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Using a novel dataset that combines �rms' qualitative survey-based sales forecasts with their 

quantitative balance-sheet data on realized sales, we document that only major forecast errors 

(those in the two tails of the distribution) are predictable and display autocorrelation. This 

result is a particular violation of the Full Information Rational Expectations hypothesis that re-

quires explanation. In contrast, minor forecast errors are neither predictable nor autocorrelated. 

To arrive at this �nding, we develop a novel methodology to quantify qualitative survey data 

on forecasts. It is generally applicable when quantitative information, e.g. from �rm balance 

sheets, is available on the realization of the forecasted variable. To explain our empirical result, 

we provide a model of rational inattention. When operating in market environments where infor-

mation processing is more costly, �rms optimally limit their degree of attention to information. 

This results in larger absolute forecast errors that become predictable and autocorrelated. 
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1 Introduction

Do �rms make errors in forecasting their future sales that are predictable and display autocorrelation?

If so, what does that reveal about �rm behavior and the way they form expectations? We address

these questions using a novel panel dataset that contains qualitative survey data on manufacturing

�rms' own sales forecasts as well as corresponding balance-sheet data on realized sales. We document

that only when �rms make major forecast errors are these predictable and display autocorrelation.

Hence, �rms' behavior violates the Full Information Rational Expectations (FIRE) hypothesis. In

contrast, minor forecast errors do not violate FIRE. These di�erences in �rms' forecasting behavior

have not been documented before. Major forecast errors are those that lie in the two tails of the

distribution. Key to demonstrating this empirical result is our novel methodology that quanti�es

forecasts when survey-based data on expectations is only available in categorical form. To explain

our empirical �ndings, we provide a model of rational inattention. When operating in market envi-

ronments where information processing is more costly, �rms optimally limit their degree of attention

to new information. Limited attention results in major forecast errors that become autocorrelated

and predictable.

Given the dynamic nature of �rm activity, expectations play a major role in �rms' economic

behavior. Economic models that describe �rm behavior are naturally dynamic and contain assump-

tions about expectations. Many papers have emphasized the importance of obtaining evidence on

expectations formation that is independent of model assumptions (see Nerlove (1983) and Manski

(2004) among others). This makes the use of survey data on expectations particularly useful. How-

ever, as survey-based measures for expectations are typically categorical, some important questions

cannot be answered. For instance, whether �rms make substantial errors in their forecasts and what

are their statistical properties. Our paper provides a remedy to this obstacle, as we develop a novel

methodology that converts categorical survey data on expectations to continuous quantities.

We develop a unique dataset by matching con�dential information on �rms' monthly qualita-

tive forecasts on own sales together with annual quantitative balance-sheet information on sales.

The dataset covers Greek �rms in manufacturing for the period of 1998 to 2015. After generating
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quanti�ed measures of expectations, we test and �nd that forecast errors are both predictable and

autocorrelated. This is in accordance with existing results in the literature that concern either �rm-

level or aggregate variables (see Gennaioli et al. (2016), Massenot and Pettinicchi (2018), Bordalo

et al. (2018a), Bordalo et al. (2018b), Tanaka et al. (2019)). These are clear violations of the FIRE

hypothesis. Where we di�er from previous papers, however, is that we show that, in our dataset, this

rejection is entirely due to forecast errors in the upper and lower 26% of the distribution. Only these

major forecast errors are predictable and autocorrelated. Forecast errors in the middle 48% of the

distribution are still often economically signi�cant, but are neither predictable nor autocorrelated.

We derive this novel �nding using a modi�ed version of the Dynamic Panel Threshold estimator of

Seo and Shin (2016). This estimator endogenously determines the 26% threshold, that distinguishes

minor from major forecast errors, to �t the data best. Major forecast errors may lead �rms to make

suboptimal decisions, pointing to the possibility that policy design can be geared to helping �rms

avoid these.1 Clearly, one cannot carry out such analysis with qualitative data and this points to the

importance of our quanti�cation exercise.

Our quanti�cation methodology builds on the work of Pesaran (1987) and Smith and McAleer

(1995) and extends it to retain the panel nature of the dataset. We use higher-frequency (monthly)

qualitative survey data on expected sales growth together with lower-frequency (annual) quantitative

data on realized sales growth to estimate quanti�ed expected annual sales growth. In order to

retain the panel nature of the dataset we need to overcome challenges such as unobserved �rm

heterogeneity and omitted variable problems for forecast errors. This requires identifying assumptions

that allow us to derive two nonlinear equations. The �rst one relates observed quantitative annual

sales growth to observable variables and the second one relates unobserved quantitative expected

sales growth to observable variables. The key is that both of these relationships depend on the same

parameters. Then, we estimate the common parameters from the �rst equation using Nonlinear

Least Squares (NLS), and use these estimated parameters in the second equation to derive �tted

values for quantitative expectations on sales. This methodology can be applied to a wide range of

1We document that the vast majority of �rms, independent of their size, make minor as well as major forecast

errors. Major and minor forecast errors (or short series thereof) tend to alternate.
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applications and datasets and is not limited to quantifying �rm forecasts. The only requirement is

that the researcher has access to high-frequency categorical survey data on expectations together

with (potentially lower-frequency) quantitative realizations of the corresponding variables.

We provide evidence of external validity and accuracy for our methodology in four ways. First,

we show that our quanti�ed estimates on sales growth expectations are fully consistent in terms of

sign with the corresponding qualitative survey-based expectations. In a horse race, our methodology

also substantially outperforms ordered response models which are potential alternatives for obtain-

ing quanti�ed predictions. Second, we construct a small dataset of UK manufacturing �rms that

contains monthly qualitative survey expectations and the corresponding annual realizations from

balance sheets which allow us to use our methodology to derive estimates for annual forecast errors.

Importantly, for each �rm, the dataset also includes annual quantitative survey expectations which

we employ as a benchmark. Comparing our estimated annual forecast errors with the directly ob-

servable benchmark forecast errors con�rms the accuracy of our quanti�cation methodology. Such

an exercise can only be conducted using a dataset that includes quantitative forecasts, made by the

same forecaster at a high and a lower frequency. In practice, this is challenging to do due to the rare

availability of such data on quantitative �rm-level expectations. In fact, this dearth of data high-

lights the need for and value of our quanti�cation methodology, which allows researchers to utilize

the large number of qualitative surveys to quantify expectations. Third, we perform a Monte Carlo

exercise that provides a benchmark based on simulated data. We �nd forecast errors based on our

methodology are highly accurate when compared with forecast errors based on the underlying arti-

�cial 'true' data. Although the three exercises above con�rm that our methodology delivers rather

accurate forecast errors, it is noteworthy that, in a fourth exercise, we additionally show that our

empirical results on the autocorrelation and persistence properties of large forecast errors are not

driven by the quanti�cation methodology but are a feature in the underlying qualitative survey data.

We use a framework of rational inattention to interpret our empirical results on the predictability

and autocorrelation of forecast errors. Our work links to a large literature on rational inattention to

which we cannot do full justice here � the seminal work is Sims (2003) and Mackowiak et al. (2018)
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provide a recent survey of the literature. In particular, we study the properties of forecast errors

when �rms endogenously choose the degree of attention to costly information. We show that when

the cost of processing information is high, �rms make major forecast errors which are predictable

and negatively autocorrelated. In the absence of these costs, �rms make fully informed and rational

forecasts with minor forecast errors. Importantly, the framework can also rationalize our empirical

negative coe�cient estimates on persistence and autocorrelation for major forecast errors. These

coe�cients are negative in the model only if the autocorrelation of sales growth is negative, which is

indeed also a feature in our data.

Quantifying forecast errors using qualitative survey data is a very important matter for many

questions, but there has been little work on this and no generally accepted methodology. Theil (1952)

and Anderson Jr (1952) developed the so called `probability method'. It provides the theoretical

grounds for the `balance statistics' that are widely used for the published business and consumer

sentiment indexes. Pesaran (1987) provides a useful analysis of the limitations of this approach (see

also Pesaran and Weale (2006)). A very useful �rst step to overcoming such limitations is Bachmann

and Elstner (2015). They �rst restrict their survey sample to �rms that reported expected output

to be unchanged over the following three months. Then, they classify non-zero percentage change

of �rm's reported utilization as a forecast error. This technique has some limitations compared to

our quanti�cation method. Our method does not only deliver continuous forecast errors but also

expectations themselves. It further is not limited to the quanti�cation of �rms' production, but can

be applied to any variable in principle, given the data requirements outlined above. Importantly, our

method can be used on the entire sample rather than only on a potentially small subset of �rms.

Important early work on the use and pitfalls of survey data to analyze how �rms form expectations

includes de Leeuw and McKelvey (1981) and Nerlove (1983). Our work is part of a now fast growing

literature that uses information from surveys to understand �rms' decision making. Enders et al.

(2019a) use German data from the IFO Business Survey to study how �rms' expectations about

future production a�ect their current decisions on production and price setting. Tanaka et al. (2019)

use novel Japanese data to study how �rm characteristics a�ect their GDP forecasts. To the best
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of our knowledge, these two datasets are the only ones constructed so far to contain categorical �rm

survey data with corresponding quantitative data, e.g. from balance sheets or national accounts. We

contribute to the survey literature by providing a novel dataset that combines responses to a rich

�rm-level survey with the corresponding balance sheet information for Greece. Our empirical results

point to the importance of further work on merging existing quantitative datasets with qualitative

survey data.2 Applying our quanti�cation methodology would then allow for a deeper understanding

of how �rms or households form expectations and their economic impact. There are many other

contributions in the literature that use survey data to help our understanding of �rm-level and

aggregate variables. Enders et al. (2019b) for example use German data from the IFO Business

Survey to study how monetary policy announcements a�ect �rms' expectations. Bachmann and

Zorn (2013) use this survey to understand the drivers of aggregate investment. Bloom et al. (2019)

use survey responses to understand the causes and consequences of Brexit for the UK economy.

Coibion et al. (2018) study how �rms form expectations about macroeconomic conditions using

novel survey evidence from New Zealand.

Our �ndings contribute to the broader literature on testing whether agents form expectations

rationally. In addition to papers mentioned above, there are several key contributions in this litera-

ture. For example, Coibion and Gorodnichenko (2015) use data from professional forecasters to test

the FIRE hypothesis. They �nd that agent's expectation formation violates the FIRE hypothesis

and show, in line with the spirit of our model, that this is consistent with the presence of infor-

mation rigidities. Coibion and Gorodnichenko (2012) use survey data from �rms, households and

professional forecasters and show that expectation formation is better aligned with models of noisy

information, similar to our model, rather than with frameworks in which information is sticky.

The rest of the paper is organized as follows. Section 2 discusses the data. Section 3 lays

out our methodology to quantify �rms' forecasts and describes the characteristics of the estimated

forecasts and the resulting forecast errors. This section also provides evidence of external validity

and accuracy for our methodology. Section 4 discusses our empirical results on the predictability and

2A novel dataset that combines households' survey based in�ation expectations with administrative data has

recently been developed in Vellekoop and Wiederholt (2019).
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autocorrelation of forecast errors. These empirical �ndings are interpreted in Section 5 in a model

with rational inattention. Section 6 provides concluding remarks.

2 Data

Our dataset is constructed by merging two databases that cover Greek �rm-level data. The �rst

database includes annual information on �rms' balance sheets and income statements. We obtain

this data from ICAP S.A., a private consultancy �rm, which collects and digitalizes this information

from o�cial publicly available records. The �nancial statements are compiled by certi�ed audi-

tors (chartered accountants) and are used, among other things, for reporting to tax authorities and

investors, by commercial banks for credit decisions, and by the central bank for credit rating in-

formation. They are available to us at an annual frequency from 1998 to 2015 which determines

our sample horizon. As such, our dataset includes two distinct episodes of the Greek economy, a

long boom up to 2008 and the subsequent severe recession. We use �rms' sales from the �nancial

statements, which is de�ated using the implicit gross value added de�ator from Eurostat.3

The second database comprises �rms' responses to a monthly survey conducted by the Foundation

for Economic and Industrial Research (IOBE). This survey is used by IOBE to construct the much-

followed business climate index for the Greek economy since 1985 and is part of the European

Commission's business climate index for the European Union.4 All survey questions concern current,

past or expected future �rm-level developments. The survey does not include any questions about

aggregate macroeconomic or sector-level conditions. Since participation is con�dential and voluntary,

�rms have no strategic interest in misreporting. Further details about the survey are provided in

Appendix A.1.

The IOBE classi�es �rms in four broad sectors � manufacturing, construction, retail trade, and

3Nominal and real (2005 base year) value added for Greece is available from Table nama_10_a64.
4The survey is commissioned by the European Commission and conducted for the Greek economy in compli-

ance with the guidelines of the European Commission's Directorate General for Economic and Financial A�airs (see

DGECFIN (2017)). A corresponding survey is conducted for the European Commission for example for the United

Kingdom by the Confederation of British Industry and for Germany by the IFO Institute.
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services � and sends out surveys that include somewhat di�erent questions across these sectors. We

focus on the manufacturing sector as this sector's survey includes questions about anticipated and

current sales developments. Responses to these two questions, and the fact that the question on

current sales has a direct counterpart in the �nancial statements data, are key for the quanti�cation

of forecast errors.5 The relevant (translated) questions in the survey are

Question A.2: During the previous 3 months, your total sales, has increased/remained un-

changed/decreased.

Question D.2: During the next 3 months, you expect your total sales to increase/remain un-

changed/decreased.

These qualitative survey responses are coded in the data as +1/0/-1 indicating an increase/remain

unchanged/decrease, respectively. In the following, we label the variables that include the responses

of �rm i in month m to questions A.2 XSim, and to question D.2 XSeim. The qualitative survey

variable on current sales developments, XSim, has a direct quantitative counterpart with sales growth,

denoted as xiy for �rm i in year y, in the �nancial statements. For the remainder of the paper,

variables in capital letters denote qualitative variables and lower case letters stand for quantitative

variables.

Under a strict con�dentiality agreement, we were given access to the un-anonymized survey data.

Using the �rm's unique tax identi�er, we merged their survey responses with the respective balance

sheet data. Details about the cleaning procedures for the two parts of our dataset are outlined in

Appendix A.2 and A.3. Our cleaned and merged dataset includes 799 �rms with 25,764 monthly

responses from the survey on the above two questions and 4,104 annual balance sheet observations

on sales. Table 1 provides an overview of the �rms in our sample. Our sample includes very small

�rms but also large �rms with more than 4,000 employees and annual sales turnover of over six

billion Euros. On average, �rms respond in six out of the 11 months in which surveys are sent out.

In Appendix A.4 we provide evidence that our sample is representative for the manufacturing sector

5The manufacturing sector is also the largest of these broad sectors as it includes 38% of survey observations and

36% of observations in the �nancial statements data.
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and establish in several exercises the high quality of the survey responses. Appendix B.6 shows the

distribution of survey expectations on sales growth and documents their evolution over time.

