes all mortgage lenders rather than building societies
only. From February 2002, monthly data has been obtained from the enonly. From February 2002, monthly data has been obtained from the en-
larged survey and quarterly data from 2002q2 are based on monthly indices. From September 2005, figures are based on the new Regulated Mortgage Survey (CML/BankSearch).
from Q1 1993 is not directly comparable with the old series. From Q1 1993 prices of all sales of agricultural land exclude some transfers in order to come closer to estimates of market determined prices. However the new series does not represent exactly competitive open market values. Sales are now analysed and recorded on the basis of when the transactions actually took place. Further information is available on the DEFRA Website
(www.statistics.defra.gov.uk/esg/default.htm) accessible through the internet. Data prior to 1993 remains on the previous basis.

3 Provisional estimates.

Sources: Office for National Statistics, Enquiries Columns 1-2 01633812106 ; Office of the Deputy Prime Minister, Enquiries Columns 3-5 0207944 3325; Department of Environment, Food and Rural Affairs; Enquiries Column 601904455326

Measures of variability of selected economic time series ${ }^{1}$

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Quarterly series

National income and components:
chained volume measures, reference year 2002
Gross Value Added (GVA) at Basic Prices
Households' Final Consumption Expenditure
Gross fixed capital formation
$\begin{array}{ll}\text { 2.1 } & \text { Q1 } 1990 \text { to Q2 } 2005 \\ 2.5 & \text { Q1 } 1990 \text { to Q2 } 2005\end{array}$
Exports: goods and services
imports: goods and services
Real Households' disposable income Q1 1990 to Q2 2005

Q1 1990 to Q2 2005 Q1 1990 to Q2 200
$0.6 \quad 0.1$

0.1	0.6	0.2	1	0.2
0.3	0.7	0.4	1	0.4
0.8	1.3	0.6	1	0.6
1.0	1.4	0.7	1	0.7
0.9	1.6	0.6	1	0.6
0.8	0.7	1.1	2	0.4
1.8	1.6	1.1	2	0.4
0.8	0.8	0.9	1	0.9
0.7	0.5	1.5	2	0.4

Gross operating surplus of privat
non-financial corporations $\quad 2.11$ Q1 1990 to Q2 2005
Q1 1990 to Q2 2005
$0.5 \quad 1.5$

Constructionl serie

Households' saving ratio ${ }^{3}$

0.6	0.1	0.6	0.2
0.8	0.3	0.7	0.4
1.6	0.8	1.3	0.6
2.0	1.0	1.4	0.7
1.9	0.9	1.6	0.6
1.0	0.8	0.7	1.1
2.6	1.8	1.6	1.1
1.2	0.8	0.8	0.9
0.9	0.7	0.5	1.5

Monthly series

Retail sales (volume per week)
Predominantly food stores
Predominantly non-food stores

5.8	Jan 1990 to Jun 2005	0.6	0.6	0.2	2.4	3	0.8
5.8	Jan 1990 to Jun 2005	1.0	0.9	0.4	2.4	3	0.7
5.8	Jan 1990 to Jun 2005	2.1	2.0	0.5	3.7	4	0.9
5.1	Jan 1990 to Jun 2005	0.6	0.6	0.2	2.9	4	0.8
5.1	Jan 1990 to Jun 2005	0.6	0.5	0.2	2.4	3	0.8
4.6	Jan 1990 to Jun 2005	0.5	0.3	0.4	0.8	1	0.8
2.13	Jan 1990 to Jun 2005	2.8	2.6	0.7	3.6	4	0.9
2.13	Jan 1990 to Jun 2005	2.2	2.1	0.7	3.0	3	0.9
6.2	Jan 1990 to Jun 2005	0.6	0.3	0.5	0.6	1	0.6
6.2	Jan 1990 to Jun 2005	0.7	0.3	0.6	0.5	1	0.5

Non-store and repair
Index of industrial production
Production industries
Manufacturing industries
Average earnings: whole economy
Exports: value, f.o.b.
Imports: value, f.o.b. ${ }^{4}$
Money stock - M0 ${ }^{5}$
Money stock - M4 ${ }^{5}$

