Macroeconomic Data Transformation Matters

Philippe Goulet-Coulombe (UQÀM), Maxime Leroux (UQÀM), Dalibor Stevanovic (UQAM) and Stéphane Surprenant (UQÀM)

Mai 2021

Content

(1) Motivation and Goals
(2) Candidate transformations
(3) Horse race setup
(4) Results
(5) Conclusion

- Accuracy gains from machine learning are well documented. Some recent examples : Kim and Swanson (2018), Goulet-Coulombe et al. (2019) and Meideiros et al. (2019), among others;
- Typical data transformations in time series used to remove low frequency movements may be suboptimal for machine learning methods;
- Deep neural networks may automate data transformations, but macroeconomic samples are short and noisy making manual feature engineering advisable (Kuhn and Johnson, 2019) ;
- Moreover, careful feature engineering can encode prior knowledge and help improve forecasting accuracy.

Goals :

- Propose rotations of original data which helps encode "time series friendly" priors into machine learning models;
- We compare the performances of several transformations of predictors and the combinations thereof to predict $y_{t+h}^{(h)}=h^{-1}\left(\ln Y_{t+h}-\ln Y_{t}\right)$;
- We compare predicting directly $y_{t+h \mid t}^{(h)}$ and the path average of predictions $y_{t+1 \mid t}^{(1)}, \ldots, y_{t+h \mid t}^{(1)}$.
- Model : $y_{t+h}=g\left(f_{Z}\left(H_{t}\right)\right)+\epsilon_{t+h}$
- Objective : $\min _{g \in \mathcal{G}}\left\{\sum_{t=1}^{T}\left(\left(y_{t+h}-g\left(f_{Z}\left(H_{t}\right)\right)\right)^{2}+\operatorname{pen}(g, \tau)\right)\right\}$
- H_{t} is the data, f_{Z} is the feature engineering step, g is the model and pen is a penalty function with hyperparameter vector τ. Hence $Z_{t}:=f_{Z}\left(H_{t}\right)$ would be the feature matrix.
- Forecast error decomposition :

$$
y_{t+h}-\hat{y}_{t+h}=\underbrace{g^{*}\left(f_{Z}^{*}\left(H_{t}\right)\right)-g\left(f_{Z}\left(H_{t}\right)\right)}_{\text {approximation error }}+\underbrace{g\left(Z_{t}\right)-\hat{g}\left(Z_{t}\right)}_{\text {estimation error }}+e_{t+h}
$$

- We focus on how our choice of f_{Z} (transformations or combinations thereof) impacts forecast accuracy.

We consider "older" or more common candidates:

- X : Differentiate the data in levels or logarithms.
- F : PCA estimates of linear latent factors of \mathbf{X} as in Stock and Watson (2002a,b) and Bai and Ng (2008).
- H: (Log-)Level of the series.

We consider "newer" or less common candidates:

- MARX (Moving average rotation of \mathbf{X}) : We use order $p=1, \ldots, P_{M}$ moving averages of each variable in X. This is motivated by Shiller (1973). The following model :

$$
\begin{gathered}
y_{t}=\sum_{p=1}^{p=P} X_{t-p} \beta_{p}+\epsilon_{t}, \quad \epsilon_{t} \sim N\left(0, \sigma_{\epsilon}^{2}\right) \\
\beta_{p}=\beta_{p-1}+u_{p}, \quad u_{p} \sim N\left(0, \sigma_{u}^{2} I_{K}\right) .
\end{gathered}
$$

This can be estimated by a Ridge regression which may be parametrized using inputs $Z:=X C$ as inputs and where $C=I_{K} \otimes c$ with c, a lower triangular matrix of ones.

- This transformation implicitly shrinks β_{p} to β_{p-1}.
- MAF (Moving average factors) : Let $\tilde{X}_{t, k}$ be the k-th variable lag matrix defined as

$$
\begin{aligned}
& \tilde{X}_{t, k}=\left[X_{t, k}, L X_{t, k}, \ldots, L^{P_{M A F}} X_{t, k}\right] \\
& \tilde{X}_{t, k}=M_{t} \Gamma_{k}^{\prime}+\tilde{\epsilon}_{k, t} .
\end{aligned}
$$

We estimate M_{t} by PCA and use the same number of factors for all variables.

- This is related to Singular Spectrum Analysis - except that SSA would use the whole common component instead of focusing on latent factors.