Table 1: Sample Characteristics.

Min. Max. Mean Median St. Dev.
Firm-Year Characteristics

# of Employees 1 3,811 162 75 278
Real Sales (in thousands, 2005 Euros) 6 6,710,000 29,100 7,202 179,000
Survey Responses per Annum 3 11 6 6 3

Firm Level Characteristics

Age at First Appearance in Sample 0 110 25 24 17
Time-Series Length in Sample (Years) 1 18 5 4 4

3 Quantitative Forecast Errors

The forecast error on sales growth is de�ned as the di�erence between actual sales growth and its

forecast for the corresponding period. Evaluating the size of �rms' forecast errors hence requires

quantitative data on sales growth forecasts and their subsequent realization. While the �nancial

statements data provide an annual quantitative measure for the latter, quantitative data on �rm's

sales growth forecasts is not readily available.

Section 3.1 proposes a novel methodology that uses qualitative survey data on the direction of

�rm sales growth forecasts and quantitative data on realized sales growth from �nancial statements,

to derive a quantitative estimate for �rms' sales growth forecasts. In particular, to quantify the

survey responses we extend the methodology by Pesaran (1987) and Smith and McAleer (1995)

who aggregate qualitative �rm observations cross-sectionally to derive quantitative time series. We

extend their work and show how the panel dimension of our dataset can be retained by using the

monthly survey observations to derive annual quantitative sales growth forecasts. Retaining the

panel dimension comes with new challenges, such as dealing with unobserved heterogeneity and an

omitted variable problem, and we show how to address these in our quanti�cation framework.

Section 3.2 applies this methodology to our dataset and provides a �rst look at the characteristics

and distributions of the estimated quanti�ed forecast errors. In Section 3.3, we provide evidence of

external validity and accuracy for our methodology. First, we show that our quanti�ed estimates
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are quite accurate in terms of the sign of expected sales growth when compared to the qualitative

survey-based data. In this aspect, our methodology also outperforms ordered response models in

a horse race. Second, we provide evidence for the accuracy of our quanti�cation methodology in

terms of the magnitude of �rm growth forecasts. This is challenging since we do not observe true

quantitative �rm growth forecasts in our data. Our solution is to conduct a Monte Carlo study using

arti�cial datasets.

3.1 Quantifying Expected Sales Growth

Consider the expected annual growth rate of sales for �rm i in year y, xeiy , E
[
xiy|Fi,y−1

]
, that is

based on an information set F at the end of year y − 1. Theoretically, we can decompose �rm's

expected annual sales growth into its monthly components. For this purpose, we de�ne �rm i's ex-

pectation about average sales growth in the next three months as xeim , E
[
xi,{m,m+1,m+2}|Fi,m−1∈y

]
,

where xi,{m,m+1,m+2} is the average growth rate of sales for the following three-month period.6 Note

that this expectation is formed based on an information set at the end of month m− 1. This quan-

titative monthly sales forecast is consistent, in terms of the structure and horizon of the information

set, with the qualitative survey forecast XSeim. To re-iterate, the annual forecast x
e
iy is based on the

information available to the �rm at the time of the forecast, this is at the end of year y − 1. The

monthly forecast is also based on the information at the time of the forecast, which is the end of

month m− 1. The monthly expected growth rates can in turn be separately expressed, for �rm i in

month m, using their positive, xe,+im , and negative, xe,−im , components.7 The aggregation of monthly

growth rates to an annual frequency can be formalized as the following weighted average

xeiy = Ei,y−1
∑
m∈y

W+
imx

e,+
im + Ei,y−1

∑
m∈y

W−
imx

e,−
im , (1)

6To be able to decompose the annual expected sales growth into monthly components, we de�ne xeim for November

(December) to include expectations about the next two (one) months only. This is consistent with our treatment of

the survey data for these months (which are weighted with 2/3 (1/3)) which is standard in the literature � for details

see Appendix A.2. This scheme avoids double counting of months.
7Zero growth rates have no e�ect on the decomposition. We separate positive and negative components to allow

below for possible di�erences in relationships with their annual counterparts.
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where the weights are de�ned as W+
im = Wim1[XSe

i,m=+1] and W
−
im = Wim1[XSe

i,m=−1] and consist of

two components. The �rst component in each weight, Wim, accounts for the fact that some months

have a higher level of �rm sales than others and therefore represent a larger share of the �nal annual

outcome. It is de�ned as

Wim ,
wim∑
m∈y wim

, (2)

where wim is the ratio of the seasonally unadjusted over the seasonally adjusted real gross value

added. Intuitively, when this ratio exceeds unity, unadjusted gross value added is higher than the

seasonally adjusted one, meaning that during this month value added is above normal levels, and

this month is more important than others for the annual outcome. While a purely theoretical

decomposition would allow for individual weights for each �rm, in our practical implementation

below, data availability limits the design of wim to be the same across all �rms in the manufacturing

sector at quarterly frequency.8 The second component of the weights is dummy variables that take a

value of unity if the expected sales growth rate is either positive, 1[XSe
i,m=+1], or negative, 1[XSe

i,m=−1].

While we do not observe quantitative expectations of sales growth in equation (1) � xeiy, x
e,+
im and

xe,−im � our dataset includes survey responses on the qualitative expected change in sales, XSei,m.

The aim of this section is to derive a quantitative estimate for annual expected sales growth, xeiy.

As a �rst step towards this, we follow Pesaran (1987) and assume that for each �rm the monthly

expected sales growth rates are linearly positively correlated with the corresponding annual expected

sales growth.9 We also allow for this linear correlation to be asymmetric, as in Smith and McAleer

(1995), depending on whether the monthly expectation variable is positive or negative. This is the

�rst identifying assumption (ID1) we make to quantify �rms' forecast errors. It can be formalized

8We use 2-digit seasonally unadjasted and adjusted real gross value added for the manufacturing sector from

Eurostat, Table namq_10_a10 for Greece, both in 2005 Chain Linked Volumes. We use value added since information

on sales is not available at monthly or quarterly frequency. Appendix B.3 shows that quantitative sales forecasts are

almost identical if an alternative weighting is applied that assigns equal weights across all observations per year.
9While this assumption is intuitive, we also show in Appendix B.4 that ID1 is sensible in the sense that the monthly

qualitative survey forecasts are correlated with their annual quantitative counterparts.
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as

xe,+im = α + γ1x
e
iy + ν+im, and xe,−im = −β + γ2x

e
iy + ν−im, [ID1] (3)

where the error terms, ν+im and ν−im, are assumed to be independently distributed across �rms.10 We

further allow for the coe�cients α, β, γ1 and γ2 to di�er across boom and bust periods (1998-2008

and 2009-2015 in our sample). We will specify this at the end of this section, but abstain from

accounting for this state dependence in the notation for now to ease the exposition.

Equations (3) are not formulated to conduct any inference, but merely to re�ect that for each �rm

the annual expected growth rate should be correlated with the corresponding monthly components.

In fact, this linear relationship in equations (3) can be used to eliminate the unobserved variables

xe,+im and xe,−im from equation (1). Combining equations (1) and (3) yields (detailed derivations are

shown in Appendix B.1)

xeiy =
αPiy − βNiy

1− γ1Piy − γ2Niy

+ ξiy, with ξiy =
Ei,y−1

∑
m∈y

(
W+
imν

+
im +W−

imν
−
im

)
1− γ1Piy − γ2Niy

, (4)

where we de�ne

Piy ,
∑
m∈y

Wim1[XSe
im=1], and Niy ,

∑
m∈y

Wim1[XSe
im=−1], (5)

to ease the notation. Piy (Niy) denotes the weighted share of months per year that record a rise

(decline) in expected sales of �rm i. These qualitative variables are directly available from the sur-

vey data so that we can observe Piy and Niy. However, we cannot estimate equation (4) since we

do not observe quantitative expectations of annual sales growth, xeiy, in the data. In fact, deriving

quantitative sales growth expectations was our goal in the �rst place. Instead, if we had estimates

for the parameters and knowledge of the error term � and given that we observe Piy and Niy � we

could use equation (4) to derive �tted values for xeiy. Indeed, the next steps of the derivation are

undertaken to facilitate exactly this.

We know that for each �rm i, realized sales growth in year y is the sum of expected sales growth

10Potential monthly serial autocorrelation in these error terms is not of concern since we will aggregate them at a

�rm-year frequency.
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in that year and a forecast error, xiy = xeiy +xfeiy . Using this expression to replace xeiy in equation (4)

yields after rearranging

xiy =
αPiy − βNiy

1− γ1Piy − γ2Niy

+ xfeiy + ξiy. (6)

In principle, this equation can be estimated, as the �nancial statements data includes quantitative

information about realized annual sales growth, xiy. While the forecast error, xfeiy , is still unobserved,

estimating equation (6) without this variable is simply an omitted variable problem that adds to the

error term. For the remainder of this subsection, we discuss this omitted variable problem and deal

with unobserved �rm heterogeneity to obtain an expression of equation (6) that can be estimated.

Omitted Variable Problem. To ease the notational burden in this section, we use equation

(4) to de�ne the conditional expectation of the quantitative sales growth expectations as

x̃eiy , E
[
xeiy
∣∣Piy, Niy

]
=

αPiy − βNiy

1− γ1Piy − γ2Niy

. (7)

To obtain consistent estimates of the parameters in equation (6), we need the composite error

term xfeiy + ξiy to be mean independent of the non-linear function x̃eiy (see Davidson and MacKinnon

(2004)). We proceed now to show this. Note that the forecast error, xfeiy , is mean independent from

the forecast xeiy.
11 Since E

[
xfeiy
∣∣xeiy] = 0 holds, it also implies that E

[
xfeiy
∣∣x̃eiy] = 0. We provide a

proof of this statement in Appendix B.2. Intuitively, �rms' expected sales growth, xeiy, cannot ex-

ante forecast their forecast error, otherwise �rms would have incorporated this information in their

expectation to reduce the forecast error. The same must hold then also for any estimates, x̃eiy, of

�rms' sales growth expectations.

Having established the forecast error's mean independence of x̃eiy, and in order to obtain con-

sistent estimates of the parameters in equation (6), it remains to be shown that E
[
ξiy
∣∣x̃eiy] = 0.

A su�cient condition for mean independence of the error term, E
[
ξiy
∣∣x̃eiy] = 0, to hold is that

11Indeed, E
[
xfeiy
∣∣xeiy] = E

[
xiy − xeiy

∣∣xeiy] = xeiy − xeiy = 0. Note that this does not imply rational expectations,

because mean independence from the forecast does not imply mean independence from the information set that was

used by that forecast.
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E[ξiy|{XSeim}m∈y] = 0. In Appendix B.2 we provide a formal proof of this statement. This leaves us

with the task to control for the unobserved �rm heterogeneity that is likely to make ξiy correlated

with {XSeim}m∈y. We turn to this next.

Unobserved Firm Heterogeneity. From equation (4), we know that the numerator of ξiy

depends on the error terms ν+im, ν
−
im, and on XSeim. We need to account for the e�ect of the

unobserved heterogeneity hidden in this numerator. For that, our second identifying assumption

(ID2) is to assume that the error term in equation (4) can be decomposed as

ξiy =
ψi + ϑiy

1− γ1Piy − γ2Niy

with E[ϑiy|{XSeim}m=1,...,Ti ] = 0, [ID2]

where ψi captures the e�ect of unobserved �rm heterogeneity on sales growth. ϑiy is an idiosyn-

cratic error which is mean-independent of XSeim for all m.12 Note that the notation {XSeim}m=1,...,Ti

denotes the entire history of months m for variable XSeim, where Ti is �rm i's total number of

monthly observations.13 The unobserved �rm heterogeneity, ψi, is in fact an omitted variable and

is endogenous. The reason is that �rm heterogeneity is related to the entire history of XSeim, so

that E[ψi + ϑiy|{XSeim}m=1,...,Ti ] = E[ψi|{XSeim}m=1,...,Ti ] 6= 0 from assumption ID2. To control for

unobserved heterogeneity, we need to approximate E[ψi|{XSeim}m=1,...,Ti ].
14

A widely used approximation for this purpose is the one suggested in Mundlak (1978).15 The

12ID2 is a standard assumption to deal with unobserved heterogeneity. Essentially, ID2 says that the composite

error term in the numerator of equation (4) can be broken down into two components. The �rst one is the �rm-

speci�c unobserved heterogeneity that is likely to cause endogeneity. The second one is an idiosyncratic error which

is exogenous to the �rm behavior.
13This notation is distinct from {XSe

im}m∈y, used above, which refers to all months m in year y.
14The structure of the non-linear equation (4) that we want to estimate does not allow us to derive an estimator

for ψi analytically, and we cannot use dummy variables either, because the cross-sectional dimension is very large and

the e�ect of ψi is time varying. Another possibility would be to linearize (4) with Taylor series expansion. However,

Taylor expansion around a speci�c point holds locally, only in a small area around this point, otherwise the higher

order terms that will appear into the linearized regression error will be endogenous to the lower order terms included

in the estimation. To avoid this endogeneity problem, we would need to use local polynomial �tting methods which

are too complex, both algebraically and computationally, in our context with even two explanatory variables.
15See e.g. Bartelsman et al. (1994), Semykina and Wooldridge (2010), Kosova (2010) and Triguero and Córcoles

(2013)). The Mundlak (1978) approximation is the standard tool used in non-linear models in panel data. In linear
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original Mundlak (1978) speci�cation is linear, but in the following we additionally include a second-

order term due to the non-linearity of equation (4). Therefore, our third identifying assumption is

that the conditional expectation of the unobserved �rm heterogeneity in the error term ξiy is

E[ψi|{XSeim}m=1,...,Ti ] = δ1XSei + δ2(XSei )
2, [ID3]

where δ1 and δ2 are coe�cients. This results in the following auxiliary regression for ψi

ψi = δ1XSei + δ2(XSei )
2 + ωi, (8)

where ωi is the the part of the �rm-speci�c heterogeneity that is mean independent from the survey

expectations, that is E[ωi|{XSeim}m=1,...,Ti ] = 0; and XSei = 1
Ti

∑Ti
m=1XS

e
im is the simple arithmetic

mean of the survey variable XSeim across time for each �rm i. We can now substitute equation (8)

for ψi in the numerator of ξiy, obtaining

ξiy =
δ1XSei + δ2(XSei )

2 + ωi + ϑiy
1− γ1Piy − γ2Niy

. (9)

The Final Equation to be Estimated. As we have provided a way to approximate the

unobserved �rm heterogeneity, we can now derive the �nal equation to be estimated. We substitute

equation (9) into equation (6) and obtain

xiy =
αPiy − βNiy + δ1XSei + δ2(XSei )

2

1− γ1Piy − γ2Niy

+ ξ̃iy, (10)

where

ξ̃iy = xfeiy +
ωi + ϑiy

1− γ1Piy − γ2Niy

. (11)

Overall equation (10) is estimable because the error term ξ̃iy is mean-independent of the explanatory

variables. We provide a formal proof of this statement in Appendix B.2. This addresses the issue

of the unobserved heterogeneity in equation (6), so that we can obtain consistent estimates of the

coe�cients of interest, α, β, γ1 and γ2.
16

models, it is equivalent to the least squares dummy variable and the standard within estimator.
16The error term, ξ̃iy, in equation (10) is likely to be heteroscedastic and autocorrelated within each �rm. When we

estimate such an equation, we will use the heteroscedasticity robust estimator for the standard errors which addresses
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Summary of the Quanti�cation Method. We have derived two nonlinear equations. Equa-

tion (10), relates observed quantitative annual sales to observable variables and the identifying as-

sumptions ID2 and ID3 ensure that the coe�cient estimates are consistent. Equation (4) relates

unobserved quantitative expected sales growth to observable variables. The key is that both of these

relationships depend on the same parameters. We estimate the parameters from equation (10) using

Nonlinear Least Squares (NLS), and use these estimated parameters in equation (4) to derive �tted

values for quantitative expectations on sales growth.

