
To Bag is to Prune

Philippe Goulet Coulombe
gouletc@sas.upenn.edu

University of Pennsylvania

Saint-Zénon, May 7, 2021

1 / 20

mailto:gouletc@sas.upenn.edu

Random Forest (RF) Crash Course
What is a tree?

RF is a diversified ensemble of regression trees. What is a tree?
• Let πt be inflation at time t.
• t∗ is inflation targeting implementation date.
• Let gt be some measure of output gap.

Full Sample

t < t∗

gt−1 < 0

πt = 1 + εt

gt−1 ≥ 0

πt = 4 + εt

t ≥ t∗

πt = 2 + εt

2 / 20

RF Crash Course
Estimating a tree

yi = T (Xi) + εi

• A regression tree is an algorithm that recursively partitions the data until
some stopping criterion is met. A greedy algorithm is used:

min
k∈K,c∈IR

[
min

µ1
∑

{i∈L|Xk
i≤c}

(yi − µ1)
2 + min

µ2
∑

{i∈L|Xk
i >c}

(yi − µ2)
2

]
(1)

• The prediction for j is the average of yi for all i that are members of the
same "leaf" as j.

• A single tree typically has low bias and very high variance.

• There exists ways to decrease tree’s variance by "pruning", which means
stopping the greedy algorithm "early".

3 / 20

RF Crash Course
3 ingredients to go from a single tree to a forest

For each tree:

1. Let the trees run deep: even though that would surely imply overfitting
for a single tree, let each tree run until leafs contain very few observations
(usually < 5).

Diversifying the Portfolio (i.e., creating the ensemble)

2. Bagging: Create B nonparametric bootstrap samples of the data. That is,
we are picking [yi Xi] pairs with replacement.

3. Perturbation: At each splitting point, we only consider a subset of all
predictors (J − ⊂ J) for the split.

RF prediction is the simple average of all the B tree predictions.

4 / 20

RF Crash Course
Why do we like it

• It works tremendously well on all sorts of data, even macro data (Chen
et al., 2019; Goulet Coulombe et al., 2019; Medeiros et al., 2019;
Goulet Coulombe, 2020; Goulet Coulombe et al., 2020).

• More often than not, it’s better than Neural Networks – which require
careful tuning.

• Can approximate a wide range of nonlinearities

• Tuning parameters do not alter prediction much

• Can easily deal with a very large X (no matrix operation involved)

• Most importantly, it does not seem to overfit. How can that be?

5 / 20

The R2
test vs R2

train Puzzle

Figure: Abalone data set example
6 / 20

Usual explanations for RF’s success don’t explain it
• (Breiman, 2001) originally derived an upper bound on the generalization

error of RF — it decreases as T strength increases, and increases as
correlation between them increases.
⇒ Nice to have, but it does not say much about results obtained in practice.

• (Bühlmann et al., 2002): bagging brings smoothness (hence
regularization)
⇒ If that was just that, then R2

test ≈ R2
train like for any usual smoothing method

• (Mentch and Zhou, 2019) (and ESL): randomization implies a ridge-like
regularization obtained by model averaging – an adequate argument for
global linear models (reminiscent of (Elliott et al., 2013)’s CSR)
⇒ If that was just that, then R2

test ≈ R2
train like for Ridge

• (Belkin et al., 2019) claims RF has a "double-descent" risk curve, like
Neural Nets.
⇒ Their construction confused additional trees with additional complexity,

which is true for Boosted Trees, but not RF. In fact, RF has a single,
never-ascending, descent.

7 / 20

Roadmap

• Why the puzzle occurs and what it tells us about RF’s legendary
robustness to overfitting

1. What happens in the overfitting zone stays in the overfitting zone

2. Bagging + Perturbation (B & P) as an approximation to population sampling
(and a Perfectly Random Forest)

• Those ideas should apply to any randomized greedy algorithm→
leverage those to develop two new "self-tuning" algorithms

1. Booging

2. MARSquake

——————————- If time allows ——————————-
• Why RF implicit pruning is better than pruning CART directly

1. Insights from nonlinear time series models: it prunes the true latent T .

2. Extra: Slow-Growing Trees

8 / 20

Greed is Good

The Key: A greedy algorithm treats what has already happened as given and what
comes next as if it will never happen.

• Old song: greedy optimization is an inevitable (but suboptimal) practical
approach in the face of computational adversity (see ESL) — bad because
no guarantee to get the "optimal" tree.

• New song: by building recursively a model of increasing complexity
(when true complexity s∗ is unknown) in a stepwise fashion, what is
estimated in early steps is immune to the "pollution" brought by the latter
steps (which are likely overfitting).

9 / 20

What happens past s∗ stays past s∗

ŷi = β1x1,i︸ ︷︷ ︸
s=1

+ β2x2,i︸ ︷︷ ︸
s=2

+ β3x3,i︸ ︷︷ ︸
s=3︸ ︷︷ ︸

OLS

• Global optimization (think OLS): overfitting weakens the whole
prediction function
⇒ estimating many useless coefficients inflates the generalization error by

increasing the variance of both the useful coefficients and the useless ones.

