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Introduction



Motivation

� Inflation forecasts have a large impact on central banks’ policy decisions and

communications, as well as business decisions in the wider economy

� Central banks increasingly base forecasts on large and granular sets of indicators

providing a broad view on price dynamics across sectors

� Advances in data availability and computing power have promoted forecasting

tools that incorporate large sets of predictors as well as non-linear features.

� factor models with medium-sized sets of macroeconomic predictors - provide rather

weak forecasting gains (Faust and Wright, 2013)

� non-linear dynamics within unobserved component models (Stock and Watson, 2016)

� machine learning tools (Garcia et al., 2017; Chakraborty and Joseph, 2017; Medeiros

et al., 2019; Almosova and Andresen, 2019)
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What we do

� We forecast UK CPI inflation (headline, core, services) combining granular

disaggregated item data with a wide set of forecasting tools

� Predictors: monthly item-level consumer price indices (≈ 600 items) and macro data

� Forecasting approaches that exploit large data set in different ways

� dimensionality reduction techniques: DFM, PCA, PLS

� shrinkage methods: Ridge regression, LASSO, elastic net

� non-linear machine learning tools: random forests, SVM, artificial neural nets

� We address black box critique to ML models (and high-dim settings)
� forecasts from non-linear and non-parametric models not easily attributable to

individual predictors

� we measure the contribution of individual variables to the forecast using Shapley

values (Strumbelj and Kononenko, 2010; Lundberg and Lee, 2017)

� we test predictive power of aggregated components (Joseph, 2019)
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Where this fits in

� Vast literature on forecasting inflation: Stock and Watson (1999, 2007, 2008);

Hubrich (2005); Kapetanios et al. (2008); Koop and Korobilis (2012); Koop

(2013); Domit et al. (2019); Carriero et al. (2019); Martins et al. (2020)

� Dynamic factor models successful for nowcasting GDP (Giannone et al., 2008).

For inflation, accounting for non-linearities important (Faust and Wright, 2013;

Stock and Watson, 2016)

� Machine learning: sizeable forecast gains in forecasting US and Brazilian inflation

with neural nets, random forests, and shrinkage methods (Garcia et al., 2017;

Almosova and Andresen, 2019; Medeiros et al., 2019)

� Adding disaggregate price information improves forecast accuracy (Hendry and

Hubrich, 2011). Use of high-frequency online price item series to forecast CPI

(Aparicio and Bertolotto, 2020). Use of CPI item series for Mexico (Ibarra, 2012).
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Data and forecasting setup



Setup

� Targets: Monthly UK headline, core and service core inflation, 1-12 months ahead

� Predictors:
� 581 monthly item-level price indices (from ONS), chain-linked

� 43 macroeconomic and financial variables

� all series transformed to y-o-y log differences, mean-variance standardised

� Sample period: 2011:M1 - 2019:M12 (no Covid yet)
� TS cross-validation & training sample: Until 2015:M3

� Test period: 2015:M4 - 2019:M12

� Extended sample period with macro data only
� 2000M1:2019M12, test period starts in 2005M4

� Benchmarks:
� AR(p) with p ≤ 12 by BIC

� DFM and PCA with 5 factors / principal components
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CPI item series

� UK monthly CPI is constructed from about 700 representative item indices by the

Office for National Statistics (ONS), publicly available

� Constructed by the ONS from single product prices collected in shops (price quotes)

� Item indices are weighted and aggregated into classes, groups, divisions, and finally

the CPI based on COICOP classification

� Our CPI item data set

� Locally and centrally collected prices

� 581 item indices without missing values, 2011M1-2019M12

� items cover 84% of total CPI, similar coverage across broad CPI categories
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Classification of Individual Consumption According to Purpose (COICOP)

Source: ONS.
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Classification of Individual Consumption According to Purpose (COICOP)

