

Evidence of Accelerating Mismeasurement of Growth and Inflation in the US in the 21st Century

ESCoE Economic Measurement Conference
May 11, 2021
Online

Leonard Nakamura
Federal Reserve Bank of Philadelphia

Overview

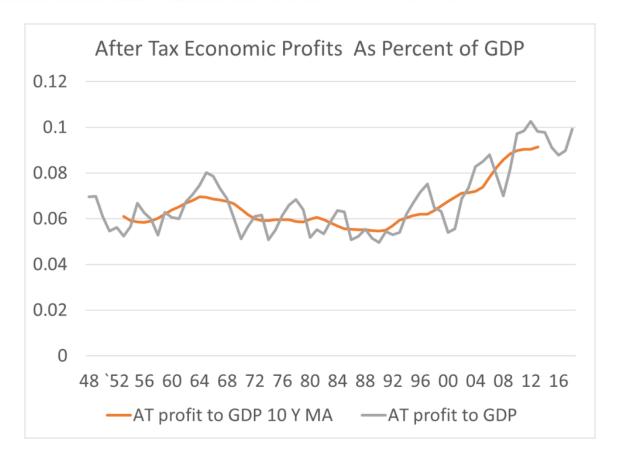
- This talk is about our ignorance: how little we know about true inflation and growth
 - The 21st century economy makes measuring growth more difficult.
 - New products, free products
 - Evolving products, markets, and business models
- This paper collects recent research and evidence on the acceleration of mismeasurement comparing 1983-1995 to roughly 2005-2017
- I find faster growth and slower inflation
 - 1983-1995, 1 % mismeasurement
 - 2005-2017, 2 % mismeasurement
- My best guess: Productivity growth is strong and prices are deflating in the US (and around the world)

Puzzle: Fast corporations, slow growth

- In the US, we have large corporate investments in innovation generating highly profitable innovative products
 - But historically weak GDP growth per capita and real interest rates
 - These successful innovations don't show up in GDP! Why?
- I examine the 4 big Internet corporations that are now 18 % of market cap of S&P 500
- And I gather many recent studies of products and investments
- I show national account statistics fail to capture much of the benefits of innovation and these errors have accelerated
- Ultimately, we may be growing too fast, not too slowly
 - The economy is changing at rates that households and all our institutions are having trouble adapting to

Example: Innovation acceleration in pandemic

- What is the real value of Covid vaccines for US?
 - Costs government ~\$40 for each complete vaccination:
 - Resource cost to vaccinate 350 million people: \$14 B
- What is its inflation rate? Need to compute shadow price for 2020
 - What would Americans have paid to get our jabs last year?
 - Value to US consumers: surely more than \$500 each=>\$175 B in 2021
 - Adds 0.8 % to real GDP! Inflation rate impact is -0.8 %!
 - Several ways to calculate this rate of inflation and real growth, most much larger
 - Recorded only at resource cost, no impact on real output
- As measured in accounts, pharmaceutical productivity is declining more than 2 % a year


US corp investments in intangibles have quadrupled since the 1950s

- BEA-measured investment in intellectual property went from 1 % of GDP to 4 %
- Corrado et al and my estimates are roughly three times as large, exceeding business investment in tangibles
- Kahle and Stulz (2017): Average US corporation invests more in R&D alone than in tangibles

Intangible investments generate large US Corporate profits: 9 % of GDP compared to 6 % in 1980s

Central measurement issues: Missing transactions

- We economists are trained on supply and demand curves,
 - We rely on transactions which deliver prices and quantities
 - We distrust shadow prices
- Inflation is measured as a change of price of a fixed good, identical over time
- When new goods appear, they don't have a prior period price
 - Need a shadow price, hard to calculate
 - What is the shadow price of Covid vaccine in early 2020?
- Intangibles are created in-house, unlike plant and equipment: no visible transaction
 - Much harder to create nominal and price measures
 - We have essentially given up

Broad Measurement Problems: Intangibles

- Intangible investment replaces tangible investment
 - In official GDP, we deflate intangibles with input costs and add average productivity, so no impact on productivity
 - Intangible investment prices falling rapidly, but unrecorded
 - As intangibles replace tangibles, less deflation
 - Data is a new intangible investment, not in GDP
 - Intangible assets are not tied down geographically, unlike tangible assets
 - Apple can export its IP to Ireland without a transaction
 - "Domestic" part of GDP becomes harder to measure

