Macroeconomic Data Transformation Matters

Philippe Goulet-Coulombe (UQÀM), Maxime Leroux (UQÀM), Dalibor Stevanovic (UQÀM) and **Stéphane Surprenant** (UQÀM)

Mai 2021

イロト 不得 トイヨト イヨト 三日

- 2 Candidate transformations
- 3 Horse race setup

- Accuracy gains from machine learning are well documented.
 Some recent examples : Kim and Swanson (2018), Goulet-Coulombe *et al.* (2019) and Meideiros *et al.* (2019), among others;
- Typical data transformations in time series used to remove low frequency movements may be suboptimal for machine learning methods;
- Deep neural networks may automate data transformations, but macroeconomic samples are short and noisy making manual feature engineering advisable (Kuhn and Johnson, 2019);
- Moreover, careful feature engineering can encode **prior knowledge** and help improve forecasting accuracy.

Goals :

- Propose rotations of original data which helps encode "time series friendly" priors into machine learning models;
- We compare the performances of several transformations of **predictors** and the combinations thereof to predict $y_{t+h}^{(h)} = h^{-1} (lnY_{t+h} lnY_t);$
- We compare predicting **directly** $y_{t+h|t}^{(h)}$ and the **path average** of predictions $y_{t+1|t}^{(1)}, \ldots, y_{t+h|t}^{(1)}$.

A ロ ト 4 同 ト 4 三 ト 4 三 ト 9 Q C

- **Model** : $y_{t+h} = g(f_Z(H_t)) + e_{t+h}$
- **Objective** : $\min_{g \in \mathcal{G}} \left\{ \sum_{t=1}^{T} \left((y_{t+h} g(f_Z(H_t)))^2 + \operatorname{pen}(g, \tau) \right) \right\}$
- *H_t* is the data, *f_Z* is the feature engineering step, *g* is the model and pen is a penalty function with hyperparameter vector *τ*. Hence *Z_t* := *f_Z(H_t)* would be the feature matrix.
- Forecast error decomposition :

$$y_{t+h} - \hat{y}_{t+h} = \underbrace{g^*(f_Z^*(H_t)) - g(f_Z(H_t))}_{\text{approximation error}} + \underbrace{g(Z_t) - \hat{g}(Z_t)}_{\text{estimation error}} + e_{t+h}.$$

(日)、(型)、(E)、(E)、(E)、(O)(O)

• We focus on how our choice of f_Z (transformations or combinations thereof) impacts forecast accuracy.

We consider "older" or more common candidates :

- X : Differentiate the data in levels or logarithms.
- **F** : PCA estimates of linear latent factors of **X** as in Stock and Watson (2002a,b) and Bai and Ng (2008).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• H : (Log-)Level of the series.

We consider "newer" or less common candidates :

 MARX (Moving average rotation of X) : We use order *p* = 1, ..., *P_M* moving averages of each variable in *X*. This is motivated by Shiller (1973). The following model :

$$y_t = \sum_{p=1}^{p=P} X_{t-p}\beta_p + \epsilon_t, \ \epsilon_t \sim N(0, \sigma_\epsilon^2)$$
$$\beta_p = \beta_{p-1} + u_p, \ u_p \sim N(0, \sigma_u^2 I_K).$$

This can be estimated by a Ridge regression which may be parametrized using inputs Z := XC as inputs and where $C = I_K \otimes c$ with c, a lower triangular matrix of ones.

• This transformation implicitly shrinks β_p to β_{p-1} .

• **MAF** (Moving average factors) : Let $\tilde{X}_{t,k}$ be the *k*-th variable lag matrix defined as

$$\begin{split} \tilde{X}_{t,k} &= \left[X_{t,k}, L X_{t,k}, \dots, L^{P_{MAF}} X_{t,k} \right] \\ \tilde{X}_{t,k} &= M_t \Gamma'_k + \tilde{\epsilon}_{k,t}. \end{split}$$

We estimate M_t by PCA and use the same number of factors for all variables.

 This is related to Singular Spectrum Analysis – except that SSA would use the whole common component instead of focusing on latent factors.

Tableau – Summary : Feature Matrices and Models

Transformations	Feature Matrix
F	$Z_{t}^{(F)} := [F_{t}, LF_{t},, L^{p_{f}}F_{t}] Z_{t}^{(X)} := [X_{t}, LX_{t},, L^{p_{X}}X_{t}]$
Х	$Z_t^{(X)} := [X_t, LX_t, \dots, L^{p_X} X_t]$
MARX	$Z_{t}^{(MARX)} := \begin{bmatrix} MARX_{1t}^{(1)}, \dots, MARX_{1t}^{(p_{MARX})}, \dots, MARX_{Kt}^{(1)}, \dots, MARX_{Kt}^{(p_{MARX})} \end{bmatrix}$
MAF	$Z_{t}^{(MAF)} := \begin{bmatrix} MAF_{1t}^{(1)},, MAF_{1t}^{(r_{1})},, MAF_{Kt}^{(1)},, MAF_{Kt}^{(r_{K})} \end{bmatrix}$
Level	$Z_t^{(Level)} := [H_t, LH_t, \dots, L^{p_H}H_t]$
Model	Functional space
Autoregression (AR)	Linear
Factor Model (FM)	Linear
Adaptive Lasso (AL)	Linear
Elastic Net (EN)	Linear
Linear Boosting (LB)	Linear
Random Forest (RF)	Nonlinear
Boosted Trees (BT)	Nonlinear

• Several combinations of many of those transformations are also considered.

