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Why do we nowcast GDP ?

• GDP is the main signal on economic activity but is not timely
enough.

• Many series related to economic activity are released more
frequently and rapidly.

• By modelling the relationship between these related series and GDP
it is possible to get an idea of the GDP figure before its publication.

• This is possible using nowcasting methods : A set of techniques for
modelling together series sampled at different frequencies and
released at different points in time.
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An example of GDP nowcast

Figure: NY Fed US GDP nowcast for 2020 Q1 across time
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Motivation 1 : Related series provide a signal on nowcasting

uncertainty

• Nowcasting methods use related series to improve GDP point
forecasts.

• But these series carry also a signal on forecasting uncertainty
which is exploited only partially.

• Large forecasting errors in related series may indicate upcoming
large forecasting errors in GDP.
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Motivation 1 : Related series provide a signal on nowcasting

uncertainty

Figure: The effect of dispersion on density forecasts
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Motivation 2 : Nowcasting uncertainty may be asymmetric and

fat-tailed

• There is increasing evidence that macroeconomic data are not
normally distributed.

• Outcomes are asymmetrically distributed round the location (or
mean).

• Extreme events happen more frequently than assumed with a normal
distribution.

• This asymmetry :

• Varies along the business cycle;

• Has important implications regarding the shape that nowcasting
uncertainty takes.

• Increased asymmetry in related series may indicate upcoming
asymmetry in GDP density nowcasts.
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Motivation 2 : Nowcasting uncertainty may be asymmetric and

fat-tailed

Figure: The effect of skewness on density forecasts
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This Paper

• I use a dynamic factor model to capture cross-sectional
dependencies in time series sampled at different frequencies.

• To model non-Gaussian features - specifically fat tails and skewness
- I use score driven methods.

• Contribution : I explore the modelling of common factors in scale
and shape parameters, controlling the dispersion and asymmetry
of possible outcomes round point forecasts.

• In the special case of a Gaussian model I derive a convenient
approximation for modelling a common volatility component. This
technique can be used in many DFMs.

• I investigate the performance of the approach using US real-time
data.
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Model : A mixed-measurement approach

• The log density of the observation vector yt = (y1,t , ..., ym,t)
′ is

logp(yt |Yt−1) =
m∑
i=1

δi ,t logpi (yi ,t |Yt−1), i = 1, ...,m.

• The series are cross-sectionally independent conditional on past
information.

• Each series follows an Asymmetric Student-t distribution (AST)
with distinct location, scale, shape and tail parameters.

• If series i is missing in period t δi ,t is zero.
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Model : A score driven recursion for time-varying parameters

• The vector of time-varying ft includes location, scale and shape
parameters and has a score-driven dynamic (Harvey (2013) and
Creal et al. (2013)):

ft+1 = Bft + Ast ,

st = St∆t , ∆t =
∂logp(yt |Yt−1)

∂ft
, St = E

[
∆t∆

′
t |Yt−1

]−1
.

• The score is a function of prediction errors (generally nonlinear).
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The effect of deviating from the Normal distribution on the

score
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Model : Dynamic factor models for location, scale and shape

parameters

• Each time-varying parameter is decomposed into a idiosyncratic
trend and a common component:

λji ,t+1 = λji ,t + Aj
λi s

j
λi ,t , (trend),

ρ(L)πjt+1 = Aj
πs

j
π,t , (common component),

For each series (i = 1, ...,m) and for each parameter (j = µ,σσσ,ααα).

• These unobserved components are then linked to the parameters :

µi ,t = fi (λ
µ
i ,t , π

µ
t ) (locations),

σi ,tσi ,tσi ,t = gi (λ
σ
i ,t , π

σ
t )gi (λ

σ
i ,t , π

σ
t )gi (λ

σ
i ,t , π

σ
t ) (scales),

αi ,tαi ,tαi ,t = hi (λ
α
i ,t , π

α
t )hi (λ

α
i ,t , π

α
t )hi (λ

α
i ,t , π

α
t ) (shapes).
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Addressing the issue of temporal aggregation

• Each series follows the predictive model :

yi ,t = µi ,t + σi ,tεi ,t , or yi ,t = µi ,t + vi ,t .