Broad Measurement Problems: Consumption

- Consumption has changed a lot since 2005
 - iPhones, iPads, Amazon prime, Kindle, Google Maps, Uber, AirBnb,
 Spotify, Netflix, Khan Academy, Tesla Model 3, DNA genealogy
 - Consumers love new varieties and product variety is accelerating
 - Innovative products have always been hard to quantify
- Zero resource cost products replace costly products
 - With Internet 2.0, everything that can be digitized has zero reproduction cost, often zero price
- Consumers consume information and novelty (entertainment, etc.)—what are the units to be measured?

Has mismeasurement accelerated?

- More rapid change in products on the market
 - In 1983-4 and in 1995, BLS found products permanently disappeared in 25 months on average from CPI survey
 - By 2015 they disappear in 20 months (Groshen et al, 2017)
 - Between 1995 and 2015, product disappearance rate increased by 25 %
- Our standard procedures don't measure quality improvements when new products appear
 - Our CPI and PPI measure price changes in narrowly defined goods and services
 - For ex, an hour of a doctor's time or an hour in a classroom are different products than they were in 1965
 - So we need custom ways to deal with these: but there are too many new products

Alphabet, Amazon, Apple and Facebook are large part of innovative expenditure

- In 2017, these accounted for 13 % of all US corporate R&D
- After-tax profits of Big 4 increased \$72 B from 2007 to 2017
 - Total US domestic corp aftertax profits rose \$400 B
- Apple
 - iPhone (2007), iPhone Apps (2008), iPad (2010), Siri (2011)
 - 2 billion iPhones and Androids worldwide 2018, 2-4 hours daily use
- Google
 - Google maps (2005), Youtube(2005), Android (2008), Waymo (2009),
 Deepmind (2010),
- Amazon
 - Amazon Prime (2005), AWS (2006), Kindle (2007), Alexa (2012)
- Facebook
 - Open to all (2006), WhatsApp (2009), Snapchat(2011)
 - 1.5 billion daily active users on Facebook and 1 billion on Whatsapp!

How Can we Have Big Profits, Fast Change and Slow Measured Growth?

- The consumer products of Google, Facebook, Amazon, and Apple do not appear as increases in PCE growth but as decreases
- Free Products: Google Search and Facebook, Youtube and Instagram
 - Zero prices incompatible with inflation and output measures
 - Free products replace tangible merchandise such as CDs and film
- Unmeasured quality change: Amazon
 - Lower prices at Amazon are not shown as deflation:
 - New outlet bias
 - Amazon's lower prices show up as reduced retail services
 - But Amazon delivers to your home!
- Outsourcing: Apple
 - Apple looks like an importing wholesaler in economic statistics
 - It imports iPhones from China—not in US GDP
 - Its IP is recorded in Ireland

Summarizing consumption

- Between 1995 and 2017, PCE growth mismeasurement accelerated by
 - Internet: 0.8 % a year added to PCE understatement
 - Goolsbee and Klenow, Byrne and Corrado, Abdirahman et al.,
 Brynjolfsson et al all show this rate or worse
 - Outlets: 0.13 % (Aghion et al)
 - Nondurable goods variety: 0.03 % (Niemann and Vavra)
- Other areas:
 - Meds, Eds, Hardware, Software, Entertainment, LEDs
 - Pharma alone probably 0.1 % acceleration

An explosion of progress: big price drops for consumer goods and intangibles

Rates of Improvement of Selected R&D and Data Inputs					
Туре	Time period	Improvement	Annual Rate of Change		
Moore's Law	1958 to 2014	Doubles every two years	41 %		
Consumer Internet Bytes	2008 to 2017	19 X	39 %		
Cellular Bytes	2008 to 2017	200 X	59 %		
DNA Sequencing	2007 to 2017	1000 X	100 %		
DNA manipulation	2012 to 2018	150 X	130 %		
Startup Cloud computing	2006 to 2007	100 X to 1000 X	10000 % +		
Cloud computing, price declines	2010 to 2016	2 X to 3X	10-20 %		
Rocket development	2007 to 2015	10 X	33 %		
Rockets, cost per flight	2007 to 2015	3 X	14 %		
AI, Libratus to Pluribus training	2017 to 2019	6000X	7600 %		
Sensor, Lidar	2007 to 2016	9 X	27 %		
LEDs, cost per lumen	1975 to 2017	16000 X	23 %		