The practical implementation of the estimation methodology to derive quantitative forecasts on

sales growth can be summarized in the following steps:

1. Compute the weighted shares of months per year that record a rise (decline) in expected sales

Piy (Niy) from survey data, using equation (5).

2. Compute the �rm heterogeneity proxies, XSei and (XSei )
2, based on the arithmetic mean (across

time for each �rm i) of the qualitative survey variable XSeim .

3. Estimate equation (10) using NLS. Run the estimation separately for the boom (y ≤ 2008) and

bust period (y > 2008).

4. Use the NLS estimated coe�cients of equation (10) to compute the �tted values, x̂eiy, for

quanti�ed sales growth forecasts from equation (4).

Our parameter estimates of the NLS estimation of equation (10) are documented in Appendix

B.3. The di�erence between the sales growth rate available from the �nancial statements, xiy, and the

quanti�ed forecast on sales growth for the corresponding year, x̂eiy, then gives the quanti�ed forecast

error on sales growth, x̂feiy . In the following sections, we will drop the hat from the expression for the

forecast error to ease notation. Our methodology to quantify forecasts and forecast errors is generally

applicable to variables other than sales growth. It is applicable to any qualitative (survey based)

both problems � this robust estimator treats errors as clustered within cross-sectional units.

15



variable on future developments, as long as a quantitative corresponding variable on realization is

available.

3.2 Descriptive Statistics on the Quanti�ed Forecast Errors

The previous section outlined the methodology to derive annual quantitative forecast errors for sales

growth using monthly qualitative survey data and annual quantitative data from �nancial statements.

This section provides an overview of the characteristics of the estimated forecast errors.

Figure 1 shows the distribution of forecast errors. We report moments on this distribution in

Table 2. The average forecast error in our sample is zero and slightly larger than the median (-0.03).

This implies that the median forecast on sales growth is three percentage points more optimistic

than the subsequent realization. Overall, a number of forecast errors made by �rms are small (in

absolute value), as these are centred close to zero, but still a signi�cant number of forecast errors

made are quite substantial. Since the remainder of the paper will be concerned with such major

forecast errors, we now also provide some statistics about these. For this purpose, we classify the top

and bottom 26% of forecast errors to be major, which is in line with the estimates for this threshold

obtained in Section 4. At the bottom (top) 26 percentiles, �rms expected sales growth to be 14.3

(8.6) percentage points higher (lower) than subsequently realized. Hence, also a large number of

the remaining 48% of forecast errors in the center of the distribution, which we call minor, are still

economically signi�cant. Interestingly, Table 2 shows that the distribution of forecast errors is very

stable across the boom and the severe depression periods in our sample � during both periods their

shares are close to the 26% of the full sample which is imposed by construction.17

How are these major and minor forecast errors distributed over di�erent dimensions of our sample?

Panel A of Table 3 sorts the sample according to the share of major forecast errors in a �rm's total

17Appendix B.6 documents that the share of major positive and negative forecast errors can vary somewhat in

particular years � e.g. in 2009, the �rst year of the Greek depression, the share of negative forecast errors increased.

Overall, the shares are rather stable though, also when averaging over fewer years than included in the boom and bust

subperiods. Furthermore, the shares of major positive and negative forecast errors are also very similar across 2-digit

sectors � results are available upon request.
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Figure 1: Distribution of Annual Quanti�ed Sales Growth Forecast Errors. The 1% of forecast
errors at the top of the distribution are omitted to ease visibility.

Table 2: Descriptive Statistics for Quanti�ed Sales Growth Forecast Errors.

Mean Median Stand. Share of Forecast Errors (in %)
Dev. Major Negative Minor Major Positive

Full Sample 0.00 -0.03 0.34 26 48 26
Boom 0.01 -0.02 0.34 24 49 27
Bust -0.02 -0.05 0.35 30 46 24

Major forecast errors are de�ned for the purpose of this table as the 26% of forecast errors at the top
and bottom of the distribution. The boom (bust) period spans the years 1998-2008 (2009-2015).

number of observations. For a large number of �rms (460 of the total of 785 �rms) this share is

positive and up to 80%, so that they make major as well as minor forecast errors. These �rms are

present in our sample for a relatively long time as they also account for the vast majority of the

�rm year observations (3,119 out of total 3,868). 179 (111) �rms make exclusively major (minor)

forecast errors, however these account only for 320 (194) �rm-year observations in our sample and

are hence quite short lived. Panel B of Table 3 shows that the share of major forecast errors in the

total observations of a �rm is relatively constant across di�erent �rm sizes. It varies between 48%

and 55% across the �rm size distribution where the larger �rms make slightly fewer major forecast

errors.

Table 3: Major Forecast Errors (MaFE) and Di�erent Cuts of the Sample.

Panel A: Sorting: Share of MaFE in Firm's Observations Panel B: Sorting: Total Net Assets

Share of # of Firms # �rm-year obs. Total �rm-year Percentile of Share of MaFE
MaFE with MaFE observations Total Net Assets in �rm-year obs.
0% 111 0 194
(0%,40%] 129 258 963 (0%,40%] 54.74%
(40%,80%] 331 1238 2156 (40%80%] 51.13%
(80%,99%] 35 195 235 (80%,100%] 48.09%
100% 179 320 320

Major forecast errors are de�ned for the purpose of this table as the upper or lower 26% of forecast error distribution.
The percentile of total net assets has been determined using �rm's average percentile in the pool distribution.
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Table 4: Transition matrix of Major Forecast Errors (MaFE) and Minor Forecast Errors over Time.

Negative MaFE in y Minor FE in y Positive MaFE in y Total
Negative MaFE in year y − 1 30.41% 40.40% 29.19% 100.00%
Minor FE in year y − 1 22.26% 53.79% 23.96% 100.00%
Positive MaFE in year y − 1 27.79% 44.99% 27.22% 100.00%

Major positive (negative) forecast errors are de�ned for the purpose of this table as the upper (lower) 26% of forecast
error distribution.

The evidence in Table 3 shows that, independent of their size, most �rms make major as well

as minor forecast errors. Table 4 provides the average year-on-year transition matrix among minor,

positive and negative major forecast errors for the pooled data. It suggests that �rms do not tend to

make many consecutive major positive forecast errors, but that major and minor forecast errors are

likely to alternate. Following a negative (positive) major forecast error in year y−1, the probability of

making another major negative (positive) forecast error in year y is always lower than the probability

of making a minor forecast error. Furthermore, the likelihood of being in the left or right tail is

approximately equal.

Overall the above evidence suggests that major forecast errors are distributed relatively evenly

across all �rms (when sorted by size) and across the within-�rm observations. Forecast errors are

not highly persistent and both major and minor forecast errors tend to alternate. Additionally, this

section documented that the share of major positive and negative forecast errors is stable across the

boom and bust periods in our sample. Given that forecast errors do not exhibit distinctly di�erent

distributions across the boom and bust period, we focus our empirical analysis in Section 4 on the

full sample.

3.3 External Validity and Accuracy of the Methodology

In this section, we conduct two types of exercises to demonstrate the external validity of our quan-

ti�cation methodology. In the �rst type, we use the qualitative �rm forecast data from the survey as

a benchmark and test whether our quanti�ed estimates are accurate in terms of the sign of expected

sales growth. We also perform a horse race with ordered response models. In the second type, we test

the accuracy of our quanti�cation methodology in terms of the magnitude of �rm growth forecasts.

We do so by conducting a Monte Carlo experiment using arti�cial datasets, and also by employing
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our methodology on a dataset of UK �rms for which qualitative monthly and quantitative annual

survey forecasts are directly available.

3.3.1 Directional Consistency of Estimated Forecasts with the Survey Data.

We can use the observed survey data on the direction of expected sales growth to benchmark how well

our quanti�ed forecasts match the direction of expected sales growth. To facilitate the comparison

of the monthly survey data with our annual forecast estimates, we annualize the survey responses by

computing a weighted yearly average
∑

m∈yWim[XSeim], where the weights are based on equation (2).

The distributions of the raw monthly and annualized survey expectations are reported in Appendix

B.6. While the annualized survey forecasts cannot provide a detailed indication about the size of

the forecasts, as they are based on trinomial and purely qualitative monthly data, they can still be

informative about the direction of the observed forecasts.

To benchmark our estimates of quanti�ed forecasts against the annualized survey-based quali-

tative forecasts, we split responses in each of these two variables into three categories � positive,

zero or negative � and cross-tabulate the three directions. Panel A.1 in Table 5 reports how well

our quanti�ed forecasts match the direction of the annualized observable. The main diagonal shows

the share of observations that are directionally consistent across the two variables when classi�ed as

either positive, zero or negative. Overall, the direction of our quanti�ed forecasts are highly consis-

tent with the one of the annualized survey responses � their direction coincides for 93.98% of all

observations (the sum of the main diagonal).

The small share of observations for which the directions do not coincide can be explained by

the absence of information on scale in the qualitative survey data. In practice, even if the majority

of all monthly forecasts in one year point in the same direction, a single large monthly forecast

in the opposite direction could dominate the annual response. This however cannot be captured

by annualizing purely qualitative monthly forecasts. For this reason, we also report in Table 5

results based on a restricted sample that only includes annualized observations for years in which all

underlying monthly survey responses indicated sales forecasts in the same direction. This ensures
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that the direction implied by the annualized survey data is accurate for all considered observations.

Panel A.2 shows results for this restricted sample which comprises 26% of the observations of the full

sample used in Panel A.1. It is evident that now the direction of all quanti�ed forecasts is consistent

with the ones of the annualized survey responses.18

Table 5: Directional consistency between survey-based sales forecasts and forecasts based on di�erent
quanti�cation methodologies (share in total observations)

Entire Sample Restricted Sample

Panel A.1: NLS Panel A.2: NLS

Negative Zero Positive Negative Zero Positive
Negative Forecasts 23.94% 0.00% 1.45% 11.21% 0.00% 0.00%
Zero Forecasts 0.26% 14.71% 0.34% 0.00% 56.96% 0.00%
Positive Forecasts 3.98% 0.00% 55.33% 0.00% 0.00% 31.83%

Directional Consistency: 93.98% Directional Consistency: 100.00%
Panel B.1: Ordered Logit Panel B.2: Ordered Logit

Negative Zero Positive Negative Zero Positive
Negative Forecasts 4.89% 17.67% 3.54% 5.73% 5.62% 0.54%
Zero Forecasts 0.42% 8.85% 6.18% 1.51% 32.86% 22.92%
Positive Forecasts 1.71% 25.96% 30.77% 0.54% 9.62% 20.65%

Directional Consistency: 44.51% Directional Consistency: 59.24%
Panel C.1: Ordered Probit Panel C.2: Ordered Probit

Negative Zero Positive Negative Zero Positive
Negative Forecasts 4.41% 18.18% 3.51% 5.19% 6.16% 0.54%
Zero Forecasts 0.37% 8.94% 6.15% 1.30% 33.19% 22.81%
Positive Forecasts 1.46% 26.41% 30.57% 0.54% 9.73% 20.54%

Directional Consistency: 43.92% % Directional Consistency: 58.92%

Rows refer to forecasts on sales growth based on annualized weighted average of the �rm-month survey
responses. Variables in columns refer to estimates for quanti�ed sales growth forecasts using Non-Linear
Least Squares (Panel A). For the ordered choice models (Panel B and C) we used the direction of the sales
growth predicted by the model at the �rm-month level instead of the latent variable and then we took their
annualized weighted average. The restricted sample only considers annualized survey observations for which,
in a given year, all underlying monthly observations report forecasts in the same direction.

These results provide a �rst indication of the quality of our forecast estimates. Next, we run

a horse race with alternative ways to quantify sales growth forecasts � namely, ordered response

models such as logit and probit. We outline the details of these alternatives in Appendix B.5. Panels

B.1 and C.1 in Table 5 show the �t of forecasts based on ordered response models with the annualized

survey data. Again, the observations in each variable have been split into three categories � positive,

zero or negative � before we cross-tabulate the three directions. The overall share of observations

that exhibit directional consistency between the annualized survey data and the forecast estimates is

only about 45% for both ordered logit and probit. For the restricted sample shown in Panels B.2 and

C.2, these shares only rise to 59%, pointing to substantial directional di�erences between forecasts

18Results are fully directionally consistent even if we consider annualized observations for which at least 67% of

all underlying monthly survey responses of a particular year indicated sales forecasts in the same direction. This

comprises 39% of the observations of the full sample used in Panel A.1.
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based on logit or probit and the observable survey responses. An important drawback of relying

on estimates based on ordered response models is that these are conditional on the information

contained in the right hand side variables. It is very likely however that, due to data limitations, the

econometrician's information set is much smaller than the information set actually available to �rms

when they make forecasts.

Overall, our exercise shows that forecasts based on our quanti�cation methodology are fully con-

sistent with the direction of sales growth implied by the qualitative survey responses. Furthermore,

our estimates massively outperform alternatives based on ordered response models. This is strong

evidence for the accuracy of our quanti�cation methodology. We next turn to a Monte Carlo exercise

that uses simulated data to infer how precisely our estimates match the magnitude of underlying

true forecast errors.

3.3.2 Matching the Magnitude of Forecast Errors.

Monte Carlo Experiment. It is important to understand how well forecast errors based on our

methodology match, in terms of magnitude, true quantitative forecast errors. In practice, this is

challenging to do due to the unavailability of data on quantitative �rm-level expectations. This

dearth of data was, indeed, the key motivation for developing the quanti�cation methodology pro-

posed in this paper. The vast majority of surveys contain qualitative questions about �rms' future

developments. If quantitative survey-based expectations are available at all, then they either focus on

aggregate rather than �rm-speci�c variables or have an extremely limited sample size. To overcome

this obstacle, we perform a Monte Carlo exercise that provides a benchmark based on simulated

data. In particular, we simulate data on �rm (continuous) annual sales growth realizations, as well

as corresponding qualitative and quantitative expectations. We then use the data on realized sales

growth and qualitative expectations as inputs to the quanti�cation methodology of Section 3.1 and

generate estimates for quanti�ed sales growth expectations. Subsequently, we evaluate the accuracy

of the estimated forecast errors in comparison to those based on the underlying arti�cial 'true' data.