Source: ONS.
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Some items: mostly stationary, but heterogeneous with jumps
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Data coverage

division weight (%) # total # in-

cluded

coverage mean SD

1 Food & non-alc. bev. 10 159.8 129 81 0.66 6.98

2 Acl. bev. & tobacco 4 27 20 74 1.13 4.68

3 Clothing & footwear 7 76.7 71 93 1.68 5.18

4 Housing & fuels 12 30.2 30 83 1.57 5.20

5 Furnishing & house maint. 7 70.8 55 78 1.29 4.53

6 Health 3 18.6 19 92 1.84 3.92

7 Transport 15 41.3 36 87 2.12 6.03

8 Communication 2 10.9 9 83 2.12 13.05

9 Recreation & culture 16 115.4 92 80 1.51 6.80

10 Education 1 3 3 100 10.48 8.18

11 Restaurants & hotels 12 51.3 44 86 2.49 1.80

12 Misc. goods & services 10 79 73 92 0.91 5.31

– Total 100 684 581 84 2.32 5.97

Source: Authors’ calculation using ONS data.
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Micro inflation has leptokurtic distribution
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Figure source: Authors’ calculation using ONS data. In line with findings for US (Klenow and Kryvtsov, 2008) and Turkey

(Özmen and Sevinc, 2016).
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Micro inflation time series
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Forecasting models

We are interested forecasting inflation yt in period t + h, based on the past dynamics

of yt and the set of predictors xt = (x1t , . . . , xNt)′, i = 1, . . . ,N and t = 1, . . . ,T

ŷt+h = α̂ + ΣN
i=1β̂xt + Σp

j=1γ̂jyt−j+1. (1)

A wide range of forecasting methods that can deal with large data sets

� Dimensionality reduction techniques: DFM, PCA, PLS

� Shrinkage methods: Ridge Regression, LASSO, Elastic Net

� Non-Linear Machine Learning Models: Support Vector Machines (SVM), Random

Forests, Artificial Neural Networks (ANN) SVM RF ANN

Hyperparameter tuning via K-fold cross-validation

� in-sample data devided into k = 5 folds, training based on 4 folds, testing on 5th

(avoids correlation between training and testing instances)
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Results



Forecast comparison (I): Headline inflation - CPI item predictors

Notes: Forecasts using CPI item series as predictors. Root mean squared errors, relative to AR(p) model.

Significance of forecast accuracy is assessed via Diebold and Mariano (1995) test statistics with Harvey’s

adjustment. ∗ ∗ ∗\∗∗\∗ indicates significance at 10%, 5%, and1%, respectively. Relative RMSE that are

significant at a level of 10% or lower and taking values below 1 are marked in bold. Source: Authors’ calculation

using ONS data.
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Forecast comparison (I): Headline inflation - CPI item predictors

Notes: Forecasts using CPI item series as predictors. Root mean squared errors, relative to AR(p) model.

Significance of forecast accuracy is assessed via Diebold and Mariano (1995) test statistics with Harvey’s

adjustment. ∗ ∗ ∗\∗∗\∗ indicates significance at 10%, 5%, and1%, respectively. Relative RMSE that are

significant at a level of 10% or lower and taking values below 1 are marked in bold. Source: Authors’ calculation

using ONS data.
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Forecast comparison (II): All cases

Average RMSE of CPI headline inflation forecasts, different forecasting models (sub-plots) and horizons (x-axis)

and specifications (colours). Source: Authors’ calculation using ONS data. 14



Opening the black box of machine

learning



Opening black box using Shapley additive explanations framework

We propose a model-agnostic approach aimed at informing interpretations of results:

how much do CPI subcomponents contribute to predicting aggregate CPI?

1. Model decomposition: Shapley values

2. Context-specific partial re-aggregation

3. Statistical testing: Shapley regression
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Statistical analysis using Shapley values (Joseph, 2019)

n - set of predictors in the model (e.g. lagged CPI inflation and 581 CPI items)

xt - set of observations for which we want to explain / decompose the predictive value

c - mean predicted value based on training set

f (xt) =
n∑

k=1

φSk (xt) + c , (1. model decomposition)

φSk (f , xt) =
∑

S ⊆C\{k}

|S |!(n − |S | − 1)!

n!