Falling costs of intangible investment: biology

- Price of complete human genome sequencing fell 10 thousand times 2005 to 2017
 - More than 1 million human genomes sequenced
 - Illumina valuation \$40 B
 - Parallel fall in price for sequencing coronaviruses
- From 2012 to 2018, genome editing costs fall from \$25 thousand per edit to \$65 (CRISPr-Cas9)

Mismeasurement accelerated maybe 1 % or more

Some Elements of Potential Acceleration of Mismeasurement, 2005-2017 relative to 1983-95					
Mismeasurement	Impact on GDP,	Impact on GDP,	Acceleration of	Source	
Issue	Growth rate, 1983-	Growth rate, 2005-	mismeasurement		
	85	2017			
Outlet Bias	0.52	0.65	0.13	Aghion et al (2019)	
Variety bias	0.09	0.11	0.02	Niemann and Vavra	
				(2018) and author's	
				estimate	
Internet	0	0.44 (0.56)	0.44 (0.56)	Byrne and Corrado	
				(Author's estimate)	
Pharmaceuticals	0.065	0.155	0.09	Author's calculation	
Software	0.135	0.36	0.225	Author's calculation	
Other Intangibles	0.38	0.5	0.12	Author's calculation	
Cloud Computing	0	0.1	0.1	Byrne et al (2019)	
Total	1.190	2.315	1.125		
Mismeasurement					

Two percent a year is a big error!

- We misdiagnose our economy
- These problems require new approaches
 - In the short run: a second measure of GDP (Hulten and Nakamura, Coyle and Nakamura, Brynjolfsson et al)
 - Lots of work by lots of economists as we reach for consensus on new procedures
 - Need economics profession to deeply engage with measurement

Why are people so unhappy? Why deaths of despair?

- Maybe superfast change is the problem, not slow growth!
- Social and ethical problems caused by speed:
 - High cost and rapid depreciation of human capital
 - Two-way mass communication
 - Lack of privacy, hacking, and bots
 - Threat to democracy and mental health
 - Genome manipulation
 - Robots, self-driving cars, drones: what if someone dies?
 - Space commercial exploitation: no current laws
 - Brain-machine interfaces: little regulation
 - Inequality from wealth increases

www.philadechimate and social change

Summary

- Without a credible measure of aggregate welfare, economists' ability to make macro policy recommendations will be increasingly attenuated.
- In the short run, we may need two kinds of GDP
 - Expanded GDP (Hulten and Nakamura) or GDP-B (Brynjolfsson et al)
- We are a long ways from a complete new picture, but a tremendous amount of research has been launched.
- Coordinating this research and maintaining it statistically over time so that we can make time series, is the big task ahead.
- Statistical agencies need much more money and much more help from top economists!

Thank You!

- I greatly appreciate your time
- The main purpose of this talk is to provoke conversation about how to improve measurement
- This is not the fault of US statistical agencies:
 - They are the best in the world
 - And are woefully underfunded

Falling cost of intangible investment: Internet startups

- Cloud computing, 2009 to 2016, AWS prices fall 2-3X (Byrne et al)
 - Much more efficient use of servers implies lower rates of investment in computers
- But for Internet startups, startup costs fell by 100X to 1000x from 2005 to 2009
 - No longer need to buy servers, routers, etc. in advance
- Venture capital model changes dramatically to accommodate cheapness of experimentation (Ewens et al, 2018)

Software

- 2.4 percent of GDP in 2016 up from 0.9 percent in 1995
 - Note: R&D now includes software investment in R&D,
 which adds \$121 B to software in 2016
 - Minimum estimate of investment
 - My estimate is 5 % of GDP
 - Software depreciation is 33 % a year.
 - Since software does not suffer from physical deterioration, this should approximate the rate of technical progress
 - To be very conservative, estimate at 8 % per year
 - Acceleration of 0.22 percent in GDP