• Greedy optimization (think tree, or boosting): the function estimated
before s is treated as given.
⇒ the algorithm eventually reach s∗ where the only thing left to fit is the

unshrinkable "true" error εi = yi − f̂s∗ (xi), i.e., overfitting.
⇒ But this does not alter f̂s−1 since it is not re-evaluated. Only useless stuff is

added on "top" of it.
⇒ More concretely, β̂’s estimated or tree splits estimated before s∗ cannot be

revoked, and the predictive structure attached to them cannot weaken by
ulterior steps.

10 / 20

RMS Titanic, Compartments, and ML Algorithms

11 / 20

A Less Maritime Example

12 / 20

What is happening beyond s∗?

• At s∗, the unknown point of optimal early stopping (aka the true terminal
node in the case of a tree), the DGP is

yi = µ + εi. (2)

and the best prediction is clearly the sample average. And yet, the
algorithm continues to fit beyond s∗.

• Two questions:
1. What is the prediction of a "perfectly random forest"? That is, one where we

replaced B & P by population sampling – fitting fully overfitted greedy trees
on non-overlapping samples of the same DGP?

2. Can B & P provide a good approximation to the ideal PRF when applied to
trees? (This is an empirical matter.)

13 / 20

The Perks of a Perfectly Random Forest

• We are looking at the prediction for a new data point j using f trained on
observations i 6= j.
• Assume fully grown trees – terminal nodes include one observation.
• Since the tree is fitting noise, each out-of-sample tree prediction is a

randomly chosen yi for each b.
• Define r = B/N where N is the number of training observations and r will

eventually stand for "replicas".
• Since the yi(b)’s amount to random draws of y1:N, for a large enough B, we

know with certainty that the vector to be averaged will contain r times
the same observation yi.
• Remembering that r = B/N, the prediction is

µ̂RF
j =

1
B

B

∑
b=1

yi(b) =
1
B

N

∑
i=1

r

∑
r′=1

yi,r′ =
1
B

N

∑
i=1

r

∑
r′=1

yi =
r
B

N

∑
i=1

yi =
1
N

N

∑
i=1

yi

• When a PRF is starting to fit pure noise, its out-of-sample prediction
collapses to ȳ, which is optimal.

14 / 20

B & P as an Approximation to Population Sampling

• Intuitively, at s∗, the test set behavior is identical to that of doing
(random) subsampling with subsamples containing one observation.
• Averaging the results of the latter (over a large B) is just a complicated

way to compute an average — equivalent to stopping at s∗.

Let’s recapitulate
• For the prediction function to be close to optimal without tuning it, we

needed stuff past s∗ to efficiently averages out to 0 in the hold-out sample.
• We also needed the estimated function before s∗ to be protected against

what comes next. We have both.
⇒ Immediate implication: there is no need to find s∗ through cross-validation

to obtain optimal predictions.

• Simulations will ask "How close to population sampling are we when
fitting B & P trees?" and the answer will be "surprisingly close".

15 / 20

New Kids on the Block: Booging and MARSquake

• The key ingredients for an ensemble to completely overfit in-sample
while maintaining a stellar generalization error are

(i) the base learner prediction function is obtained by greedy/recursive
optimization and

(ii) enough randomization in the fitting process.

• (i) means B & P variants of Boosted Trees and MARS are eligible for
self-pruning.

• (ii) means its success depends on the capacity of the algorithm for
randomization

• Tree constructions are completely irrevocable, additive structure are
partly revocable (making (i) and (ii) maybe not as applicable as for RF)

• Let the data decide.

16 / 20

Simulations — Results

Figure: This plots hold-out sample R2’s between the prediction and the true conditional mean. The level of noise is calibrated so the signal-to-noise
ratio is 4. Column facets are DGPs and row facets are base learners. The x-axis is an index of depth. For CART, it is a decreasing minimal size node

∈ 1.4{16,..,2} , for Boosting, an increasing number of steps ∈ 1.5{4,..,18} and for MARS, it is an increasing number of included terms ∈ 1.4{2,..,16} . 17 / 20

Real Data Results (1)

Figure: Performance metric is R2
test. Darker green bars means the performance differential between the tuned

version and the three others is significant at the 5% level.
18 / 20

Real Data Results (2)

Figure: Performance metric is R2
test. Darker green bars means the performance differential between the tuned

version and the three others is significant at the 5% level.
19 / 20

Conclusion

1. B & P as implemented by RF automatically prune a (latent) true
underlying tree.

2. This gives rise to the R2
test vs R2

train puzzle, which traditional explanations
do not account for

3. More generally, there is no need to tune the stopping point of a properly
randomized ensemble of greedily optimized base learners.