The Horse Race

- Direct forecasts
- Data : FRED-MD
- **Targets** : Industrial production, non farm employment, unemployment rate, real personal income, real personal consumption, retail and food services sales, housing starts, M2 money stock, consumer and producer price index

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Horizons : $h \in [1, 3, 6, 9, 12, 24]$
- POOS Period : 1980M1-2017M12
- Estimation Window : Expanding from 1960M1

Tableau – Best Specifications in Terms of MSE

	INDPRO	EMP	UNRATE	INCOME	CONS	RETAIL	HOUST
H=1 H=3 H=6 H=9 H=12 H=24	RF RF RF RF RF RF	RF <u>RF</u> <u>BT</u> <u>BT</u> <u>BT</u> <u>BT</u>	BT RF <u>LB</u> BT BT	RF• RF•• RF•• RF•• RF••	FM• RF•• RF• RF• RF• RF••	FM BT AL BT BT BT BT	EN•• EN•• RF• BT•• RF• RF•
	M2	CPI	PPI				
H=1 H=3 H=6 H=9 H=12 H=24	RF AL RF RF BT RF	AL• RF• RF• RF• RF•	EN•• EN• RF• RF• BT••				

Note : Bullet colors represent data transformations included in the best model specifications : *F*, *MARX*, *X*, *L*, *MAF*. Path average specifications underlined.

《曰》《聞》《臣》《臣》 臣

• The marginal contribution of a transformation to model performance can be evaluated using a panel regression :

$$R_{t,h,v,m}^2 = \alpha_f + \psi_{t,v,h} + v_{t,h,v,m}$$

where

•
$$R_{t,h,v,m}^2 := 1 - \frac{\epsilon_{t,h,v,m}^2}{\frac{1}{T} \sum_{t=1}^{T} \left(y_{v,t}^{(h)} - \bar{y}_v^{(h)} \right)^2}$$

- $\psi_{t,v,h}$ are time, variable and horizon fixed effects
- $\epsilon_{t,h,v,m}$ is the time *t*, horizon *h*, variable *v* and model *m* forecast error
- α_f is one of $\alpha_{MARX}, \alpha_{MAF}, \alpha_F$ associated with the corresponding transformations. The null hypothesis is $\alpha_f = 0$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Main Findings

- MARX is especially potent when used in combination with nonlinear models to forecast measures of real activity. It's especially true around recessions Cumulative Squred Errors (Real).
- Factors helps a lot with Random Forest and Boosted Trees, especially at longer horizons as in Goulet-Coulombe *et al.* (2020) and big gains for Random Forests with factors at 12 months Cumulative Squred Errors (CPI).
- MAF regressions focus on models which includes X. Results are more muted, but it seems to help Random Forests and Linear Boosting for horizons of 6 and 9 months.
 - Target Transformation \hat{y}_{t+h}^{direct} can prove largely suboptimal

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Why Path Averaging Works?

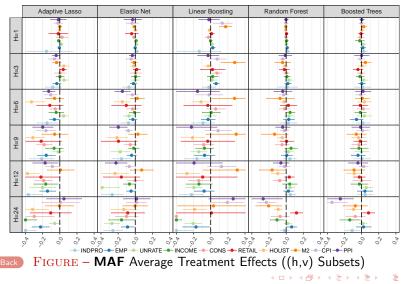
- Speculation : If useful signals change across horizons, the direct learning problem is a lot harder than each of learning problems used in path averaging. It is "denser."
- We have some suggestive evidence that this speculation is correct using variable importance and random forest : path averaging works best when horizon-wise model composition heterogeneity is high.

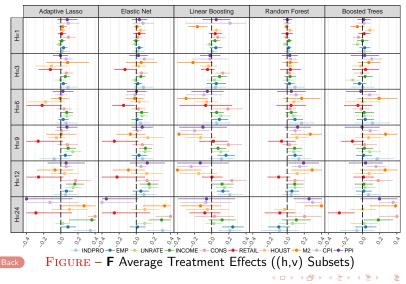
◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

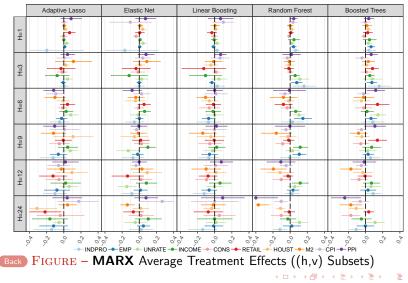
Conclusion

- At shorter horizons, combining non-standard and standard data transformations helps reduce RMSE.
- MARX is especially potent when used in combination with nonlinear models to forecast measures of real activity, especially around recessions.
- Factors remain one of the most effective feature engineering tool available for macroeconomic forecasting, even for inflation.
- For many cases, RMSE reductions can obtain from producing entire paths even when we target an average.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○







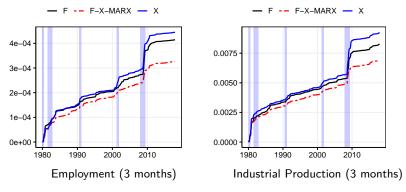
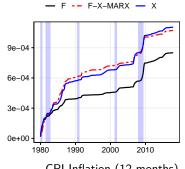


FIGURE – Cumulative Squared Errors (Random Forest)

Back

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト … ヨ



CPI Inflation (12 months)

FIGURE – Cumulative Squared Errors (Random Forest)

Back

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ へ へ