We generate 1,000 sets of random arti�cial data, each one of which mimics the structure of the
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true dataset in terms of number of �rms and its unbalanced nature of �rm-year-month observations.

Details about the data generation are provided in Appendix B.8. This Appendix documents that the

underlying processes and their calibration to generate the arti�cial data are carefully guided by the

characteristics and statistics of the observable �nancial statements and the survey data. We further

highlight in this appendix that the simulated datasets match closely moments and statistics in the

empirical data that have not been targeted during the calibration.

Table 6 shows the distribution of the di�erence between the true forecast error and the estimated

one, both based on the arti�cial datasets. The mean and median of this distribution are very close to

zero � for both moments the di�erence is only about one percentage point of sales growth. This is

very small, particularly when recalling from Figure 1 and Table 2 that the absolute median forecast

error in our data is three percentage points and the empirical distribution has non-negligible mass

at forecast error values as large as 50 percentage points of sales growth. In general, the distribution

of the di�erence between the arti�cial true and the arti�cial estimated forecast error is rather tight.

For the 10th (90th) percentile the di�erence is 5 (7) percentage points; and even for the 5th (95th)

percentile, it is still reasonably small at 7 (9) percentage points.

Table 6: Distribution of the di�erence between the estimated quantitative forecast error and the true
quantitative forecast error (both based on arti�cial data)

5% 10% 25% Median Mean 75% 90% 95%

-0.071 -0.052 -0.019 0.013 0.011 0.042 0.069 0.085
(0.015) (0.013) (0.011) (0.010) (0.009) (0.009) (0.009) (0.011)

We report the average across 1,000 random samples of arti�cial data of the descriptive
statistics. Standard deviations across the 1,000 sets for these statistics are reported in
parentheses.

The close correspondence between the estimated and the true forecast error can also be illustrated

in a scatter plot. Figure 2 contains the scatter plot for one arti�cial dataset (randomly chosen among

the 1,000 draws). The forecast error pairs conform to the 45 degree line (red) quite closely.

Anticipating our empirical results, the analysis in Section 4 endogenously establishes three seg-

ments of the distribution of forecast errors that display di�erent statistical properties in terms of

their autocorrelation and predictability. These three segments are delimited by the lower and upper

26% of observations in the forecast error distribution. It is therefore important that we check whether
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Figure 2: Pairs of true and estimated sales growth forecast errors based on arti�cial data.

The �gure shows all points in the dataset (we randomly selected one of the 1,000 draws for the datasets).
The 45o line is shown in red.

a forecast error based on our methodology is mapped into the same segment of the corresponding

'true' forecast error (both based on arti�cial data). We �nd this is the case for the vast majority,

94% (0.007 standard deviation across all across all 1,000 draws), of such pairs.

Validating Forecast Error Accuracy in a Sample of UK Firms. As explained above, the

vast majority of �rm-level surveys contain only qualitative questions. If surveys have quantitative

features, these are typically limited to a small number of speci�c variables. While this highlights

the importance of developing methodologies to quantify qualitative survey responses, it makes it

di�cult to validate our methodology against survey-based forecast errors. In principle, we can do

so if a dataset comprises �rm-level information on (1) monthly qualitative survey based forecasts for

the three-month period ahead, (2) quantitative annual survey forecasts, and (3) annual realizations

of the underlying variable. This information is available for a very limited sample of �rms in the

UK manufacturing sector. To the best of our knowledge, it is the only dataset that comprises

all three types of data required to inspect the accuracy of our methodology. In particular, we

consider quantitative one-year ahead forecasts on �rm's own turnover growth from the Management

and Expectations Survey which was conducted by the O�ce for National Statistics (ONS) in 2016.

During the same year, the Confederation of British Industry (CBI) independently collected qualitative

monthly survey forecasts on �rm's output growth.19 To obtain the annual realizations on turnover

19Details about the ONS survey can be found in Awano et al. (2018). The CBI's survey forecasts are similar to the

ones from the IOBE for Greece as they are also used for the business climate of the Directorate-General for Economic
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Table 7: Distribution of the di�erence between the estimated quantitative forecast error and the observed
quantitative forecast error in a sample of �rms in the UK manufacturing sector.

5% 10% 25% Median Mean 75% 90% 95%

-0.135 -0.128 -0.052 -0.001 -0.004 0.052 0.098 0.129

growth we match the survey data with the Financial Statements from Bureau Van Dijk's FAME

dataset.20 Since the ONS and CBI surveys are conducted independently, the resulting matched

sample is very small. It consists of 173 �rm-month observations for qualitative survey forecasts on

output growth, and 47 observations for annual quantitative forecasts on turnover growth and the

corresponding realizations.

We implement our quanti�cation methodology as follows. In the interest of statistical power, we

�t the non-linear equation (10) to the realized turnover growth from FAME for a sample of 2,502

�rm-year observations, for the period from 2000 until 2016. We then compute the forecast errors

according to the methodology outlined in Section 3.1 for the 47 �rms for which qualitative monthly

survey forecasts are available. We compare these forecast error estimates with the quantitative fore-

cast errors from the ONS survey. The distribution of the di�erences between the estimated and

survey-based forecast errors is summarized in Table 7. Both, the mean and median of this distribu-

tion are very close to zero. Given that the ONS survey-based forecast errors have a mean of zero

and a standard deviation of 0.31, the overall distribution for di�erences in forecast errors shown in

Table 7 is rather tight. This is striking also because the monthly survey question is concerned with

output growth and the annual survey question with turnover growth, which are closely related, but

may not be perceived by respondents as exactly equal.

Overall, we have shown in the �rst exercise in this section that our estimates for quanti�ed sales

growth forecasts are fully consistent with the qualitative information contained in the underlying

survey data. The Monte Carlo exercise has further demonstrated that our quantitative forecast error

and Financial A�airs (see DGECFIN (2017)).
20We thank Nick Bloom, Paul Mizen, Rebecca Riley and Michael Mahony for sharing the survey data and linking

tables.
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estimates are highly accurate and it is reassuring that this has also been con�rmed using �rm-level

survey data from the UK manufacturing sector. Next, we proceed to use these quanti�ed forecast

errors in studying �rm expectation formation.

4 Predictability and Autocorrelation of Forecast Errors

In this section, we study how the size of �rms' forecast errors can a�ect results on their predictability

and serial correlation. Crucial for this investigation is the quanti�cation of forecast errors in the

previous section. We start our analysis with the predictability of forecast errors.

4.1 Predictability of Forecast Errors

To provide some context on the predictability of forecast errors, assume that a �rm-level variable

evolves as a �rst order auto-regressive process, zt = ρzt−1 (without loss of generality, we omit the

error term for simplicity). The �rm uses the lagged value to form a forecast on its future evolution,

zet . Circumstances such as behavioural biases or noisy signals may a�ect �rms' weight attached to

the lagged value, i.e. zet = ρΛzt−1.
21 The forecast error is zt − zet = ρ(1− Λ)zt−1. If 1− Λ = 0, then

�rms' forecasts correctly extrapolate without any bias, and forecast errors are not predicable from

past realizations and are purely random. If 1 − Λ 6= 0, this is a violation of the e�ciency property

(Pesaran (1987)) of the full information rational expectations (FIRE) hypothesis. For 1−Λ > (<)0,

�rms' forecasts over-weight (under-weight) the lagged values of the predicted variable.

We estimate the extrapolation bias, ϕ , ρ(1− Λ), using the following equation

xfeiy = ϕxi,y−1 + Ψy + Ψi + ηiy, (12)

where Ψi and Ψy control for unobserved �rm heterogeneity and aggregate annual e�ects, respectively,

and ηiy is an idiosyncratic error. If ϕ is statistically signi�cant, �rms' forecasts extrapolate incorrectly.

To evaluate the e�ects of major forecast errors on sales growth, we further estimate the following

21Here, Λ > 1 could capture behavioural biases as for example in Bordalo et al. (2018b). A parameter Λ < 1 is in

line with noisy signals as in Gabaix (2014).
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threshold regression which allows for shifts in the extrapolation bias

xfeiy = ϕ1xi,y−1 ∗ (1− FELqi,y−1) + ϕ2xi,y−1 ∗ FELqi,y−1 + ϕ3FEL
q
i,y−1 + Ψy + Ψi + ηiy, (13)

where FELqiy takes the value 1 when there is a major forecast error. A major forecast error occurs

when a forecast error lies at either the lower or upper q% of the distribution. Accordingly, we call

all forecast errors in the center of the distribution minor forecast errors. The extrapolation bias

for minor forecast errors is ϕ1, whereas following a major forecast error, that bias is ϕ2. Given the

estimated cut-o� q%, if ϕ1 = 0 and ϕ2 6= 0, then forecast errors are predictable only following major

forecast errors. ϕ3 indicates whether the occurrence of a major forecast error has any e�ect on the

forecast error in the following period.

We estimate equation (13) using a slightly adapted version of the Dynamic Panel Threshold esti-

mator of Seo and Shin (2016). The original estimator is widely used in applications with thresholds

(see e.g. Asimakopoulos and Karavias (2016) and Polemis and Stengos (2019)) and consists of two

steps. The �rst step involves estimating equation (13) for all the values of q% in the pre-determined

interval q% = 6%, 7%, 8%...45% to obtain the value of the objective function of the estimator.22 The

original Threshold estimator of Seo and Shin (2016) uses Arellano and Bond (1991) First-Di�erence

GMM (FD) for this estimation. The �rst-di�erencing results in loss of observations which is a sub-

stantial problem in severely unbalanced panels such as ours (see e.g. Roodman (2009) and Gorbachev

(2011)). Instead we use the Arellano and Bover (1995) Forward Orthogonal Transformation (FOT)

GMM to estimate the equation, which is the only di�erence to the original Seo and Shin (2016)

Threshold estimator. The FOT subtracts from each observation the �rm-speci�c arithmetic mean of

its future values to eliminate the �rm �xed e�ects, and hence avoids the loss of observations through

�rst-di�erencing.

In the second step, in line with the original Seo and Shin (2016) estimator, for all values of q%

we �nd the one that minimizes the objective function which then determines the �nal estimates for

22There is no speci�c guidance in the literature on the choice of interval, but it will become apparent below that

our estimates turn out to be well in the middle of the interval. We remain agnostic and specify a fairly wide interval

that covers up to 80% of all observations.
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ϕ1, ϕ2 and ϕ3, as well. For our baseline estimation of equation (13) we use the Arellano and Bover

(1995) FOT GMM estimator with collapsed instruments, limited lag length and Windmeijer (2005)

corrected standard errors as it is standard in the literature (see e.g. Gorbachev (2011) and Caselli

and Tesei (2016)).23 Our approach signi�cantly limits the risks of data loss by the use of FOT,

and the risk of over-identi�cation bias by avoiding the `proliferation of instruments' in our sample

through collapsed instruments and limited lag length (Roodman (2009)).24 Finally, we also estimate

the linear equation (12) with the same methodology, Arellano and Bover (1995) Forward Orthogonal

Transformations GMM.

In Table 8, we document the results from the estimation of equations (12) and (13). Column (1)

reports results from the simple linear equation and documents a highly signi�cant negative estimate

for the coe�cient on xi,y−1. This violation of the e�ciency property of the FIRE hypothesis, and

particularly the result that �rms underweight the lagged variable, is in line with �ndings in the

literature, which document that �rms' forecast errors are predictable by past realizations (see e.g.

Gennaioli et al. (2016), Massenot and Pettinicchi (2018) and Bordalo et al. (2018b)).

Column (2) in Table 8 reports estimation results for equation (13). The threshold for major

forecast errors is estimated to include those observations at the top and bottom q = 26% of the

distribution. These forecast errors are substantial and economically signi�cant. A forecast error at

26% (74%) of the distribution implies that sales growth was expected to be 14.3 (8.6) percentage

points higher (lower) than the subsequent realization.25 Importantly, the coe�cient of the lagged

23We use the Windmeijer (2005) corrected standard errors as standard errors might otherwise be biased downwards

since we have a large number of instruments compared to the number of �rms for inference.
24If a GMM system is excessively over-identi�ed, the estimated coe�cients are biased on the direction of the Nickell

(1981) bias and the Hansen statistic is also biased. To limit the over-identi�cation bias, we collapse the instruments,

and only use �ve lags of instruments length. Our instruments are the lagged right hand side variables. We discuss our

choice of instruments in Appendix C.1, where we also provide evidence that our results are robust to using fewer lags.
25We attempted to estimate the threshold equation with asymmetric thresholds for upper and lower cut-o� %.

The resulting cut-o� values and coe�cient estimates were not robust to using di�erent lag lengths. This is to be

expected as by introducing a further non-linearity in the only variable that we have on the RHS, we sacri�ce e�ciency

and accuracy. To estimate this model one needs more observations and particularly a much larger cross-sectional

dimension. Moreover, with the added non-linearity the instruments can be very weakly correlated with the RHS
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realization is now only statistically signi�cant when it is interacted with FELqi,y−1. Our results in

column (2) of Table 8 show that �rms form biased predictions on sales growth and violate the FIRE

hypothesis only following major forecast errors. In fact, only major forecast errors are negatively

correlated with past sales growth. Unless �rms make these major forecast errors, their predictions are

more in line with the FIRE hypothesis as the estimate on the interaction with (1−FELqi,y−1) is not

statistically di�erent from zero. The Hansen p-value and the Arellano-Bond test of serial correlation

of order two (m2 test) are both substantially larger than 0.1 and hence strongly reject the null that

the speci�cation is weak. This indicates that the non-linearity indeed exists and our speci�cation is

valid. Appendix C.1 shows our results are robust to using fewer lags. We also document why the

original Seo and Shin (2016) FD GMM would be unsuitable with our data.

Table 8: Predictability of �rms' forecast errors of sales growth.