4. Boosting and MARS are also eligible for automatic (implicit) tuning.

Not discussed, but of interest:

• Why pruning CART 6= RF: because RF "simulates" the true T through
Bagging (intuition bases on nonlinear time series forecasting)
• Stabilizing the greedy algorithm can also be done with slow-learning (the

traditional boosting way) and is developed in (Goulet Coulombe, 2021)
where a single "Slow-Growing" Tree can match RF.

20 / 20

Appendix

1 / 20

Simulation Results with more noise

Figure: This plots hold-out sample R2’s between the prediction and the true conditional mean. The level of noise is calibrated so the signal-to-noise
ratio is 1. Column facets are DGPs and row facets are base learners. The x-axis is an index of depth. For CART, it is a decreasing minimal size node

∈ 1.4{16,..,2} , for Boosting, an increasing number of steps ∈ 1.5{4,..,18} and for MARS, it is an increasing number of included terms ∈ 1.4{2,..,16} . 2 / 20

Why is RF typically much better than pruned CART?
Some insights from nonlinear time series forecasting

• It’s been known for a while that RF (or bagged trees) performs orders of
magnitude better than a single pruned true (Breiman, 1996).
• RF "pruning via inner randomization" is applied on the true latent tree T

which itself can only be constructed from randomization — the greedy
fitting procedure itself that generates the need for Bagging.
• The inspiration for the following argument comes from forecasting with

nonlinear time series models. An illustrative SETAR DGP is

yt+1 = ηtφ1yt + (1− ηt)φ2yt + εt, ηt = I(yt > 0) (3)

• Forecasts are obtained yt+h by iterating forward starting from t.
• From h > 1 on, only an estimate ŷt+1 = E(yt+1|yt) is available. By

construction, E(ŷt+1) = yt+1. However, by properties of expectations,
E(f (ŷt+1)) 6= f (yt+1) if f is non-linear.
• Iterating forward using ŷt+h’s as substitutes for yt+h leads to bias.

3 / 20

Why is RF typically much better than pruned CART?
Back to the tree algo

• To get the next finer subset that includes i, the "cutting" operator is
applied to the latest available subset S′ = C(S; y,X,i).
• The prediction for i can be obtained by using C recursively starting from

S0 (the full data set) and taking the mean in the final S.
• As such, the true latent tree is T (Xi) = E

(
yi′ |i′ ∈ CD(S0; y,X,i)

)
where D

is the number of times the cutting operator must be applied to obtain the
final subset in which i resides.
• But using ŷt+1 in situ of yt+1 in SETAR and Ŝ in situ of S in a tree generate

problems of the same nature.
• The direct CART procedure produces an unreliable estimate of T because

it takes as given at each step something that is not given, but estimated.
Since C is a non-linear operator, this implies that the mean itself is not
exempted from bias.
• Like in the case of forecasting SETARs, simulating the expectation

numerically via bootstrapping circumvents the problem. In the context of
a tree, this has a different name: Bagging.

4 / 20

Slow-Growing Trees

5 / 20

Filling the Missing Corner

Table: A Tree Ensemble Quaternity

Model Structure

Additive Shallow Trees One Deep Tree

Regularizer
Slow Learning Boosting Slow-Growing Tree

B & P Booging Random Forest

6 / 20

Implementation

Consider the deceptively simple tree below, which is obtained after one
recursion of CART.

Full Sample

A ≡ {i|xi < 0} B ≡ {i|xi ≥ 0}

The subsequent problem of finding k∗A and c∗A to further grow the tree on the A
side is

min
k∈K,c∈IR

[
min

µ1
∑

{i|Xk
i≤c}

ωA
i (yi − µ1)

2 + min
µ2

∑
{i|Xk

i >c}
ωA

i (yi − µ2)
2

]
(4)

where ωi = I(i ∈ A). This can be generalized to

ωi = I(i ∈ A) + (1− η)I(i ∈ B)

where η ∈ (0,1] is a learning rate. ωi’s collapse to CART when η = 1.

7 / 20

SGT Algorithm

8 / 20

Simulations

Tree Friedman 1 Friedman 2 Friedman 3 Linear

O
n

e
 D

e
e

p
 T

re
e

A
d

d
itiv

e
 S

h
a

llo
w

 T
re

e
s

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

True R−squared

T
e

s
t

R
−

s
q

u
a

re
d

 w
it

h
 T

ru
e

 C
o

n
d

it
io

n
a

l
M

e
a

n

Perturbed and Bagged Plain Medium Learning Rate Low Learning Rate Low Learning Rate + Early Stopping

Figure: This plots the hold-out sample R2 between the prediction and the true conditional mean. The level of
noise is decreasing along the x-axis. Column facets are DGPs and row facets are "models". The y-axis is cut at -1
to favor readability because a few models go largely below it for the lowest true R2 case.

9 / 20

	Simulations
	Appendix
	Appendix

