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Nowcasting GDP via quantile regression

• Eurostat’s Flash estimates of quarterly GDP growth for the euro
area are currently published 30 days after the end of the quarter.
For many years, from 2003-2016, they were published at 45 days

• Ahead of these estimates many higher-frequency indicators
become available

• This paper uses an application to explore the utility of quantile
regression methods in producing density nowcasts of quarterly
GDP growth from higher frequency indicators
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Quantile regression (QR)

• QR allows for nonlinearities between the indicators and GDP
growth
• The relative importance of different indicators can vary by quantile

of GDP growth

• We emphasise the construction of full predictive densities from
these QRs

• We propose a Bayesian QR nowcasting strategy that
accommodates

1 the mixed-frequency, and
2 “ragged-edge” nature of
3 the increasingly big datasets that characterise recent nowcasting

applications
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U-MIDAS QR

• We relate the conditional τ-th quantile of quarterly GDP growth
in quarter t, yt, to xm

t , a vector of monthly indicators, where
m = 1, 2, 3 denotes the month in quarter t (plus lags of GDP)

Qyt(τ|Ωt) = β0,τ + β1,τx1
t + β2,τx2

t + β3,τx3
t , τ ∈ (0, 1)

• We follow Mazzi et al. (2014 OBES) and consider a large set of 124
monthly indicators, including business confidence data, IP data
and financial market data for both the euro aggregates and its
largest economies

• We use real-time data for all variables (involved us collecting euro
area vintage data)

• We adopt a Bayesian estimator and consider various shrinkage
priors to avoid parameter proliferation
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Bayesian QR (BQR)

• Bayesian inference proceeds by forming the likelihood using
asymmetric Laplace densities

• We use the mixture representation of Kozumi and Kobayashi
(2011 JSCS)

• We implement different shrinkage priors on Vβ, where
βτ ∼ N(0, Vβ)

• All can lead to the inclusion of different indicators in different
parts of the GDP growth distribution

• Estimation via standard MCMC (Gibbs sampling) methods
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Shrinkage priors

We consider three forms of shrinkage prior

1 Lasso, adaptive Lasso and elastic net. Parameter-specific (or local)
shrinkage priors

2 Horseshoe and Dirichlet-Laplace. Shrinks small coefficients (or
uninformative indicators) to zero, with fat-tails to avoid
over-shrinkage of large coefficients associated with important
indicators

3 SSVS. A normal mixture prior, the Stochastic Search Variable
Selection prior is a discrete mixture of a peaked prior around zero
and a vague proper prior
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Density nowcasts I

• Having estimated the BQR in-sample (t = 1, ..., T) for a given
quantile τ, quantile nowcasts can be computed given xT+1:

Q̂yT+1(τ|Ω
j
T+1)

r = β̂
r
0(τ) + β̂

r
1(τ)x

1
T+1 + β̂

r
2(τ)x

2
T+1 + β̂

r
3(τ)x

3
T+1

where β̂
r
k (k = 0, ..., 3) denotes the r-th MCMC draw from the

posterior parameter distribution and Ωj
T+1 denotes the j-th

available information set. We consider nowcasts at j = 1 (t-15
days) and j = 2 (t+15 days)

• Recall that the quarter T+1 values of the indicator variables are
published ahead of the quarter T+1 values for yt and are exploited
when nowcasting. The density nowcasts can be evaluated when
yT+1 is subsequently published

• We consider two methods of constructing a predictive density
from the BQR quantile nowcasts

Mitchell, Poon & Mazzi Bayesian QR density nowcasting



Density nowcasts II

1 Collect r = 1, ..., R MCMC draws of the quantile nowcast
Q̂yT+1(τ|Ω

j
T+1)

r across τ ∈ [0.05, 0.10, ..., 0.90, 0.95] and then
construct the full posterior density nowcast from this stacked
vector - use a Gaussian kernel to smooth

2 Follow Adrian et al. (AER 2019) and fit a skew-t density to 5 (we
also try 19) conditional mean quantile forecasts
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Out-of-sample results I

• We compare the accuracy of the density nowcasts of euro area
GDP growth from BQR (with the 6 priors) against

1 The density forecast combination strategy of Mazzi et al. (2014
OBES)

• Takes linear combinations of the density nowcasts generated from
124 linear Gaussian regression models relating quarterly GDP
growth separately to each monthly or quarterly indicator

2 Factor (principal component) augmented classical quantile and
linear regressions

• Likely effective in dense data environments

3 An AR(1) Gaussian density
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Evaluation

• Evaluate the point and density estimates against Eurostat’s first
official estimate using

1 RMSE
2 Average logarithmic score
3 Average cumulative ranked probability score
4 Two variants of the quantile weighted probability score (Gneiting

and Ranjan, 2007 JBES) that emphasise left tail events and both tails

• The evaluation sample starts in 2003q2, as this is when Eurostat
first published its Flash estimate for GDP growth and ends in
2019q4

• More on the pandemic to come...
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Nowcast accuracy

• In summary, we find

1 BQR with global-local priors delivers the most accurate nowcasts at
both horizons according to all five evaluation metrics

2 The choice of prior matters
3 BQR outperforms the density forecast combinations and the

factor-augmented linear and quantile regressions - suggestive of a
sparse rather than dense dataset and of gains to shrinkage
out-of-sample

4 Using a skewed-t does not work as well as using the MCMC draws
5 Accuracy is better at t+15 days than at t-15 days

Mitchell, Poon & Mazzi Bayesian QR density nowcasting



Temporal evolution of moments from BQR (HS prior)
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Growth-at-Risk: Prob of negative growth
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COVID-19: Prob of negative growth
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Conclusion

• Bayesian QRs with global-local priors produce accurate density
nowcasts of euro area GDP growth, including over the GFC and
COVID-19 recessions

• Future work should consider the use of weekly, even daily
indicators
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