1 For a fuller description of these measures see article 'Measuring variability in economic time series' in Economic Trends, No 226, August 1972. The following are brief definitions of the measures
Cl is the average month to month (quarter to quarter for quarterly series) percentage change without regard to sign in the seasonally adjusted series.
C is the same for the trend component.
I is the same for the irregular component, obtained by dividing the trend component into the seasonally adjusted series, except for those series which are seasonally adjusted using an additive model, see footnotes 3 and 5.
$\overline{\overline{\mathrm{I}}} \overline{\mathrm{C}}$ is therefore a measure of the size of the relative irregularity of the seasonally adjusted series
The average changes \bar{I} and $\overline{\mathrm{C}}$ can also be computed successively over spans of increasing numbers of months (quarters). MCD (QCD), months (quarters) for cyclical dominance, is the shortest span of months (quarters) or which I/ C is less than 1 and therefore represents the minimum period over which changes in the trend, on average, exceed the irregular movement.
MCD cannot exceed 6 even if $\overline{\mathrm{I}} \overline{\mathrm{C}}$ exceeds 1 for 6-month periods.

2 Series relate to Great Britain.
3 The figures in the tables were obtained from an additive analysis of the households' saving ratio so $\mathrm{Cl}, \overline{\mathrm{I}}$ and $\overline{\mathrm{C}}$ are differences in percentage points.
4 The figures have been updated as described in an article in Economic Trends, No 320, June 1980.
5 As the irregular component for M 0 and M 4 is obtained by subtraction of the trend rather than by division, the figures for Cl, I and C are expressed as percentages of the trend level in the preceding month.

Source: Office for National Statistics: Enquiries 02075336243

Index of sources

Abbreviations

DEFRA - Department for Environment, Food and Rural Affairs.
ODPM - Office of the Deputy Prime M inister.

	Table	Source	Further statistics (where available)
Asset prices	6.9	Office for National Statistics DEFRA ODPM	
Average earnings	1.1, 4.6	Office for National Statistics	First Release Labour M arket Trends M onthly Digest of Statistics
Balance of payments (current account)	2.13	Office for National Statistics	First Release Financial Statistics UK Economic Accounts
Banking Banking loans, advances and acceptances	6.7	Bank of England	Financial Statistics
British government sucurities (long dated) 20 years yield	6.8	Bank of England	
Capital account summary, analysis by sector	2.10	Office for National Statistics	
Cars (see also M otor Vehicles)			
Production	1.1, 5.3	Office for National Statistics	News Release
Registration	5.8	Department of Transport	
Change in inventories			
By industry	5.6	Office for National Statistics	First Release
M anufacturing	1.1		M onthly Digest of Statistics
Ratios	5.7		
Total	2.2		
Claimant count (see Unemployment)			
Coal (see also Energy)	5.9	Department of Trade and Industry	Energy Trends
Consumer prices index	1.1, 3.1	Office for National Statistics	First Release Focus on consumer price indices Labour M arket Trends
Commercial vehicles, production (see also M otor vehicles)	5.3	Office for National Statistics	News Release
Construction industry			
Index of output (see also)			
Industrial production)	1.1, 2.8	Office for National Statistics	
Orders received	5.2, 5.4	Department of Trade and Industry	Construction Statistics
Output	5.2	Department of Trade and Industry	
Corporations		Office for National Statistics	
Financial corporations			Financial Statistics
Capital transfers	2.10		UK Economic Accounts
Gross saving	2.10		
In relation to gross domestic product	2.3		M onthly Digest of Statistics
Non-financial corporations			First Release
Allocation of primary income account	2.11		Financial Statistics
Capital account, net lending/net borrowing	2.12		UK Economic Accounts
Gross operating surplus	2.11		
Gross saving	2.10		
Property income received/paid	2.11		
Resources	2.11, 2.12		
Secondary distribution of income account	2.12		
Uses	2.11, 2.12	Office for National Statistics	
Consumer credit	5.8, 6.6	Office for National Statistics	Consumer Trends Financial Statistics
Counterparts to changes in money stock M 4	6.3	Bank of England	Financial Statistics Press Notice

Gross domestic product
At basic prices
At market prices
By category of expenditure
In relation to output
In relation to stocks
Per head
Gross fixed capital formation (see
By sector and type of asset
Dwellings

Gross household disposable income

Gross national income (per head)
Gross operating surplus of non-financial corpoirations