Software example: Artificial Intelligence

- Carnegie Mellon team creates superhuman AI: Poker game of Texas Hold 'Em
- Libratus: beats top players one-on-one (2017)
 - \$1 million compute time to train
- Pluribus: beats top players in multiplayer game (2019)
 - \$150 in compute time to train
 - 6000x improvement for harder task!
- Fast rate of software technological progress

SpaceX and Space commercialization

- Developed Falcon9 rocket for \$390 million
 - NASA estimate for procurement cost: \$4 billion
- Price per flight \$61 million relative to Atlas 5 (\$170 million) to deliver payload to low earth orbit (LEO)
 - Most satellites, include International Space Station, are at LEO
 - Plans to reuse all parts of launch rocket is further decreasing costs
- SpaceX valuation \$30 B +
- Space commercialization now has many startups

New papers on the valuation of variety

- BLS calculations show rate of product turnover in CPI has risen by 25 %, as products disappear permanently 5% monthly up from 4 % monthly in mid-1990s
- Aghion et al (AER, 2019) measure the consumption value of new outlets: inflation overstated by
 - 0.52 % in 1983-95
 - 0.65 % in 2006-2014 (acceleration about 25%, consistent with product disappearance rate)
 - This is for nonfarm businesses. Largest impact from hotels and restaurants.
- Niemann and Vavra (2019) argue that product variety at nondurable retail stores could add:
 - 0.8 % in 2004-2016 to annual welfare gains
 - If 25 % acceleration, then I conjecture: 0.64 in 1983-95
 - Variety gains largely within outlet, so maybe additive with Aghion et al.
 - Data applies to some 20 percent of PCE,

Internet Valuation

- Q3, 2017 time spent per day on Internet for Adults 18+: about 4 hours a day!
 - Internet use time 2007: less than 1 hour. 4x increase!
 - The difference was smartphone and tablets.
- What is this time worth?
 - Goolsbee and Klenow (2006) calculation values free Internet using time inputs at the wage rate
 - It now implies in 2017 12 % of full income is value of the Internet, up from 2 % in 2005
 - Applying to PCE, \$4000 per person, 0.8 % faster annual growth
 - Brynjolfsson et al asked users what they would have to be paid to not use the different parts of the Internet: over \$30 thousand.

Internet valuation, continued

- What we pay to access Internet:
 - Wifi: 0.5 % of PCE, cellphone services: 0.9 % of PCE
- From 2008 to 2017, consumer byte flows over wifi grow 40 % a year and cellphone byte flows grow 60 % a year (Cisco VNI)
 - If we count bytes as the relevant quantity, Internet and cellular access raise PCE growth by 0.8 percentage point (Abdiriham et al, 2019)

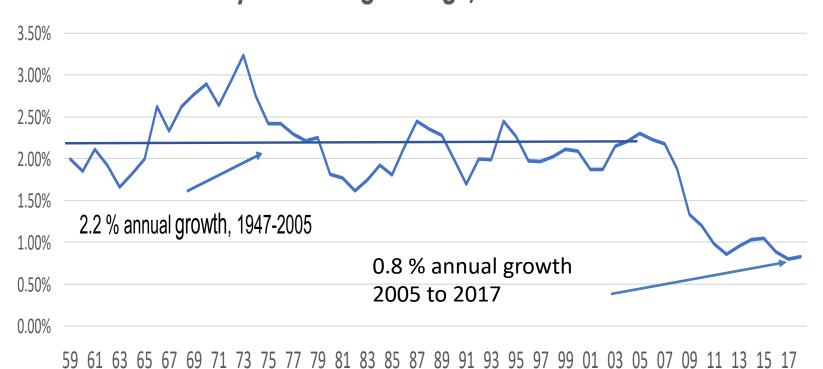
Sensors

- The development of the self-driving car is being facilitated by rapid declines in sensor prices
- Lidar (the laser equivalent of Radar) works better than other systems in bad weather, offers better detail
- Lumina's cost \$75000 in 2005-7; in 2014, \$7500; prototype expected to be \$500 to \$1000 in 2022 in production quantities

