Bundled Investment and Intermediates: "Free" Smartphone Investment as a Limiting Case

by Jon Samuels and Rachel Soloveichik

Presentation to ESCoE

May 11th, 2021

Outline of Presentation:

Capital is often bundled with intermediate inputs

 Our project: trace through impact of bundling on measured investment, measured GDP, and industry accounts

The paper then presents case studies of bundles

- Vehicle warranties are used to illustrate the general framework
- The framework is then applied to smartphone hardware and software

Empirical impact of unbundling smartphones:

- Nominal GDP in 2019: increases by \$6 billion of hardware investment and \$5 billion of software investment
- Real GDP growth from 2010 to 2019:

decreases by 0.012 percentage points per year from hardware and increases by 0.002 percentage points per year from software

Case Study 1: Vehicle Warranties

- Vehicles are often bundled with repair services
 - New vehicles purchased by businesses are investment
 - Repair services purchased by businesses are intermediate
 - Measured GDP increases when "free" warranty repairs are bundled with new vehicles
- In the United States, vehicle manufacturers pay independent dealers to carry out warranty repairs
 - Since 2004, public companies have been required to report their best estimate of warranty accruals, liabilities, and claims to investors
 - The 2012 Economic Census also reports warranty claims

Hypothetical Accounts for Vehicle User:

1-year warranty covers repairs (parts, labor, and profit)

New Vehicle Parts

\$15,000

Assembly Labor

\$2,500

Assembly Profit

\$2,500

Repair Parts

\$200 per year

Repair Labor

\$200 per year

Repair Profit

\$100 per year

Measured Capital Investment: \$20,500

Measured Vehicle Repair: \$0

'True' Capital Investment: \$20,000

'True' Vehicle Repair: \$500

Bundles Are Sometimes Hard to Value

- Establishments often produce capital assets and intermediate inputs jointly.
 - For example, programmers are used both to develop new phone software and also patch existing phone software
- It is often impossible to observe the 'true' production cost for capital assets.
 - The Economic Census and other government surveys provide very little data on within-company transactions.
 - Many companies genuinely don't measure production costs for individual components of a bundle
 - Even when companies do measure production costs for individual components, they often view that data as a business secret.

Case Study 2: "Free" Smartphone Hardware

Wireless carriers use the same call center workers to sell new phones and support existing phones

- Determining true costs for new smartphones is difficult
- Investment is at least the wholesale cost of smartphones, and at most the total cost of wireless service over a phone's lifespan

"Getting Smart About Phones" (Aizcorbe, Byrne, and Sichel 2019) explored the implications of consumer bundles on measured PCE

 Investment = Imputed value of smartphones sold – imputed value of smartphones add to PCE

Smartphone prices = BEA's consumer phone prices

Hypothetical Accounts for Phone User:

Smartphone is offered 'free' with 2-year contract

Wholesale phone \$300

Phone sales labor \$90

Phone sales profit \$90

Cell spectrum \$20 per month

Cell service labor \$10 per month

Cell service profit \$10 per month

Measured capital investment: \$0

Measured cellular services: \$60 per month

'True' capital investment: \$480

'True' cellular services: \$40 per month

Case Study 3: Open-Source Operating System

Operating systems are provided 'free' to any hardware owner who wants it

- Smartphone owners are not legally required to buy apps from the operating system's store – but it's difficult to install apps bought elsewhere
- Operating systems may also collect personal data or show ads

Assumption: operating system cost = revenue

- Company financial reports provide our app store revenue numbers
- US investment = (Estimated future revenue from app sales)*(estimated share of apps sold in U.S.)*(estimated share of apps sold to businesses)

Operating system prices = BEA's pre-existing price index for prepackaged software

Hypothetical Accounts for Phone User:

Operating system software is 'free' to download

Operating system development costs (programmer labor, intellectual property licensing fees, and profits)

\$48

Developer fees

\$2 per month

Appstore costs \$1 per month

Appstore profit \$2 per month

Measured software investment: \$0 Measured app purchases: \$5 per month

'True' software investment: \$48 'True' app purchases: \$3 per month

Revision to GDP from Unbundling, as a Share of Nominal GDP

Revision to Annual GDP Price Growth

Revision from Annual TFP Growth

Conclusion

- Problem: measured value-added depends on whether bundles are classified as investment or intermediate inputs
- Case studies of smartphones:
 - Nominal GDP in 2019: increases by \$6 billion of hardware investment
 and \$5 billion of software investment
 - Real GDP growth from 2010 to 2019:
 - decreases by 0.012 percentage points per year from hardware and increases by 0.002 percentage points per year from software
 - Measured productivity is not significantly affected by bundling
- Question to audience: search for grand holistic treatment or piecemeal approach?