Gross operating surplus of non-financial corpoirations	2.11
Gross saving (corporations)	2.10
Household final consumption expenditure	
	2.6
Component categories	2.5
In relation to personal income	2.3
In relation to total final expenditure	2.4
Per head	

Households' income before tax

Housing

Average price of new dwellings at mortgage
completion stage
Fixed investment in dwellings
Orders received by contractors for new houses
Starts and completions

Imports
Of goods
Price index
Volume indices
Of goods and services

Price competitiveness (manufactures)
Incomes
Households' gross disposable income

Households' income before tax

Income from employment as a percentage of gross domestic product (see also Wages: Earnings)

Inventory holding gains (non-financial corporations)
2.1 Office for National Statistics
1.1, 2.1, 2.3, 2.4
2.1, 2.2
2.2
2.8
5.7
2.4
2.2
2.7
2.7
2.4, 2.5
2.4, 2.5 Office for National Statistics

ODPM
2.7, 5.4 Office for National Statistics
5.4 Department of Trade and Industry
1.1, 5.4 ODPM

The Scottish Executive
National Assembly for Wales
1.1, 2.13 Office for National Statistics
1.1, 2.14
2.14
2.2

Office for National Statistics

Office for National Statistics
Office for National Statistics

M onthly Digest of Statistics

First Release
M onthly Digest of Statistics
UK Economic Accounts

First Release
M onthly Digest of Statistics
UK Economic Accounts
First Release
M onthly Digest of Statistics
UK Economic Accounts
M onthly Digest of Statistics
First Release
Financial Statistics
UK Economic Accounts

Prices			
Asset prices	6.9	Office for National Statistics	
		DEFRA	
		ODPM	
Average price of new dwellings at mortgage			
completion (see also Housing)	5.4	ODPM	Housing Statistics
Consumer prices index	1.1, 3.1	Office for National Statistics	First Release
			Focus on Consumer price indices
			Labour M arket Trends
Pensioner price index	3.1	Office for National Statistics	Labour M arket Trends
Producer input and output prices	1.1		
Producer price index	3.1	Office for National Statistics	First Release
			M onthly Digest of Statistics
Retail prices index	1.1, 3.1		First Release
			Labour M arket Trends
			Focus on Consumer price indices
			M onthly Digest of Statistics
Private sector			
Capital account, net lending/net borrowing	2.10	Office for National Statistics	Financial Statistics
Gross fixed investment	2.3, 2.7		M onthly Digest of Statistics
Housing starts and completions (see also Housing)	5.4	ODPM	Housing Statistics
			Press Notice
Producer price index (see also Prices)	3.1	Office for National Statistics	First Release
			M onthly Digest of Statistics
Production (see Industrial production;			
M otor vehicles; Output; Steel)		Office for National Statistics	
Productivity (see also Output per filled job)	1.1, 4.7	Office for National Statistics	First Release
			M onthly Digest of Statistics
			Labour M arket Trends
Profits (see also Companies)	2.3, 2.11	Office for National Statistics	First Release
			Financial Statistics
			UK Economic Accounts
Property income received/paid; non-financial corporations	2.11	Office for National Statistics	First Release
			Financial Statistics
			UK Economic Accounts
Property transactions	5.5	HM Revenue and Customs	
Public sector			
Expenditure and receipts	6.4	Office for National Statistics	
Fiscal indicators	6.5	Office for National Statistics	
Gross fixed capital formation	2.7		
Index numbers of output	2.9	Office for National Statistics	
Net cash requirement (PSNCR)	6.3, 6.5		First Release
Net borrowing	1.1, 6.5		Financial Statistics
Purchasing power of the pound	3.1	Office for National Statistics	
Regional claimant unemployment rates (see also	4.5	Office for National Statistics	First Release
Unemployment)			Labour M arket Trends
Retail prices index (see also Prices)	1.1, 3.1	Office for National Statistics	First Release
			M onthly Digest of Statistics
			Focus on consumer prices indices
			Labour M arket Trends
Retail sales			
Value index numbers	5.8	Office for National Statistics	First Release
			M onthly Digest of Statistics
Volume index numbers	1.1, 5.8		
Ratio of distributors' stocks to retail sales	5.7		
Savings ratio, household	2.5	Office for National Statistics	First Release
			Financial Statistics
			M onthly Digest of Statistics
			UK Economic Accounts
Selected retail banks' rates (see also Interest rates)	6.8	Bank of England	
Service industries			
Gross value added	2.8, 2.9	Office for National Statistics	First Release