(1) (2)
Estimation FOT FOT
Stand. Errors 2-step, Windmeijer corrected 2-step, Windmeijer corrected
Lags as Instruments 2-6 2-6
Estimated Threshold q N.A. 26%

Dependent Variable: Sales Growth Forecast Error, xfeiy
xi,y−1 -0.161*** �
xi,y−1 ∗ (1− FELq

i,y−1) � -0.0583

xi,y−1 ∗ FELq
i,y−1 � -0.146**

FELq
i,y−1 � 0.0164

xIND,y 0.837*** 0.794***

Observations 2,805 2,069
# of Firms 590 432
Over-identi�ed Yes Yes
Hansen p-value 0.782 0.982
m2 test p-value 0.857 0.936

Column (1) shows estimates of equation (12) without the threshold. Column (2) is the Dynamic
Panel Threshold estimator of Seo and Shin (2016) using the Arellano and Bover (1995) FOT GMM for
equation (13). Instruments are collapsed in both speci�cations. Instruments are with lags dated from
y − 2 to y − 6. The Arellano-Bond p-value (m2 test) shows no serial correlation of order two in the
errors. We proxy the aggregate annual e�ects with the NACE two-digit industry, IND, year average

of sales growth from the entire sample of the �nancial statements, xIND,y . x
fe
iy is the forecast error

of sales growth for year y; xi,y−1 is lagged realized sales growth. FELiy takes value one when the
forecast error lies at the lower or upper q = 26% of its empirical pool distribution. *** and ** indicate
statistical signi�cance at the 1% and 5% level, respectively.

4.2 Autocorrelation of Forecast Errors

Under the full information rational expectations hypothesis, forecast errors should be neither pre-

dictable by past realizations nor serially correlated. In this section, we turn to the latter and show

variables.
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that again our �ndings crucially depend on the size of forecast errors.

To examine the autocorrelation of the quanti�ed forecast errors of sales growth, we estimate the

equation

xfeiy = %xfei,y−1 + Ψy + Ψi + ηiy, (14)

where % is the autocorrelation coe�cient, Ψi and Ψy control for unobserved �rm heterogeneity and

year �xed e�ects, and ηiy is an idiosyncratic error.

As with the predictability of the forecast errors, we want to evaluate whether the size of forecast

errors matters for their autocorrelation. To allow for asymmetries in the autocorrelation coe�cient

we additionally estimate the following threshold regression

xfeiy = %1x
fe
i,y−1 ∗ (1− FELqi,y−1) + %2x

fe
i,y−1 ∗ FEL

q
i,y−1 + %3FEL

q
i,y−1 + Ψy + Ψi + ηiy, (15)

where FELqiy again is a dummy variable that takes the value one when there is a major forecast error.

A major forecast error is de�ned as a forecast error in the top and bottom q% of the distribution.

The persistence following minor forecast errors is given by %1, while following a major forecast error,

forecast errors are autocorrelated with coe�cient %2. If only %2 is statistically signi�cant for the

estimated threshold q%, then forecast errors show persistence only following a major forecast error.

We estimate equations (14) and (15) using the exact same estimators and speci�cations as for the

corresponding equations (12) and (13) on forecast error persistence. Note though that the threshold

value in equation (15) is estimated endogenously and independently of the estimation of equation

(13). Table 9 shows the estimation results for the former two equations. Column (1) reports that

based on the simple linear equation, forecast errors are negatively autocorrelated.26 This violates

the FIRE hypothesis as �rms fail to incorporate all new information to their forecasts, for example

because they may be inattentive to new information. While estimates of this simple regression are

indicative, we found in the previous section that only major forecast errors are predictable, very

much in contrast to the result for minor forecast errors. For this reason we estimate the threshold

26In the literature (see e.g. Tanaka et al. (2019)) unobserved �rm heterogeneity is usually dealt with using the

within estimator. To avoid possible bias when the panel dimension is small (Nickell (1981)) we use the unbiased,

consistent and e�cient Arellano and Bover (1995) Forward Orthogonal Transformations (FOT) GMM.
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equation (15) and report results in column (2). The results are consistent with the ones in the previ-

ous section. Only major forecast errors at the tails of the distribution are autocorrelated and violate

the FIRE hypothesis. The estimate on the coe�cient of xfei,y−1 ∗ FEL
q
i,y−1 is highly signi�cant and

suggests a negative autocorrelation of forecast errors. In contrast, the estimate on the coe�cient of

xfei,y−1 ∗ (1 − FELqi,y−1) is not signi�cantly di�erent from zero so that minor forecast errors are not

autocorrelated. It is reassuring that the cut-o� q = 26% for the threshold is exactly the same as the

one, independently estimated, for the equation on forecast error predictability. For the non-linear

threshold model, both the Hansen p-value and the Arellano-Bond test of serial correlation of order

two (m2 test) strongly reject the null that the speci�cation is weak. Similarly to the predictability

equation, this indicates that our model speci�cation is valid, i.e. the non-linearity indeed exists.

In Appendix C.2 we show that our results are robust in multiple dimensions, including the use of

di�erent lag length.

Table 9: Autocorrelation of �rms' forecast errors on sales growth.

(1) (2)
Estimation FOT FOT
Stand. Errors 2-step, Windmeijer corrected 2-step, Windmeijer corrected
Lags as Instruments 2-6 2-6
Estimated Threshold q N.A. 26%

Dependent Variable: Sales Growth Forecast Error, xfeiy
xfei,y−1 -0.164*** �

xfei,y−1 ∗ (1− FEL
q
i,y−1) � 0.213

xfei,y−1 ∗ FEL
q
i,y−1 � -0.167**

FELq
i,y−1 � 0.0305

xIND,y 0.811*** 0.797***

Observations 2,069 2,069
# of Firms 432 432
Over-identi�ed Yes Yes
Hansen p-value 0.935 0.99
m2 test p-value 0.892 0.936

Column (1) shows estimates from equation (14) without the threshold. Column (2) is the Dynamic
Panel Threshold estimator of Seo and Shin (2016) using the Arellano and Bover (1995) FOT GMM
for equation (15). In both speci�cations instruments are collapsed. In columns (1) and (2) lags dated
from y − 2 to y − 6. The Arellano-Bond p-value (m2 test) shows no autocorrelation of order two in the
errors. We proxy the aggregate annual e�ects with the NACE two-digit industry, IND, year average

of sales growth from the entire sample of the �nancial statements, xIND,y . x
fe
iy is the forecast error

of sales growth for year y; xi,y−1 is the lagged realized sales growth. FELiy takes value one when the
forecast error lies at the lower or upper q = 26% of its empirical pool distribution. *** and ** indicate
statistical signi�cance at the 1% and 5% level, respectively.

Autocorrelation and Predictability of Qualitative Forecast Errors in the Survey Data.

Even though we have shown in Section 3.3 the accuracy of the forecast error estimates in a
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number of ways, one may wonder whether the empirical �ndings we obtained using our quanti�cation

methodology are also a feature of the qualitative survey data. Below, we provide evidence that this

is the case � our �ndings also hold in the directly observable survey-based forecast errors which

suggests that our results are not driven by the imputation of the quanti�ed forecast errors.

We construct monthly forecast errors from qualitative expectations data in a manner employed

by Bachmann et al. (2013) and Massenot and Pettinicchi (2018). We then document that large

forecast errors are autocorrelated and predictable only in years that our quanti�cation methodology

�ags as involving a major forecast error. Since the survey responses are qualitative, binary choice

models permit us to identify patterns of predictability and autocorrelation similar to those of their

annual quanti�ed counterparts. In the monthly surveys, by subtracting the expectational responses

from the corresponding realizations, we can construct monthly forecast errors with values XSfeim =

{−2,−1, 0,+1,+2}.27 For the outcomes labelled −2 and +2, the �rm's forecast completely mis-

predicted the direction of change of its sales and those errors are likely large. We label them XSLfeim ,

and analyze below whether their occurrence is predictable or autocorrelated.

We identify years in which �rms made a major forecast error from the annual quanti�ed values

based on the threshold regressions contained in Tables 8 and 9. The months that belong to these

years are assigned FELiy = 1. To test the predictability and the autocorrelation of large survey

forecast errors, we use probit models that directly correspond to the continuous regressions (13) and

(15) above. Details about the estimations are contained in Appendix C.3. Table 10 shows that only

during years when annual quanti�ed forecast errors are classi�ed as major (i.e. FELiy = 1) are

survey-based forecast errors predictable and autocorrelated. The extrapolation bias (in Panel A)

and the persistence coe�cient (in Panel B) in years with minor forecast errors (i.e. (1−FELiy) = 1)

are insigni�cant. These results based on the monthly qualitative survey forecasts are consistent with

the ones we obtained from the annual quanti�ed forecasts.28

27Compare the survey questions A.2 and D.2 in Section 2 where increased/unchanged/decreased responses are

labelled as -1/0/+1. Essentially, these responses indicate the direction of change of sales, expected and realized.
28Even though equations (13) and (15) are analogous to the multinomial probits of Table 10, the signs of the

coe�cients are not comparable. The reason is that the multinomial probit models the probability of a (major) forecast

error and not its size. The statistical signi�cance of the coe�cients of the dependent variable is what shows the
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Table 10: Predictability and Persistence of �rms' forecast errors of sales growth in the qualitative survey
data. Probit Estimates.

Panel A: Predictability Panel B: Autocorrelation

XSim ∗ (1− FELiy) -0.0398 XSLfe
i,m−3 ∗ (1− FELiy) -0.0554

XSim ∗ FELiy -0.133*** XSLfe
i,m−3 ∗ FELiy 0.326***

Probit estimation of the conditional probability of large survey-based forecast error

of sales growth, P
{
XS

Lfe
im = 1

}
. The de�nition of XS

Lfe
im is in the main text.

Panel A shows estimates of predictability and Panel B of persistence. XSim is
the survey-based realization. FELiy takes value one when the annual quanti�ed
forecast error lies in the lower or upper 26% of its empirical pool distribution. The
estimation includes �xed year e�ects, proxies for �rm �xed e�ects and proxies for
initial conditions, but are omitted here to simplify the exposition. The detailed
estimations are in Table 15.C in Appendix C.3. *** indicates statistical signi�cance
at the 1% level.

Overall, we have documented in this section that with respect to autocorrelation and predictabil-

ity, only for major forecast errors do �rms violate the FIRE hypothesis. For smaller (in absolute

value) forecast errors we �nd �rms' forecasts are more in line with the FIRE hypothesis. One ex-

planation for the violation of this hypothesis can be that when �rms make major forecast errors the

underlying forecasts are based on a limited information set, while smaller absolute forecast errors are

based on (nearly) full information sets. In the next section, we rationalize our empirical �ndings in

a model where the quality of �rm's forecasts on sales growth depends on the potentially costly level

of attention to information on current sales.

5 Model of a Firm with Rational Inattention

In this section, we outline a simple framework in which forecast errors result from the fact that a �rm

cannot perfectly observe its current sales growth, but has to solve a signal-extraction problem. This

framework is subsequently extended, in the spirit of rational inattention models in Gabaix (2014),

to endogenize the �rm's choice on signal precision. The �rm can choose its degree of attention to

information which potentially comes at a cost. We subsequently show that a simple model with

limited attention to information and variations in the cost for attentiveness can rationalize the

empirical �ndings of Section 4.

violation of the FIRE in both cases.
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5.1 Forecasts in a Simple Signal-Extraction Framework

A �rm i cannot observe its current sales growth xy, but only a noisy signal sy = xy + εy, where

the noise term is i.i.d. with Eεy = 0, Eε2y = σ2
ε and Exyεy = 0, for all years y. We abstain from

a subscript i for the remainder of this section to ease notation. We assume sales growth follows an

AR(1) process,

xy = ρ0 + ρxy−1 + uy, (16)

with i.i.d. shocks uy ∼ N
(
0, σ2

u

)
. It follows that the mean of xy is µ , E[xy] = ρ0/(1 − ρ), and

that its variance is σ2
x , V [xy] = σ2

u/(1− ρ). Without loss of generality, we assume henceforth that

µ = 0. Finally, we assume that the shock, uy, and the noise term, εy, are independent.

At time y the �rm wants to obtain a one period ahead forecast, x̃y+1, that minimizes the expected

squared forecast error, but its information set only includes the most recent noisy signal sy and not

the true value xy.
29 Then the optimal forecast, xey+1, is

30

xey+1 = arg min
x̃y+1

E
[

1

2

(
x̃y+1 − xy+1

)2|sy].
The �rst order condition yields xey+1 = E

[
xy+1|sy

]
and using the fact that xy+1 follows the AR(1)

process (16), we obtain

xey+1 = ρE
[
xy|sy

]
+ E

[
uy+1|sy

]
,

where E
[
uy+1|sy

]
= E

[
uy+1|xy + εy

]
= 0, because uy and εy are independent and E

[
uy+1|xy

]
= 0.

In line with Gabaix (2014), and given the linear process for the signal and normally distributed

errors, Bayesian updating implies the following linear decomposition of the conditional expectation

E
[
xy|sy

]
,

xey+1 = ρE
[
xy|sy

]
= ρλ0 + λρsy, where λ =

Cov(xy, sy)

V (sy)
, and λ0 = (1− λ)µ = 0. (17)

29This assumption about the information set is consistent with managerial practice. When, towards the end of

the (�nancial) year, forecasts are made about next year's sales, the �nancial statements are not yet �nalized so that

managers have to rely on intermediate reports or not yet fully compiled information which only provide an imperfect

signal.
30Minimizing the quadratic forecast error implies that on average �rm's predictions will be correct, i.e. the mean

forecast error will be zero.
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Since we further know that Cov(xy, sy) = E
[
xysy

]
= E

[
xy(xy + εy)

]
= E

[
x2y
]

= σ2
x, and that

V (sy) = E
[
s2y
]

= σ2
x + σ2

ε due to the independence of xy and εy, it follows that

λ =
σ2
x

σ2
x + σ2

ε

. (18)

Equation (18) shows that in the presence of noise, σ2
ε > 0, λ is strictly between 0 and 1. This has

implications on the optimal forecast (17), which is, when applying the de�nition for the signal,

xey+1 = λρsy = λρxy + λρεy. (19)

Equation (19) links the �rm's optimal sales growth forecast with the current value of sales growth.

It shows that if the signal is contaminated by noise the optimal forecast understates the persistence

of sales growth, since 0 < λ < 1. Under perfect information (in the absence of noise σ2
ε = 0), λ = 1

and equation (19) becomes the full information optimal forecast.

Another interpretation of the discussed simple setup with a noisy signal is provided by the liter-

ature on rational inattention: the �rm can potentially perfectly observe all information on current

sales growth, but it would choose not to pay attention to all information when making a forecast, e.g.

because information processing is costly. The degree of limited attention to information is captured

in an abstract way by the noise. In this section the noise variance, and hence the degree of attention,

was given exogenously. In the next section, we will endogenize this choice. Then the �rm can choose

its level of attention to information by determining the parameter λ; which is equivalent to choosing

the information content in the signal by varying the noise variance σ2
ε . If the �rm pays attention

to all information the noise variance equals zero and λ = 1. For a positive noise variance, attention

to information is limited and 0 < λ < 1. We will develop in the next subsection the simple signal-

extraction framework into a model with rational inattention in which the �rm can endogenously

determine the level of attention, λ.