• GDP is quarterly whereas the related series are monthly.

• For location parameters Mariano and Murasawa (2003) popularised
a precise approximation :

µi ,t =
1

3
µ̃i ,t +

2

3
µ̃i ,t−1 + µ̃i ,t−2 +

2

3
µ̃i ,t−3 +

1

3
µ̃i ,t−4.

where µi ,t is the quarterly parameter and µ̃i ,t = λµi ,t + Φiπ
µ
t+1 the

monthly parameter.
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Addressing the issue of temporal aggregation

• If all series are normally distributed the following approximation for
scale parameters works:

σi ,t =

√
1

9
σ̃2i ,t +

4

9
σ̃2i ,t−1 + σ̃2i ,t−2 +

4

9
σ̃2i ,t−3 +

1

9
σ̃2i ,t−4.

where σi ,t is the quarterly parameter and σ̃i ,t = exp(λσi ,t + Φiπ
σ
t+1)

the monthly parameter.

• When the model is non-Gaussian monthly series are aggregated into
rolling quarterly figures. Labonne and Weale (2020) show that the
loss in precision should be small.
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Estimation : Weighted maximum likelihood

• Estimation via weighted maximum likelihood (Blasques et al.
(2016)) :

logpw (yt |Yt−1) = δi ,t logp1(y1,t |Yt−1) + W
m∑
i=2

δi ,t logpi (yi ,t |Yt−1).

• The objective is nowcasting GDP not the related series; these are
used to help only.

• The related series’ contribution to the log likelihood is reduced using
W .
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Real-time US economic data

• The model is composed of four series :

• GDP Advance Estimate (Quarterly);

• Industrial production (IP) (Monthly);

• The weekly index of working hours (IWH) (Monthly);

• the Weekly Economic Indicator (WEI) (Monthly).

• GDP, IP and IWH are from 1973 Q2 to 2020 Q2 wheareas WEI is
from 2010 Q2 up to Q2 2020.

• Vintages retrieved from the Federal Reserve Bank of Philadelphia.

• Real-time estimation from 2000 up to 2020 Q2.
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Data : Levels
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Model specifications

• Three models with scale and shape common factors :

• (a) : AST DFM with Scale+Shape CFs;

• (b) : AST DFM (Sk Covs) with Scale+Shape CFs;

• (c) : DFM with SV and Scale CF ;

• Three benchmark models :

• (d) : AST DFM (Sk Covs) with SV and TV shape;

• (e) : DFM with SV;

• (f) : St-t DFM with SV;
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In-sample analysis : Estimation results

Table: Comparison of the model specifications using the full-sample results.

Model L.L. L.L. GDP AIC BIC
(a): AST DFM with Scale+Shape CFs -381.4 -124 854.7 1097.5
(b): AST DFM (Sk Covs) with Scale+Shape CFs -402.3 -124.6 892.7 1124.9
(c): DFM with SV and Scale CF -578.1 -136.3 1220.2 1389.1
(d): AST DFM (Sk Covs) with SV and TV shape -548.9 -135.9 1159.8 1323.4
(e): DFM with SV -580.1 -138 1212.1 1349.4
(f): St-t DFM with SV -569 -139.4 1196 1349.1
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In-sample analysis : Scale common factor

Figure: Scale common factors. Rolling quarterly estimate for model (a) and (b)
and monthly estimate for model (c).
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In-sample analysis : Locations

Figure: Quarterly figures corresponding to calendar quarters.
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In-sample analysis : Shapes

Figure: Quarterly figures corresponding to calendar quarters.
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Real-time results : US March nowcast
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(f): St−t DFM with SV
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Real-time results : US June nowcast
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(f): St−t DFM with SV
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Real-time results : Average log score
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Real-time results : Average Log Score

Figure: Average log score across all periods at each nowcasting step. The darker
the background colour the higher the log score.

26 / 28



Conclusion

• Modelling scale and shape common factors improves estimation of
nowcasting uncertainty.

• This gain materialises at the end of the nowcasting window and
during recessions.

• The gain from modelling a shape common factor outweights the loss
in precision stemming from the aggregation of the related series.

• Modelling fat tails in the related series complicates the identification
of turning points.
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