5.3	Iron and Steel Statistics Bureau Ltd.	M onthly Digest of Statistics
6.8	Bank of England	Financial Statistics
1.1, 6.1	Bank of England	Financial Statistics
	Office for National Statistics	Financial Statistics
6.4		
2.12		First Release
		Financial Statistics
		UK Economic Accounts
2.2	Office for National Statistics	First Release
		M onthly Digest of Statistics
		UK Economic Accounts
2.15	Office for National Statistics	International Financial Statistics
	International M onetary Fund	
1.1, 2.13, 2.14	Office for National Statistics	First Release
		M onthly Digest of Statistics
		UK Economic Accounts
2.13	Office for National Statistics	First Release
		UK Economic Accounts
6.8	Bank of England	Financial Statistics
4.1, 4.2, 4.3		First Release
	Office for National Statistics	First Release
		Labour M arket Trends
		M onthly Digest of Statistics
4.5A		
4.5		
1.1, 4.4		
2.15	International M onetary Fund	International Financial Statistics
4.7	Office for National Statistics	First Release
4.4	Office for National Statistics	First Release
		Labour M arket Trends
		M onthly Digest of Statistics
1.1, 4.7	Office for National Statistics	First Release
		Labour M arket Trends
		M onthly Digest of Statistics
1.1, 4.7		
2.5	Office for National Statistics	M onthly Digest of Statistics
		First Release
		Labour M arket Trends
2.15	International M onetary Fund	International Financial Statistics
4.4	Office for National Statistics	First Release
		Labour M arket Trends
		M onthly Digest of Statistics

United Kingdom macro-economic statistics

Published by ONS

Annual publications

Economic Trends Annual Supplement Input-Output Analyses

Overseas Direct Investment
Financial Statistics Explanatory Handbook

Share Ownership
UK Balance of Payments (Pink Book)
UK National Accounts (Blue Book)

First releases

- Share Ownership
- Foreign direct investment
- UK trade in services

Recent editions

Economic Trends Annual Supplement 2005
Palgrave M acmillan,
ISBN 1403995427
Price $£ 42.50$
www.statistics.gov.uk/products/p311.asp

Quarterly publications

UK Economic Accounts

Consumer Trends
Overseas Trade analysed in terms of industry

First releases

- UK Balance of Payments
- UK National Accounts
- UK Output, Income \& Expenditure
- GDP Preliminary estimate
- Business investment
- Investment by insurance companies, pension funds and trusts
- Govt Deficit \& Debt under the Treaty (bi-annual)
- Profitability of UK companies
- Productivity

Consumer Trends 2005 quarter 2 w w w.statistics.gov.uk/products/p242.asp

United Kingdom Economic Accounts: 2005 quarter 2. Palgrave M acmillan, ISBN 14039 9644 X. Price $£ 27$.
ww w.statistics.gov.uk/products/ p1904.asp

UK Trade in Goods analysed in terms of industry (MQ10): 2005 quarter 3 w w w.statistics.gov.uk/products/p731.asp

Monthly publications

Consumer Price Indices
Economic Trends
Producer Price Indices
Financial Statistics
M onthly Review of
External Trade Statistics

First releases

- UK Trade
- Public Sector Finances
- Consumer Price indices
- Producer Prices
- Retail Sales Index
- Index of Production
- Index of distribution

Financial Statistics: November 2005. Palgrave M acmillan, ISBN 140399544 7. Price $£ 40$.

Focus on Consumer Price Indices: October 2005. w w w.statistics.gov.uk/products/p867.asp

Monthly review of External Trade Statistics (M M 24): October 2005
www.statistics.gov.uk/products/p613.asp

Other	Retail Prices 1914-1990 - Labour M arket Trends - National Accounts Concepts Sources and M ethods -
publications	Sector Classification Guide for the National Statistics

[^0]: * shows the t-test comparing the mean revision to zero is significant.

[^1]: *shows the t-test comparing the mean revision to zero is significant

[^2]: * shows the t-test comparing the mean revision to zero is significant .