34



5.2 Introducing Rational Inattention

While the �rm's level of attention to information was determined exogenously in the above signal

extraction framework, it will now be endogenized. Based on the discussion in the previous section

the �rm applies the following utility metric to make an optimal forecast

W
(
x̃y+1, λsy

)
, −1

2

(
x̃y+1 − ρλsy

)2
,

where the parameter λ determines the �rm's degree of attention to the observed signal about current

sales growth. The forecast is based on the information set at time y and, as in the model in the

previous section, the �rm does not observe current sales growth but makes decisions based on the

latest noisy signal � as before this signal is the sum of actual sales growth and the noise.31 The

full information optimal forecast (λ = 1) would be xey+1 = ρsy which is in line with the underlying

AR(1) process (16) for sales growth. For 0 < λ < 1 the �rm pays limited attention to the signal and

for λ = 1 the �rm pays full attention to all information. We de�ne the value of x̃y+1 that maximizes

�rm's utility as

xey+1(λ) , arg max
x̃y+1

W (x̃y+1, λsy),

which is now a function of the attention parameter λ. If we substitute the optimal forecast, xey+1(λ),

into the utility function, we obtain the indirect utility function

U(λ) = W
(
xey+1(λ), λsy

)
, (20)

which transforms the �rm's problem to one that requires the choice of the attention parameter λ.

Increasing the precision of the signal through information accumulation, re�ected in the choice of λ,

potentially comes at a cost. We assume the cost function

C(λ, cy) = cyK(λ), (21)

31As in the simple model above, also in this extended model the �rm only relies on current information to make a

forecast. The underlying assumption is that processing information on past signals or past relizations is just as costly

per unit as processing current information. Hence, it would always be optimal for the �rm to rely on the most up to

date information for the forecast. This assumption is similar to one made in Mackowiak and Wiederholt (2009) �

who assume that past realizations of the state variable are never observed � and eases the exposition of our model.
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where K(λ) is a continuous increasing and convex function in λ. Note that this function depends

on the cost shock cy, which is assumed to be independently and identically distributed across time

and is bounded between zero and a positive upper bound.32 The �rm observes the cost shock at the

beginning of the period prior to any choice on the level of attention.

Given the above assumptions, the �rm �rst chooses an optimal level of attention λ∗, and condi-

tional on this choice, it obtains in a second step the optimal forecast for sales growth.33 We will look

at these two steps in turn. First, the �rm's objective is to choose the attention parameter so that it

maximizes the di�erence between the expected indirect utility (20) and the cost function (21). This

can be formalized as

max
λ

[
EU(λ)− C(λ, cy)

]
.

One can show (detailed steps are provided in Appendix D.1) that the �rm obtains the optimal level

of attention, λ∗ by solving the following intratemporal problem

λ∗y , arg max
λ

[
− 1

2
σ2
s(1− λ)2 − cyK(λ)

]
, (22)

where σ2
s denotes the variance of the signal. It becomes apparent now that, given the time varying

cost cy, also the optimal level of attention �uctuates over time. The �rst order condition is then34

σ2
s(1− λ∗y)− cyK ′(λ∗y) = 0,

where K ′(·) denotes the �rst derivative of K(·). Our results that follow in this section below do not

require us to specify a particular functional form for K(·).35 However, to brie�y provide intuition

about how the optimal level of inattention depends on the information cost and the variance of the

32We make minimal assumptions about the stochastic process for cy. The actual choice of the upper bound may

depend on the functional form of K(λ) as can be seen from equations (23) below. The only requirement on the positive

upper bound on cy is that it is speci�ed to ensure that λ > 0.
33The reason why we can write this as a two-step approach is that in the �rst step the decision is independent of

sales growth, xy.
34Note, it is satis�ed only for cy > 0 and 0 < λ∗ < 1. When cy = 0, then optimal attention is equal to 1.
35In fact, our assumptions on K(λ) are consistent with several speci�c functional forms used in the literature. For

example K(λ) = 1
2 log2((1−λ)−1), in the tradition of Sims (2003), would be a micro-founded functional form based on

the Shannon entropy. Alternative functional forms could be based e.g. on Caplin and Dean (2015) or Gabaix (2014).
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signal, we specify K(λ) = λa where a ≥ 1. Then the �rst order condition has, for the cases a = 1

and a = 2, the following simple analytical solutions

λ∗y =
σ2
s − cy
σ2
s

, for a = 1.

(23)

λ∗y =
σ2
s

σ2
s + 2cy

, for a = 2.

These two parameterizations exemplify that the optimal level of attention is negatively related to

the cost shock, cy. In other words, everything else equal, the �rm reduces the level of attention in

light of an increase in the cost of information acquisition. In general, for cy = 0 there is no cost for

information and λ∗y = 1. Given the parameterization for a, we assumed an upper bound for cy that

guarantees 0 < λ∗y < 1.

Having chosen the optimal level of attention via (22), the �rm's optimal forecast is given by

xey+1 , arg max
x̃y+1

[
− 1

2
(x̃y+1 − λ∗yρsy)2

]
,

so that the optimal forecast is

xey+1 = λ∗yρsy. (24)

As in the simple signal extraction problem above, the forecast understates the persistence of the

signal on sales growth in the case of imperfect information (0 < λ∗y < 1). If λ∗y = 1 the �rm makes

the full information rational forecast. In the above, we extended the simple framework of Section

5.1 so that the �rm may pay limited attention to information. This will be key to explaining our

empirical facts on predictability and autocorrelation of forecast errors, which we will show next.

The Size of Forecast Errors, their Predictability and Autocorrelation. Next, we show,

based on the above framework, how rational inattention leads to large (absolute) forecast errors and

that these are serially correlated and predictable by past sales growth.

Using the process for sales growth (16) and the optimal forecast (24), the ex-post forecast error

in the framework with rational inattention is given by

xfey+1 , xy+1 − xey+1 = (1− λ∗y)ρxy − λ∗yρεy + uy+1, (25)
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where we used that sy = xy + εy. We will use this equation to derive three results from our model.

Result 1. An increase of the cost cy from zero to a positive value results in larger absolute

forecast errors and a violation of the full information rational expectations hypothesis.

Without costs for attention, λ∗y = 1 and �rms make rational forecasts since the absolute forecast

error is given by ∣∣xfey+1

∣∣ =
∣∣xy+1 − xey+1

∣∣ =
∣∣ρxy + uy+1 − λ∗yρ(xy + εy)

∣∣ =
∣∣uy+1

∣∣,
which is purely random. Note that the noise, εy, is zero for λ∗ = 1 as implied by equation (18). A

positive cost, cy > 0, reduces λ∗y to positive values strictly lower than unity. In this case the absolute

forecast error is∣∣xfey+1

∣∣ =
∣∣xy+1 − xey+1

∣∣ =
∣∣(1− λ∗)ρxy − λ∗εy + uy+1

∣∣ ≤ ∣∣(1− λ∗)ρxy − λ∗εy∣∣+
∣∣uy+1

∣∣.
Since

∣∣(1 − λ∗)ρxy − λ∗εy∣∣ is typically larger than zero, this absolute forecast error for 0 < λ∗ < 1

is larger than the one for the case λ∗ = 1.36 In presence of positive cost, 0 < λ∗ < 1 subsequently

understates the persistence of sales growth. The forecast error's dependence on understated persis-

tence of sales growth, rather than solely on the random variables, implies �rms violate the FIRE

hypothesis. This �nding is consistent with our empirical results in Section 4.1 on di�erences between

major and minor forecast errors. In this section, we document that the estimated coe�cient on

past sales growth in equation (13) � which corresponds to (1 − λ∗y)ρ in model equation (25) � is

signi�cantly di�erent from zero for large absolute forecast errors. Hence, for these major forecast

errors it implies 0 < λ∗y < 1.37 For minor forecast errors though, we �nd the coe�cient estimate is

not statistically signi�cant anymore which implies that λ∗y is (close to) unity.

36Only in the exceptional case of zero sales growth and at the same time a zero realization for the noise shock, this

term would be exactly zero and the forecast error would be not strictly larger, but of the same size as the one without

information costs.
37It will become clear in the discussion of Result 2 why the coe�cient estimate for large forecast errors is negative

in equation (13).
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Result 2. For a strictly positive cost cy, forecast errors are predictable by past realizations, and

the forecast error is negatively correlated with lagged sales growth if (and only if) ρ < 0. Forecast

errors are not predictable if cy = 0.

This result follows from equation (25) and the discussion of Result 1. As explained above, follow-

ing an increase in the cost cy from zero to a positive value, the attention parameter λ∗y reduces from

unity to positive values strictly lower than one. For λ∗y = 1, the forecast error as given in equation

(25) is not predictable as it only depends on the i.i.d. shock uy+1. For 0 < λ∗y < 1, the forecast

error is predictable as it additionally depends on sales via the term (1− λ∗y)ρxy. The forecast error

can only be negatively correlated with lagged sales growth if the coe�cient (1 − λ∗y)ρ in equation

(25) is negative, which only is the case if ρ < 0. In Appendix B.7 we provide empirical evidence

from our dataset that the autocorrelation of sales growth is indeed negative � this is also consistent

with evidence in the literature, see e.g. Barrero (2019). Taken together, Results 1 and 2 are also

consistent with the empirical �ndings based on equation (13) in Section 4.1. In this section, we doc-

ument the predictability of major forecast errors as well as a negative relation between these major

forecast errors and lagged sales growth. We further �nd that minor forecast errors are not predictable.

Result 3. For a strictly positive cost cy the autocorrelation of forecast errors is negative if (and

only if) ρ < 0. Zero cost for attention, cy = 0, implies the autocorrelation of forecast errors is zero.

Substituting xey+x
fe
y for xy in equation (25) and using that x

e
y = λ∗y−1ρsy−1 as well as the de�nition

of the signal, we obtain

xfey+1 = (1− λ∗y)ρxfey + (1− λ∗y)λ∗y−1ρ2(xy−1 + εy−1)− λ∗yρεy + uy+1.

The coe�cient on the forecast error, xfey , in the equation above is negative for 0 < λ∗y < 1 only if

ρ < 0, and it is zero for λ∗y = 1. We know from the discussion of Results 1 and 2 that a positive value

of the cost cy implies 0 < λ∗y < 1, and that cy = 0 implies λ∗y = 1. Also Result 3 is consistent with our

empirical �ndings. The estimation results of equation (15) in Section 4.2 show that major forecast
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errors are negatively autocorrelated. We further document in that section that the autocorrelation

of minor forecast errors is not signi�cantly di�erent from zero.

Overall, our model shows that at times without the attention cost, the �rm is fully informed and

makes decisions in line with the FIRE hypothesis. In this case, forecast errors on sales growth are

neither predictable nor autocorrelated. As soon as the cost for information occurs in the market

environment in which the �rm operates the FIRE hypothesis will be violated, absolute forecast

errors will increase, forecast errors are predictable (negative correlation) by past sales growth and

they exhibit negative autocorrelation. All these implications of our theoretical model are consistent

with our empirical results documented in Section 4. The model can also rationalize our negative

estimates of the coe�cients on persistence and autocorrelation for major forecast errors. We show

that the negative sign of these estimates is the result of the negative autocorrelation of sales growth

in our data.

The above has shown that, despite its simplicity, our model is able to rationalize our main

empirical �ndings. Key for the model results to hold are variations in �rm's optimal level of rational

inattention, λ∗y, that depends on the cost for information governed by cy. The literature on rational

inattention often remains agnostic about the speci�c drivers of the cost for information in such models.

Our dataset can provide some �rst guidance. The empirical evidence in Section 3.2 documents that

major forecast errors are not speci�c to a particular time, sector or selected �rms, but occur relatively

evenly throughout the panel. They further do not have a very high persistence and hence have a

tendency to alternate with minor forecast errors. This suggests that changes in rational inattention

through variations in cy would, in our case, be less likely to capture macroeconomic or low-frequency

shocks, but may be linked to high-frequency e�ects.38 A variety of reasons, and a combination of

these, can be behind the latter, for example changes in the speci�c market environment, regulatory

38Time variation in the level of attention increases the complexity of solving the information problem substantially

if one goes beyond a simple setup such as ours. Other papers in the literature develop theoretical frameworks where

attention varies at business cycle frequencies and use simplifying assumptions to keep the problem tractable. See for

example Macaulay (2019) or Acharya and Wee (2020).
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changes, uncertainty about sales markets or supply chains, and adaptations to �rm internal processes

that temporarily limit the �rm's attention to information. The information cost is � as typically used

in the literature on rational inattention � an abstract way of capturing changes in �rms' behavior

over time. Given that our aim was to develop a parsimonious model to rationalize our empirical

results, a model with a fully endogenous cost function goes beyond the scope of this paper and we

leave it for future research.

6 Conclusion

In this paper we document that only major errors in �rms' sales forecasts are predictable and auto-

correlated. In contrast, minor forecast errors are neither predictable nor autocorrelated. To arrive

at this result, we have developed a novel methodology to quantify qualitative survey data on �rm

forecasts. This methodology is applicable generally when quantitative information is available on

the realization of the forecasted variable. As an example, all European Union countries run a sur-

vey of �rm expectations similar in structure to the Greek one that we use here. This survey data

could be combined with �rm balance sheet data to produce quanti�ed expectations estimates using

our methodology. In order to interpret our empirical results that show that the Full Information

Rational Expectations hypothesis is violated, we also provide a model of rational inattention. Firms

optimally limit their degree of attention to information when operating in market environments where

information processing is more costly. This limited attention leads to larger forecast errors that are

predictable and autocorrelated.

Some questions emerge naturally from these �ndings. For example, under which circumstances

do �rms make major forecast errors and how do these a�ect �rm decisions? Our unique dataset

together with our novel methodology to quantify forecast errors is highly suitable to answer such

questions. In a companion paper (Botsis et al. (2020)), we analyze the causes of major forecast errors

and their e�ects on �rm production, investment, and �nancing decisions. Our aim is to explore the

underlying market environments that result in di�erent degrees of limited attention. This could help

in the appropriate calibration of the information cost in rational inattention models.
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Provided that major forecast errors lead �rms to make suboptimal decisions, a question that

arises is whether policy design can be geared to helping �rms avoid these. Such policy would likely

aim to limit uncertainty and stabilize expectations. This could involve a combination of transparency

and stable rules. Clearly, this requires analysis with appropriate models and is a useful direction for

further research.
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Appendix (for Online Publication)

A Data

In the following we provide further details about the conduct of the IOBE survey (Section A.1) and

the cleaning procedures on the IOBE and ICAP data (Sections A.2 and A.3). Section A.4 provides

additional information about our matched sample and discusses representativeness and quality of

survey responses.

A.1 Details on the Survey Data

The �rm-level survey data are collected every month by IOBE. IOBE sends surveys to a sample of

�rms included in the ICAP �rm directory. This directory covers more than 75% of the economy's

output. The sample of surveyed �rms is chosen to represent the distribution of �rm sizes in terms

of gross value added in each 2-digit sector. Every 4-5 years it is replenished by removing those �rms

who never replied and those who have stopped replying. These are replaced with new �rms, following

the same sampling principles, while the �rms that have been responsive are retained in the sample.