[
f (xt |S ∪ {k})− f (xt |S)

]
(Shapley value)

F
(
ΦS
t (xt)

)
=

p∑
j=1

ψS
j ,t(xt) (2. meso-aggregation)

yt+h = α′t +

p∑
j=1

βSj ψ
S
j (xt) + ε′t (3. component alignment test)
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Differences in inference between models

� Inference results depend on model convergence (learning progress)

� Usually different for different models, especially for small and high-dim samples

� Explains different performance based on different signals

⇒Model inference important and insightful.
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Shapley value regression results

Ridge Regression Random Forest

headline core service core headline core service core

7 – 12 months horizon

Food & non-alc. bev. 0.23*** – – 0.08** – –

0.21 – – 0.18 – –

Acl. bev. & tobacco 0.06*** 0.09*** 0.17*** -0.03 0.0 0.10

0.04 0.06 0.07 0.01 0.01 0.05

Clothing & footwear 0.07*** 0.11*** 0.17*** 0.10*** 0.06* 0.14**

0.08 0.14 0.16 0.02 0.06 0.04

Recreation & culture 0.13*** 0.29*** 0.29*** 0.12*** 0.23*** 0.18***

0.10 0.16 0.18 0.06 0.15 0.31

Comparison of Shapley-value-based model inference using only item indices for Ridge regression (LHS) and

Random Forest (RHS) for headline, core and service core inflation and 4/12 divisions. The share of each

aggregate component is given below each coefficient. Core and service core targets do not contain item

components from food and non-alcoholic beverages. Significance levels: ***:1%, **:5%, *:10%. Panel-HAC

standard errors grouped by forecast horizon have been used. Source: Authors calculations using ONS data.
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Shapley results for Ridge regression

Shapley components of CPI divisions for Ridge regression forecasts, averaged over horizons of 7-12 months. Red bars indicate significance at 1%

confidence level of Shapley regression coefficients. 19



Shapley results for Random Forest

Shapley components of CPI divisions for Random forecst forecasts, averaged over horizons of 7-12 months. Red bars indicate significance at 1%

confidence level of Shapley regression coefficients. 20



Take-away messages

� Micro item-level data often strongly improve forecasts relative to benchmark

(beyond improvement from macro data)

� Model comparison

� Ridge regression performs best across horizons and specifications, but also Lasso,

PCA , PLS and ANN perform well

� DFM less useful with disaggregated item indices due to lack of dynamic

co-movement

� ML models strong in capturing turning points / economic cycle over longer sample

(with macro data) [not for today, but some promising results in ongoing work]

� Provide model-agnostic method based on Shapley values and regressions to

communicate high-dimensional and non-linear modelling results
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Thanks for listening

Q & A
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Machine learning methods - Support Vector Machines (SVM)

� Support vectors represent class boundaries in classification problems (Vapnik,

1998), similar to logistic regressions, but SVMs also capture non-linearities

through kernel function (Wang et al., 2012)

yt+h = α̂0 +
m∑
i=1

α̂iK
(
x tri , x

)
+ ε , (2)

weights α̂i ≥ 0 mark the support vectors, m is size of training vector.

� Gaussian kernel K(·, ·) (radial basis function)

� penalisation through restrictions on α̂i , returning a dense model with local

sparsity around support vectors back



Machine learning methods - Random forests

� tree models consecutively split the training dataset until an assignment criterion
with respect to the target variable into a “data bucket” (leaf) is reached

� algorithm minimises objective function within “buckets”, conditioned on input xt
� sparse models: only variables which actually improve the fit are chosen

The regression function is

yt+h =
M∑

m=1

βmI(xt ∈ Pm) + εt , with βm = 1/|Pm|
∑

y tr∈Pm

y tr , m ∈ {1, . . . ,M} .

(3)

� A random forest contains a set of uncorrelated trees which are estimated
separately

� this overcomes overfitting of standard tree models

� but also harder to interpret due to the built-in randomness back



Machine learning methods - Artificial Neural Networks (ANN)

� Standard architecture: multilayer perceptrons (MLP), i.e. a feed-forward network
� can be viewed as alternative statistical approach to solving the least squares

problem, but a hidden layer is added

� predictors xt in the input layer are multiplied by weight matrices, then transformed

by an activation function in the first hidden layer and passed on to the next hidden

or the output layer resulting a prediction yt .

yt+H = G (xt , β) + ε = gL(gL−1(gL−2(. . . g1(xt , β0), . . . , βL−2), βL−1), βL) + ε (4)

� activation function g(·) introduces non-linearity into the model. We use rectified

linear unit functions (ReLU) (Blake and Kapetanios, 2000, 2010)

� Number of layers L, the number of neurons in each layer and appropriate weight

penalisation are determined by cross-validation. Deeper networks being generally

more accurate but also needing more data to train them. back
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