[^3]: 2) Recommendation: ONS should reassess existing quality control arrangements in all instances where data for quarterly GDP is compiled outside ONS, especially where those data are mainly based on forecasts.
 2.1) ONS is currently taking steps to ensure that all key data series and forecasts provided by OGDs are covered by up to date Service Level Agreements (SLAs).
[^4]: Notes: * significant at 10%; ** significant at $5 \% ; * * *$ significant at 1%. The dependent variable in all columns is the log of gross output. The time period is $1995-2003$ All variables are expressed in deviations from the 4 digit industry mean in the same year. The estimation method in columns (1) through (3) is OLS (with fixed effects in columns (2) and (3); .in columns (4) to (6) we use System-GM M (Blundell and Bond, 2000) and in column (7) we use Olley Pakes (1996). Standard errors in brackets under coefficients in all columns are clustered by establishment (i.e. robust to heteroskedacity and autocorrelation of unknown form). One step GMM results reported. All columns include age, foreign ownership and region dummies and a dummy taking value one if the firm belongs to a multi-firm enterprise group as additional controls. In columns (4) to (6) instruments are all plant level factor inputs lagged $t-2$ and before (when available) in the differenced equation (i.e. $\mathrm{m}_{\mathrm{t}-2}, \mathrm{n}_{\mathrm{t}-2}, \mathrm{k}_{\mathrm{t}-2}, \mathrm{c}_{\mathrm{t}-2}, \mathrm{q}_{\mathrm{t}-2}$) and lagged differences in the levels equation $\left(\Delta \mathrm{m}_{\mathrm{t}-1}, \Delta \mathrm{n}_{\mathrm{t}-1}, \Delta \mathrm{k}_{\mathrm{t}-1}, \Delta \mathrm{c}_{\mathrm{t}-1}\right)$. Serial correlation tests are LM tests of the first differenced residuals (See Arellano and Bond, 1991). Sargan-Hansen Test of instrument validity is a test of the over-identification restrictions. Olley Pakes uses a fourth order series expansion to approximate the phi function."

[^5]: 'Employees using ICT', as a measure, is likely to embody human capital, work organisation and structure and management attitude towards knowledge-sharing. Whereas, telecommunications service use provides a general proxy for external relationships, e commerce provides a more specific measure of commercial infrastructure.

[^6]: 1 Estimates are given to the nearest $£$ million but cannot be regarded as accurate to this degree.
 2 More detailed estimates of Household Final Consumption Expenditure, ex-
 pressed in both current prices and chained volume measures
 and both unadjusted and seasonally adjusted
 appear in the ONS publication Consumer Trends.
 3 ESA 95 Classification of Individual Consumption by Purpose
 4 Final consumption expenditure by UK households in the UK \& abroad
 5 Final consumption expenditure in the UK by UK \& foreign households

[^7]: 1 Not including dwellings and costs associated with the transfer of ownership 2 Remaining investment by public non-financial corporations is included within of non-produced assets.

[^8]: Public administration and national defence; compulsory social security. 2 Comprising sections O, and P of the SIC(92).
 3 Comprises section J of the $\operatorname{SIC}(92)$. This covers activities of institutions such as banks, building societies, securities dealers, insurance companies and pension funds. It also covers institutions whose activities are closely related to financial intermediation : for example fund managers and insurance brokers.

 4 The weight and proxy series for financial intermediation are calculated before the deduction of interest receipts and payments to provide a better indication of the underlying activity for this section (see note 3). However, this overstates the contribution to GDP because interest flows should be treated as transfer payments rather than final consumption. The financial services adjustment, which has a negative weight, corrects for this.
 5 See footnote 2 on Table 2.8
 Source: Office for National Statistics; Enquiries 01633813126

[^9]: 1 Quarterly alignment adjustment included in this series
 2 Total resources equals total uses

[^10]: Quarterly alignment adjustment included in this series
 Social contributions and other current transfers.
 Total resources equals total uses

[^11]: 1 All the indices are based on data expressed in US dollars.
 4 These series are on a SIC 92 basis.
 2 Excludes erratics (ships, North sea installations, aircraft, precious stones
 and silver bullion).
 5 This series is calculated using UK producer prices. All other country indices are
 wholesale price indices.
 6 Quarterly data have been obtained by interpolating the annuals.
 Sources: International Monetary Fund

[^12]: Note: Figures marked with a 'p' are provisional.
 1 Minor revisions have been made to seasonally adjusted figures previously published. These reflect the routine updating of the seasonal adjustment factor.