According to IOBE researchers, the response rate is somewhat smaller than 20% which is in line with

response rates of surveys conducted for the European Commission in other countries.

IOBE send surveys by mail and email between the 22th and the 25th of each month � surveys

refer to the following month. More than 80% of �rms that reply do so by the 15th of the month the

survey refers to, and more than 95% reply by the 20th. Responses that arrive well past the month

they refer to, are dropped by the IOBE as it is unclear to which month responses refer. Less than

10% of responses are received by email. The vast majority of surveys are completed on paper and

returned by mail in a prepaid envelope. The IOBE requests that surveys are completed by managers

or a person who has complete knowledge of the entire activity of the surveyed �rm.

Surveys are conducted monthly with the exception of August. In August the majority of �rms

are closed as managers and employees take their annual leave. For this reason, there are no surveys

sent out at the end of July to record the responses for August. IOBE uses imputation methods to
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produce data for August and for monthly non-responses.39 We will remove imputed observations in

the cleaning section A.2.

A.2 Cleaning the Survey Data

The wording of the survey question is so that it asks about sales expectations for the next three

months. This means expectations that include the last two months of a year would also be concerned

with sales in the �rst one or two months of the following year. Similarly, the survey questions about

realized sales asks about sales in the previous three months, so that responses at the beginning of

the year may include sales developments of months in the previous year. For this reason we make

adjustments to the submitted responses on realizations and forecasts in the concerning months, which

are standard treatment of survey data in the literature. For forecasts, we multiply the survey variable

with 2/3 in November and with 1/3 in December, as only two thirds and one thirds respectively, of the

period over which expectations are recorded, belongs to the current calendar year. For realizations

a similar argument applies and we set the responses in January to missing and use this observation

with weight 1 in the �nal month of the preceding year. We further multiply recorded responses by

1/3 in February, and 2/3 in March. The intuition is that e.g. the response submitted in beginning

to mid-February will cover sales relizations that concern November to January and hence only one

out of three months included in the response is concerned with the current year. The underlying

assumption for our adjustment is that the respondents attach the same weight to the three months

covered in their response. This is a standard assumption in the survey literature and implicitly

assumed for example in Bachmann et al. (2013) and Massenot and Pettinicchi (2018).

IOBE uses imputation techniques for missing monthly responses and for August, a month for

which they do not send out surveys. We set to missing all the survey variables of the �rm-month

observations that were imputed.

Finally, we have set to missing all �rm-month observations in one particular year if we have less

39This is standard practice of survey providers. Lui et al. (2011) for example report that for the UK business climate

survey, the Confederation of British Industry (who administer the survey) also implements imputation techniques for

missing data.
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than three monthly survey responses of this �rm within the year. This was necessary because our

quanti�cation aggregates (and quanti�es) the �rm-month observation to the �rm-year frequency.

The informativeness of this aggregation is rather limited when during the year, a �rm has responded

only once or twice. These cleaning steps leave us with 1,093 �rms in the manufacturing sector that

provide survey responses.

A.3 Cleaning the Financial Statements Data

We have �nancial statements data available from ICAP. In the following we outline the consecutive

steps undertaken to prepare and clean the �nancial statements database. Prior to these steps this

data comprised 1,219 �rms with 18,786 �rm-year observations in the manufacturing sector. After

the cleaning we retained all 1,219 �rms and 18,213 �rm-year observations.

1. The way the data is recorded, Net Worth is included in Total Liabilities. Therefore, Total

Net Assets should equal Total Liabilities, i.e. TotalNetAssetsi,y = TotalLiabilitiessi,y, for

every the �rm i, year y. For the �rm i-year y observations for which TotalNetAssetsi,y 6=

TotalLiabilitiessi,y, we replaced their values with those from an alternative Balance Sheet

data-base of Hellastat S.A.40,41 We con�rmed that for the replaced values of TotalNetAssetsi,y

and TotalLiabilitiessi,y the equality holds, and that the net value of the sub-categories included

in the Assets sum up to the Total Net Assets. If these variables did not add up, we set to

missing all the �nancial statement variables of these �rm-year observations.

2. The following equality should hold:

TotalGrossSalesi,y = GrossOpertingProfiti,y+CostOfSoldGoodsi,y, for every the �rm i, year

y. For the observations for which the above equality does not hold, we replaced their values with

40Non-satisfaction of the accounting identity is entirely due to human error, and since the data providers are

di�erent, the person making the error is also di�erent, so we can assume that the two data-bases do not include the

same errors.
41Hellastat S.A. is a private consultancy �rm collecting and digitalizing the �nancial statements from o�cial and

publicly available sources. This database is very similar to our ICAP data, but includes a less detailed break-down of

�nancial statement variables.
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those from Hellastat. Then we con�rmed that for the replaced values of TotalGrossSalesi,y,

GrossOpertingProfiti,y and CostOfSoldGoodsi,y the equality holds. If these variables did not

add up, we set to missing all the �nancial statement variables of these �rm-year observations.

3. We set to missing all the �nancial statement variables for the �rm-year observations for which

the following equality does not hold.

TotalNetV alueOfFixedAssetsi,y + TotalAccumulatedDepreciationi,y

=GrossV alueOfMachinery&Equipmenti,y +GrossV alueOfBuilding&Facilitiesi,y

+GrossV alueOfIntangibleAssetsi,y + V alueOfLandi,y + V alueOfHoldingsi,y

+ V alueOfLongTermReceivablesi,y

4. For some �rm-year observations the NACE classi�cation was the version 1 or its Greek analogue,

STAKOD 2003. We used ELSTAT (2002), EUROSTAT (2008a) and EUROSTAT (2008b) to

translate all NACE classi�cations to NACE v. 2.

5. GrossDepreciablePropertyV aluei,y is de�ned as the sum of the Gross Values of Building &

Facilities, Machinery & Equipment and Intangible Assets, for every �rm i, year y. We set to

missing all the �nancial statement variables for the �rm i-year y observations for which at least

one of the Gross Depreciable Property, the Gross Sales, the Total Net Fixed Assets, the Total

Net Assets or the Owner's Equity is lower or equal to 0, as this would indicate that the �rm

was under dissolution in that year.

6. To derive values of Real Total Net Assets, Real Owner's Equity, Real Total Sales we used the

annual implicit gross added value de�ator (ratio of nominal over real value) from Eurostat Table

nama_10_a64 for Greece. To derive Real Total Net Fixed Assets and Real Gross Depreciable

Property we used the implicit de�ator of capital stocks from Eurostat Table nama_10_nfa_st.

7. In the �nal cleaning steps, we deal with extreme observations that likely result from miscoding.

When the growth rate of any the following variables was at the lower 0.5% of its empirical

distribution we set to missing all the �nancial statement variables: Real Total Net Assets, Real
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Total Net Fixed Assets, Real Gross Depreciable Property, Real Owner's Equity, Real Total

Sales.

8. When the real growth rate of any the following variables was at the upper 1% of its empirical

distribution we set to missing all the �nancial statement variables: Real Total Net Fixed Assets,

Real Gross Depreciable Property, Real Total Sales.

A.4 The Matched Sample and Quality of Survey Responses

We match �rms' �nancial statements data with the corresponding survey responses using the �rm's

unique tax identi�er. As described in Section A.2, our cleaned survey data comprised 1,093 �rms.

We could match 73.1% of these �rms (76.7% of the �rm-month observations), so that the sample for

which we have both survey and �nancial statement data comprises of � after the cleaning procedures

described above � 799 �rms in the manufacturing sector with 25,764 monthly responses from the

survey on the two questions A.2 and D.2 and 4,104 annual balance sheet observations on sales. This

section �rst establishes that our sample is representative for the manufacturing sector. Then we

evaluate the quality of survey responses.

Representativeness. We evaluate representativeness of our sample in a number of ways using

data from the survey and the �nancial statements.

First, we report a time-series correlation of 0.95 between the o�cial IOBE business sentiment

index for the manufacturing sector and a recalculated sentiment index based on our manufacturing

sector dataset.42 This high correlation shows that our dataset is still highly representative when

responses are aggregated, even though we abstain from using the imputed survey responses and

we dropped observations if �rms responded fewer than three times in a calendar year. Second,

42The monthly sentiment index for the manufacturing sector is computed as
QSim+QSe

im−INVim

3 , where INVim

corresponds to the question `The level of �nished goods inventories you deem it is...' with the possible responses being

above/at/below normal levels and coded as +1/0/ − 1, respectively; and QSim corresponds to the survey question

`For the preceding 3 months you assess that your production did...', QSe
im corresponds to the question `For the next 3

months you foresee that your production will...', and the possible responses are rise/no change/fall, coded as +1/0/−1,

respectively.
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we report a correlation of 0.64 between the average real growth rate of output in our sample as

reported in the �nancial statements and the corresponding manufacturing sector output growth

from Eurostat.43 We perform this comparison using output since Eurostat only publishes sales for

the Greek manufacturing sector from 2008. Third, to further examine the representativeness of our

�nal sample we study the share of each 2-digit sector in the total manufacturing sector sales. We

compare the contributions based on our sample with the ones from the o�cial Eurostat data. Table

1.A exempli�es these statistics for two years � 2009 and 2012 � and we observe that most of the

shares based on our dataset are close to the ones reported by Eurostat with few exceptions of over-

and under- representativeness.

Table 1.A: Share of NACE 2-digit industry sales in the total manufacturing sales in years 2009 and 2012.

2009 2012
NACE Code Sample Data Eurostat Data Sample Data Eurostat Data

10 13.35% 20.23% 16.01% 19.74%
11 10.11% 3.94% 6.03% 2.98%
12 2.67% 1.01% 1.60% 0.74%
13 1.99% 1.93% 1.94% 1.26%
14 0.58% 3.16% 0.29% 1.84%
15 0.74% 0.50% 0.20% 0.21%
16 0.95% 1.50% 0.06% 0.82%
17 1.63% 2.02% 0.89% 1.76%
18 0.84% 1.63% 0.30% 1.06%
19 19.71% 21.77% 45.19% 36.54%
20 5.58% 4.44% 4.22% 3.48%
21 10.70% 2.63% 6.08% 1.80%
22 2.42% 3.24% 2.17% 3.04%
23 6.95% 5.90% 1.92% 2.78%
24 7.23% 7.49% 1.19% 8.62%
25 6.93% 7.60% 7.29% 5.31%
26 2.60% 0.68% 1.00% 0.68%
27 0.68% 2.49% 0.57% 2.68%
28 2.14% 2.39% 1.57% 1.68%
29 0.53% 0.51% 0.25% 0.27%
30 0.39% 1.12% 0.78% 0.36%
31 0.62% 1.76% 0.21% 0.91%
32 0.38% 0.96% 0.23% 0.58%
33 0.28% 1.11% 0.00% 0.87%

For our sample, total manufacturing sales is the sum of sales of all �rms in a particular year.
The shares reported show the sum of sales in a 2-digit sector over total manufacturing sales in
our sample for a particular year. The shares in the `Eurostat' columns are the corresponding
ratios based on Eurostat sales data based on Table sbs_sc_sca_r2 for Greece.

Quality of Survey Responses. In this section we �rst establish that the survey responses

43Output from the �nancial statements is the sum of sales plus the contemporaneous �rst di�erence of �nal goods

inventories. We de�ated the �rm-year output of the �nancial statements using the ratio of the nominal over real (chain

linked volumes) gross value added at the NACE 2-digit level. We use the simple arithmetic mean of the �rm-year

observations to obtain the average growth rate of our sample. The manufacturing growth rate of real output from

Eurostat for Greece is from Table nama_10_a64.
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are consistent across di�erent questions and then, we show they are consistent with data from the

�nancial statements.

In the spirit of Coibion et al. (2015) we use a regression-based approach to evaluate the consistency

of the survey responses across questions. We conduct two exercises to establish consistency that will

jointly cover around two thirds of the survey questions. Turning to the �rst exercise, economic

intuition suggests that if a �rm expects excess future production capacity relative to sales, it is more

likely to (i) report higher than normal inventory levels (ii) expect a drop in the sales (iii) expect it

will have to decrease employment (iv) have lower capacity utilization that would allow it to increase

production if need be. To con�rm that this economic intuition holds in our data we estimate the

following linear equation:

D3im = β0 + β
[
INVim, XS

e
im, L

e
im, Uim

]′
+ ψi + ψy + ηim, (26)

where the vector β = [β1, β2, β3, β4], ψi and ψy control for �rm and year �xed e�ects respectively,

and ηim is the idiosyncratic error. The variables D3im, INVim, XS
e
im, L

e
im, and Uim denote current

production capacity, inventory level, sales, the number of employees, and capital utilization of �rm

i in month m and are derived from survey questions.44

We estimate equation (26) twice: �rst, by eliminating ψi using standard �xed e�ects tools and

second, by substituting NACE sector dummies for ψi. In Panel A of Table 2.A we report the results

from estimating equation (26). We observe that the signs of the variables under examination are

as expected based on the economic intuition outlined above and that all estimates are statistically

signi�cant at the 1% level. The relatively low R2 indicates that there are other factors that explain

44The precise questions are as follows. INVim, question E.1: `The level of your �nal goods inventories is:

above normal/normal/below normal'. D3im, question E.2: `Given the outstanding orders you have at the moment

and the possible evolution of demand during the next months, the current production capacity is more than su�-

cient/su�cient/insu�cient'. XSe
im refers to question D.2 outlined in the main body. Le

im, question D.3: `During the

next 3 months, you expect your number of employees to increase/remain unchanged/decrease'. In these questions, a

numerical value −1 refers to reduction or lower than normal level or insu�cient production capacity as appropriate;

+1 refers to an increase or higher than normal level or more than su�cient as appropriate; and 0 refers to no change

or normal level or su�cient capacity as appropriate. Uim, question E.3: `During the ongoing period, what is your

percentage (%) utilization of your production capacity?. Firms respond to this question with a quantitative answer.
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expected movements in production capacities. However, for the purpose of verifying the consistency

of survey answers we are only interested in the directional relationship between variables.

In the second exercise, we focus on production. When we observe an increase in production,

economic intuition indicates one factor behind this could be a rise in capacity utilization. We check

this by estimating the following linear equation:

QSim = β0 + β1[Ui,m−1 − Ui,m−3] + ψi + ψy + ηim, (27)

where Uim corresponds to the survey question asking about the percentage of capacity utilization for

�rm i in month m, QSim indicates the change in past production, ψi and ψy control for �rm and year

�xed e�ects respectively, and ηim is the idiosyncratic error.45 As previously, we estimate equation

(27) in two ways: �rstly, we eliminate ψi using standard �xed e�ects tools and secondly, we substi-

tute NACE sector dummies for ψi. Results are reported in Panel B of Table 2.A. These are in line

with economic intuition: an increase in production is positively and signi�cantly correlated with a re-

ported three-month increase in capacity utilization (from m−3 to m−1) over the same time horizon.