Tableau - Summary : Feature Matrices and Models

Transformations	Feature Matrix
F	$Z_{t}^{(F)}:=\left[F_{t}, L F_{t}, \ldots, L^{p_{f}} F_{t}\right]$
X	$Z_{t}^{(X)}:=\left[X_{t}, L X_{t}, \ldots, L^{\left.p_{X} X_{t}\right]}\right.$
MARX	$Z_{t}^{(M A R X)}:=\left[M A R X_{1 t}^{(1)}, \ldots, M A R X_{1 t}^{\left(p_{M A R X}\right)}, \ldots, M A R X_{K t}^{(1)}, \ldots, M A R X_{K t}^{\left(p_{M A R X}\right)}\right]$
MAF	$Z_{t}^{(M A F)}:=\left[M A F_{1 t}^{(1)}, \ldots, M A F_{1 t}^{\left(r_{1}\right)}, \ldots, M A F_{K t}^{(1)}, \ldots, M A F_{K t}^{\left(r_{K}\right)}\right]$
Level	$Z_{t}^{(\text {Level })}:=\left[H_{t}, L H_{t}, \ldots, L^{\left.p_{H} H_{t}\right]}\right.$
Model	Functional space
Autoregression (AR)	Linear
Factor Model (FM)	Linear
Adaptive Lasso (AL)	Linear
Elastic Net (EN)	Linear
Linear Boosting (LB)	Linear
Random Forest (RF)	Nonlinear
Boosted Trees (BT)	Nonlinear

- Several combinations of many of those transformations are also considered.

The Horse Race

- Direct forecasts
- Data : FRED-MD
- Targets : Industrial production, non farm employment, unemployment rate, real personal income, real personal consumption, retail and food services sales, housing starts, M2 money stock, consumer and producer price index
- Horizons : $h \in[1,3,6,9,12,24]$
- POOS Period : 1980M1-2017M12
- Estimation Window : Expanding from 1960M1

Tableau - Best Specifications in Terms of MSE

	INDPRO	EMP	UNRATE	INCOME	CONS	RETAIL	HOUST
$\mathrm{H}=1$	RF***	RF***	BT ${ }^{\circ}$	RF*	FM	FM	EN ${ }^{\circ}$
$\mathrm{H}=3$	RF*	RFeo	RF*ee	RFeo	RFee	BT**	ENe*
$\mathrm{H}=6$	RF*	BT 0	RF*	RF**	RF**	$\overline{\text { AL }}$ -	RFe*
$\mathrm{H}=9$	RFe	BT 0	LB	RF	$\overline{\mathrm{RF}}$ 。	BT	BT
$\mathrm{H}=12$	RF	BT 0	LB	RF	RF**	BT•••	RF*
$\mathrm{H}=24$	RF*	BT.	BT*	RF*	RF*	BT**	RF*
	M2	CPI	PPI				
$\mathrm{H}=1$	RFe	AL*	EN 0				
$\mathrm{H}=3$	ALe	RF*	EN				
$\mathrm{H}=6$	RF ${ }^{\text {e }}$	$\overline{\mathrm{RF}}$ -	RF*				
$\mathrm{H}=9$	RFee	RF*	RF*				
$\mathrm{H}=12$	BTe*	RF*	RFe				
$\mathrm{H}=24$	RF-*	RF-	BTe॰				

Note : Bullet colors represent data transformations included in the best model specifications: $F, M A R X, X, L, M A F$. Path average specifications underlined.

- The marginal contribution of a transformation to model performance can be evaluated using a panel regression :

$$
R_{t, h, v, m}^{2}=\alpha_{f}+\psi_{t, v, h}+v_{t, h, v, m}
$$

where

- $R_{t, h, v, m}^{2}:=1-\frac{\epsilon_{t, h, v, m}^{2}}{\frac{1}{T} \sum_{t=1}^{T}\left(y_{v, t}^{(h)}-\bar{y}_{v}^{(h)}\right)^{2}}$
- $\psi_{t, v, h}$ are time, variable and horizon fixed effects
- $\epsilon_{t, h, v, m}$ is the time t, horizon h, variable v and model m forecast error
- α_{f} is one of $\alpha_{\text {MARX }}, \alpha_{\text {MAF }}, \alpha_{F}$ associated with the corresponding transformations. The null hypothesis is $\alpha_{f}=0$.

Main Findings

- MARX is especially potent when used in combination with nonlinear models to forecast measures of real activity. It's especially true around recessions Cumulative Squred Errors (Real).
- Factors helps a lot with Random Forest and Boosted Trees, especially at longer horizons as in Goulet-Coulombe et al. (2020) and big gains for Random Forests with factors at 12 months Cumulative Squred Ervors (CPI).
- MAF regressions focus on models which includes \mathbf{X}. Results are more muted, but it seems to help Random Forests and Linear Boosting for horizons of 6 and 9 months.
- Target Transiomation $\hat{y}_{t+h}^{\text {direct }}$ can prove largely suboptimal

Why Path Averaging Works?

- Speculation : If useful signals change across horizons, the direct learning problem is a lot harder than each of learning problems used in path averaging. It is "denser."
- We have some suggestive evidence that this speculation is correct using variable importance and random forest : path averaging works best when horizon-wise model composition heterogeneity is high.

Conclusion

- At shorter horizons, combining non-standard and standard data transformations helps reduce RMSE.
- MARX is especially potent when used in combination with nonlinear models to forecast measures of real activity, especially around recessions.
- Factors remain one of the most effective feature engineering tool available for macroeconomic forecasting, even for inflation.
- For many cases, RMSE reductions can obtain from producing entire paths even when we target an average.

Back
Figure - F Average Treatment Effects ((h,v) Subsets)

Back Figure - MARX Average Treatment Effects ((h,v) Subsets)

- F - - F-X-MARX - X

Figure - Cumulative Squared Errors (Random Forest)

Back