 4 Prior to 10 December 2003, the consumer prices index (CPI) was published in
 the UK as the harmonised index of consumer prices (HICP)

 2 Data now include the Climate Change Levy introduced in April 2001 and the Aggregates Levy introduced in April 2002.

 The taxes excluded are council tax, VAT, duties, car purchase tax and vehicle The taxes excluded are council tax, VAT,
 excise duty, insurance tax and airport tax.

 3 Inflation rates prior to 1997 and index levels prior to 1996 are estimated. 7 Movements in the purchasing power of the pound are based on movements in Further details are given in Economic Trends No. 541 December 1998. the retail prices index.

[^13]: 1 The data in this table have been adjusted to reflect the latest revisions to 3 Includes Merseyside. mid-year population data
 2 Data are from the Labour Force Survey. Unemployment rate is the percentage of economically active people who are unemployed on the ILO measure.

[^14]: 1 The full productivity and unit wage costs data sets with associated articles 3 Output per filled job is the ratio of Gross value added at basic prices to producan be found on the National Statistics web site at
 www.statistics.gov.uk/productivity
 Contact the Labour Market Statistics helpline (020 7533 6094) for further inormation.
 tivity jobs.

 Output per worker is the ratio of Gross value Added (GVA) at basic prices to LFS Total Employment. On 29 July 2004, ONS published details on the National Statistics website of a change in productivity methodology. Output per worker is the new headline measure.

[^15]: 1 Chained volume measure: reference year 2002.
 2 Classes 64-65 excluding activity headings 6510 and 6520, retail distribution
 of motor vehicles and parts, and filling stations.

[^16]: 3 Including quarterly alignment adjustment. For details of adjustments see notes section in the Sector and Financial Accounts article in UK Economic Accounts. Source: Office for National Statistics; Enquiries Columns 1-6 02075336264

[^17]: 1 Average of daily Telegraphic Transfer rates in London.
 3 International reserves data are all valued at end-period market prices and ex-
 2 Prior to January 1999, a synthetic Euro has been calculated by geometrical- change rates. They additionally include other reserve assets such as repos ly averaging the bilateral exchange rates of the 11 Euro-area countries us- (sale and purchase agreements) and derivatives. Full details are shown in ing "internal weights" based on Table 1.21 of Financial Statistics.
 trade
 4 These figures fall outside the scope of National Statistics.
 Source: Bank of England: Enquiries 02076014342

[^18]: For most periods the relationships between the columns are as follows: 3 Formerly called the Public Sector Borrowing Requirement.
 $6=1+2+3-4+5 ; 10=4+5+8$
 4 This table does not contain National Statistics data
 $11=1+2+3+7+9+10$
 Source: Bank of England; 02076015467
 1 A wider range of figures is published monthly in Financial Statistics.
 2 The M4 private sector comprises all UK residents other than the public sec-
 tor, banks and building societies.

[^19]: 1 National accounts entities as defined under the European System of Ac- 4 Net borrowing = surplus on current budget minus net investment. counts 1995 (ESA95).

 4 Net borrowing = surplus
 5 Unless otherwise stated
 2 Net saving, plus capital taxes. 6 Net amount outstanding at end of period.
 3 Gross capital formation, plus payments less receipts, of investment grants 7 Net debt at end of the month, Gross domestic product at market prices for 12 less depreciation.
 months centred on the end of the month.

[^20]: 1 These figures fall outside the scope of National Statistics.
 2 From January 1999 onwards, a more accurate breakdown between credit card and 'other lending' is available.

[^21]: 1 Comprises loans advances (including under reverse repos), finance leasing, 2 Includes lending under DTI special scheme for domestic shipbuilding. acceptances, facilities and holdings of sterling commercial paper issued by 3 These figures fall outside the scope of National Statistics. UK residents, provided by reporting banks to their UK resident non-bank Source: Bank of England; Enquiries 02076015360 and non-building society customers. This analysis is based on Standard in Channel Islands and the Isle of Man which are classified as non-residents or statistical purposes from end-September 1997 Holdings of investments and bills and adjustments for transit items are no longer included. For and bills and adjustments for transit items are no longer included. For more detailed breakdown of these data, see Financial Statistics Table 4.5B.