Lithium batteries

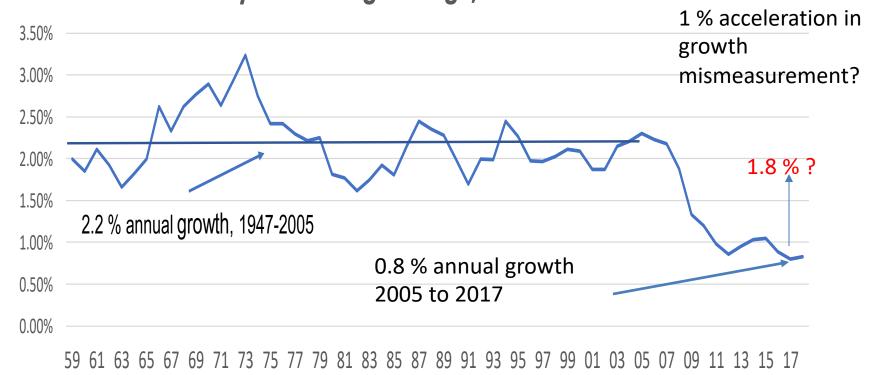
- Price of batteries has fallen from \$1160 to \$156 and is reportedly now \$100 per kwh of storage capacity
- Tesla Model 3 requires 75 kwh: price has fallen from \$80,000 per car to \$7500.
- New Tesla battery cheaper and to last 1 million miles
 - Batteries transferred to the next car!
- Backup batteries for solar power now pay for themselves
 - Transfer power from daytime to night

Nonsoftware Intangibles

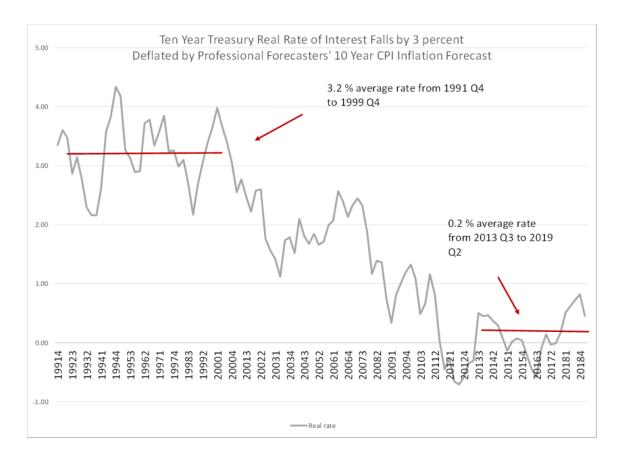


- Rose from 7.5 % of GDP to 10 % of GDP from 1995 to 2017
- Rates of depreciation 15 % or faster
- If deflator should be falling 5 % a year,
 mismeasure is 0.38 % from 1983 to 1995 and 0.5 % from 2005 to 2017

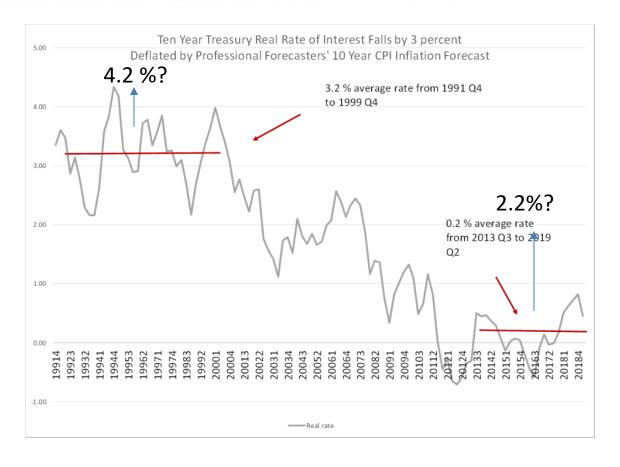
GDP growth per capita has plummeted: did it really?


US GDP Growth per Person 12 year moving average, 1947 to 2018

GDP growth per capita has plummeted: did it really?



US GDP Growth per Person 12 year moving average, 1947 to 2018


Real long-term interest rates have fallen 3 percentage points to near zero – but have they really?

Real long-term interest rates have fallen 3 percentage points to near zero – but have they really?