Table 2.A: Consistency of survey responses across questions

PANEL A: Dependent Var. D3im PANEL B: Dependent Var. QSim

INVim 0.137*** 0.140*** Ui,m−1 − Ui,m−3 0.00506*** 0.00508***
XSe

im -0.0485*** -0.0489***
Le
im -0.179*** -0.185***

Uim -0.00418*** -0.00413***
Constant 0.336*** 0.242*** Constant 0.277*** 0.363***

RE/FE FE RE RE/FE FE RE
NACE FE NO YES NACE FE NO YES

Observations 22,168 22,168 Observations 9,411 9,411
Overall R2 0.243 0.262 Overall R2 0.0537 0.0767
Number of �rms 791 791 Number of �rms 627 627

Estimations with NACE FE were made with Random E�ects pool OLS (RE). All variables (apart from NACE
2-digit code) are survey questions. NACE �xed e�ects are taken at the 2-digit level. Fixed year e�ects are
omitted to simplify representation but are included in the estimation. D3im is the su�ciency of production
capacity; Uim is the percentage capacity utilization; QSim is the recent change of production; INVim is the
level of inventories; SSe

im is a forecast about sales; Le
im is a forecast about the number of employees. Complete

details about the exact wording of the questions are in the text of this section. *** denotes signi�cance at the
1% level.

Having substantiated the consistency of survey responses across questions, we now turn to eval-

uating their consistency with the information in the �nancial statements. Annual sales growth of

45QSim corresponds to question A.1: `During the previous 3 months, your production, has increased/remained

unchanged/decreased.'
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�rm i in the income statements, xiy, should be positively correlated with the survey question A.2

concerning the evolution of current sales, XSim.

We examine this by estimating the following linear equations

XSim = β0 + β1xiy + ψi + ψy + ηim, (28)

where ψi and ψy control for �rm and year �xed e�ects respectively and ηim is the idiosyncratic error.

As previously, we estimate equation (28) in two ways, using standard �xed e�ects tools or NACE

sector dummies. To estimate this regression, the �rm-year observations from �nancial statements

are treated as the same for each month in a particular year. We can do so as the survey data is

qualitative while the data from �nancial statements is quantitative and we are simply interested in a

correlation between the two. In Table 3.A, we observe that the monthly responses are positively and

highly signi�cantly correlated with the growth rates from the �nancial statements. In other words,

qualitative survey responses on changes in current sales and production are on average consistent

with their quantitative counterparts reported in the �nancial statements.

Table 3.A: Consistency of survey responses with variables in �nancial statements

Dependent Variable XSim

xiy 0.221*** 0.227***
Constant 0.155*** 0.223***

Observations 24,261 24,261
Number of Firms 785 785
Overall R2 0.0670 0.0801
RE/FE FE RE
NACE FE NO YES

Estimations with NACE FE were made with
Random E�ects pool OLS (RE). NACE �xed
e�ects are taken at the 2-digit level. Fixed year
e�ects are omitted to simplify representation
but are included in the estimation. xiy is gross
sales growth from �nancial statements. Signi�-
cance at the 1% level is indicated by ***.

Overall, based on the results in Tables 2.A and 3.A, we �nd that survey responses are consistent,

both with each other within the questionnaire, but also with the information in the �nancial state-

ments. In addition, the fact that survey responses are positively correlated with the corresponding

�nancial statement variables is consistent with the information from IOBE that surveys are com-

pleted by executives who have a complete overview about the �rm's activities. We can draw this

conclusion, because the �nancial statements are published after the respondents �ll in the survey.
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B Quanti�cation of Forecast Errors

B.1 Derivation of Equation (4)

This section shows how equation (4) can be derived using equations (1) and (3). First, we take

expectations of equation (3), which becomes

E
[
xe,+im |Fi,y−1

]
= α + γ1x

e
iy + Ei,y−1ν

+
im, and E

[
xe,−im |Fi,y−1

]
= −β + γ2x

e
iy + Ei,y−1ν

−
im. (29)

Then, we substitute equation (29) into (1)

xeiy = Ei,y−1
∑
m∈y

W+
im

[
α + γ1x

e
iy + ν+im

]
+ Ei,y−1

∑
m∈y

W−
im

[
− β + γ2x

e
iy + ν−im

]
.

Then, using the de�nition for W+
im and W−

im, we get

xeiy =
[
α + γ1x

e
iy

]
Ei,y−1

∑
m∈y

Wim1[XSe
im=1] + Ei,y−1

∑
m∈y

Wim1[XSe
im=1]ν

+
im

+
[
− β + γ2x

e
iy

]
Ei,y−1

∑
m∈y

Wim1[XSe
im=−1] + Ei,y−1

∑
m∈y

Wim1[XSe
im=−1]ν

−
im. (30)

To simplify the notation, we de�ne

Piy ,
∑
m∈y

Wim1[XSe
im=1], and Niy ,

∑
m∈y

Wim1[XSe
im=−1],

where Piy (Niy) denotes the weighted share of months within a year that indicate a rise (fall) in

expected sales. Next, we assume that Ei,y−1Piy = Piy and Ei,y−1Niy = Niy, which implies that,

during year y, �rm i makes as many positive/negative sales growth forecasts as was expected at the

end of year y − 1.46 The assumption here is akin to saying that �rms make their annual budget and

related sales forecasts at the end of the year using information up to end of December. During the

year they may update monthly forecasts and the budget, but not whether they expect positive or

negative development in sales growth during the month. This allows us to rearrange equation (30)

to solve for xeiy:

xeiy =
αPiy − βNiy

1− γ1Piy − γ2Niy

+ ξiy, with ξiy =
Ei,y−1

∑
m∈y

(
W+
imν

+
im +W−

imν
−
im

)
1− γ1Piy − γ2Niy

,

which is equation (4) in Section 3.1.

46This assumption does not drive our results on the predictability and autocorrelation, because we show in Section

4.2 that this same behavior is also present in the directly observable survey based forecast errors.
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B.2 Proofs Related to the Estimation of Equation (6)

Statement 1. If E
[
xfeiy
∣∣xeiy] = 0, then E

[
xfeiy
∣∣H(xeiy)] = 0 for any Borel measurable function H.

Therefore, E
[
xfeiy
∣∣x̃eiy] = 0 (x̃eiy is de�ned in equation (7) in the main text).

Proof. Firstly, note that the underlying mathematical form of this (and any) conditional expec-

tation is E
[
xfeiy
∣∣xeiy] = E[xfeiy |σ(xeiy)], where σ(xeiy) is the minimal sigma-algebra generated by xeiy.

Intuitively, all the information that xeiy can convey. Then from the Doob-Dynkin Lemma (see

Proposition 3 in Rao and Swift (2006)) we know that σ
(
H
(
xeiy
))
⊂ σ(xeiy) for any Borel mea-

surable function H. As a result, from the general form of the Law of Iterated Expectations, we get

E
[
xfeiy
∣∣H(xeiy)] = E

[
E
[
xfeiy
∣∣xeiy]∣∣∣∣H(xeiy)] = 0. Next, we know that x̃eiy is a Borel measurable function

of XSeim for m ∈ y.47 Also, XSeim is a Borel measurable function of xeiy (from ID1).48 Overall, we

have that σ(x̃eiy) ⊂ σ({XSeim}m∈y) ⊂ σ(xeiy), for m ∈ y. Therefore, E
[
xfeiy
∣∣x̃eiy] = 0. This completes

the proof.

Statement 2. If E
[
ξiy
∣∣{XSeim}m∈y] = 0, then E

[
ξiy
∣∣H({XSeim}m∈y)] = 0 for any Borel measur-

able function H. Therefore, E
[
ξiy
∣∣x̃eiy] = 0.

Proof. From the Doob-Dynkin Lemma (see Proposition 3 in Rao and Swift (2006)) and the Law of It-

erated Expectations we obtain the �rst part that E
[
ξiy
∣∣{XSeim}m∈y] = 0 implies E

[
ξiy
∣∣H({XSeim}m∈y)] =

0 for any Borel measurable function H � the proof is the same as that of Statement 1. From

the proof of Statement 1 we also know that σ(x̃eiy) ⊂ σ({XSeim}m∈y). As a result, E
[
ξiy
∣∣x̃eiy] =

E
[
E
[
ξiy
∣∣{XSeim}m∈y]∣∣∣∣x̃eiy] = 0. This completes the proof.

47This follows from the fact that x̃eiy is a composition of the following three Borel functions: the numerator, the

denominator and a function of type 1/f(·). The latter, 1/f(·), although not continuous it is still Borel measurable.

The numerator and the denominator are Borel measurable, because they are continuous functions of XSe
im: they are

linear (continuous) functions of Piy and Niy which are also linear functions (continuous) of XSe
im.

48This is true because XSe
im is a composition of Borel measurable functions. In ID1, the quantitative monthly

forecast, xeim, is a linear (continuous) function of the xeiy, hence Borel measurable. Depending on the value of xeim,

then, XSe
im takes the discrete values {−1, 0,+1}. We can see XSe

im as a composition of indicator functions of xeim.

Indicator functions are Borel measurable.
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Statement 3. The error term ξ̃iy in equation (10) is mean-independent of the explanatory

variables.

We provided a way to approximate the unobserved �rm heterogeneity, and we derived the �nal

estimable equation (10). For equation (10), by the same principles as for Statements 1 and 2, it

su�ces to prove that E[ξ̃iy|{XSeim}m∈y] = 0. Then, ξ̃iy is also mean-independent of all the right hand

side variables of equation (10). This means that the NLS error ξ̃iy is also mean independent of the

rational function on the right hand side of (10), which satis�es Davidson and MacKinnon (2004)'s

condition for consistency (equation (6.29)). Indeed, from equation (11)

E
[
ξ̃iy|{XSeim}m∈y

]
= E

[
xfeiy |{XSeim}m∈y

]
+ E

[
ωi + ϑiy

1− γ1Piy − γ2Niy

∣∣∣∣{XSeim}m∈y]
= 0 +

1

1− γ1Piy − γ2Niy

E
[
ωi + ϑiy

∣∣{XSeim}m∈y]
= 0,

where the terms Piy and Niy `go outside' the conditional expectation as they are functions of

XSeim, m ∈ y, and therefore σ({XSeim}m∈y)-measurable. This follows from the Doob-Dynkin Lemma

and the standard properties of the conditional expectations. From Statement 1 we have that

E
[
xfeiy |{XSeim}m∈y

]
= 0. Note that {XSeim}m∈y ⊂ {XSeim}m=1,2,...,Ti which implies that σ

(
{XSeim}m∈y

)
⊂

σ
(
{XSeim}m=1,2,...,Ti

)
. Therefore, from ID2, ID3 and the Law of Iterated Expectations we have that

E
[
ωi + ϑiy

∣∣{XSeim}m∈y] = 0. This completes the proof.

B.3 Estimation Results and Robustness

Nonlinear Least Squares Estimation. Table 4.B reports the results of the NLS estimation of

equation (10). Column (1) shows estimation results for the boom period up to 2008 and column

(2) for the following recession. As a reminder, α and −β are the constant terms in the positive and

negative continuous monthly forecasts of ID1. We observe that the constant of the positive monthly

forecasts is larger during the boom than in the bust which is consistent with our economic intuition.
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Moreover, the constant of the negative monthly forecast is lower during the bust than in the boom,

which is also consistent with our economic intuition.

Table 4.B: NLS Estimation of Equation (10).

(1) (2)
Coe�cients Dependent Variable: xiy
α 0.190** 0.104**
β 0.151* 0.238***
γ1 -0.366 -0.446
γ2 -0.179 0.0712
Firm-Year Observations 2,471 1,397
R2 0.043 0.057
Period y ≤ 2008 y > 2008

Fixed e�ects proxies of equation (10) are omitted � but are
included in the estimation � to maintain a simple represen-
tation. We use robust standard errors and ***, ** and *
indicates 1%, 5% and 10% signi�cance. Column (1) shows
results for the boom period up to 2008 and column (2) for
the following recession.

Alternative Weighting Scheme. This section shows results based on an alternative weighting

scheme used in equation (2). In particular, while our baseline weighting controls for seasonalities

within the year, we consider as an alternative that all observations are weighted equally per year.

Table 5.B reports results of the estimation of equation (10) using the alternative weights. Column

(1) shows estimation results for the boom period up to 2008 and column (2) for the following recession.

Parameter estimates are very close to the ones in the baseline case shown in Table 4.B. From Table

6.B it is evident that this close resemblance also results in almost identical forecasts. The table

shows the distribution of the di�erence between individual �rm-year forecasts based on the baseline

weighting and forecasts based on the alternative weighting scheme.

Table 5.B: NLS Estimation of Equation
(10) with alternative weighting.

(1) (2)
Coe�cients Dependent Variable: xiy
α 0.197** 0.105**
β 0.158* 0.243***
γ1 -0.426 -0.479
γ2 -0.236 0.0492
Firm-Year Observations 2,471 1,397
R2 0.043 0.057
Period y ≤ 2008 y > 2008

Fixed e�ects proxies of equation (10) are omitted � but are
included in the estimation � to maintain a simple represen-
tation. We use robust standard errors and ***, ** and *
indicates 1%, 5% and 10% signi�cance. Column (1) shows
results for the boom period up to 2008 and column (2) for
the following recession.
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Table 6.B: Distribution of the di�erence between the baseline forecasts and forecasts based on alternative
weighting.

Min 5% 10% 25% Median Mean 75% 90% 95% Max

-0.008 -0.003 -0.002 -0.001 0 0 0.001 0.002 0.003 0.011

B.4 Relation between Monthly and Annual Survey Forecasts

We can test ID1 if a dataset includes qualitative monthly and the corresponding quantitative annual

�rm-level survey expectations. Availability of this information in one dataset is seldom, yet we have

constructed data with these features for UK manufacturing �rms in Section 3.3.2. In this dataset

we �nd support for ID1 as the monthly forecasts are positively correlated (0.43 at 1% signi�cance)

with their annual counterparts. Additionally, given the qualitative nature of the survey forecasts, we

estimate an ordered probit model of the survey forecasts on the observable quantitative forecasts.

This ordered probit model also veri�es ID1 (Wald chi-squared statistic for the whole ordered probit

model with 1 degree of freedom equals 37.46).

B.5 Alternative Quanti�cation Techniques

Ordered response models � probit or logit � are alternatives to the NLS based method outlined in

Section 3.1 to quantify sales growth forecasts.

For the ordered response models, we assume that there is an unobserved latent variable XSe,∗im

which de�nes the outcome of the observed survey response, XSeim, as follows

XSeim = −1 if XSe,∗im ≤ a1,

XSeim = 0 if a1 < XSe,∗im ≤ a2,

XSeim = +1 if XSe,∗im > a2,

with a1, a2 ∈ R being the unobserved threshold parameters. Now assume that XSe,∗im is linearly

determined by a vector of explanatory variables, XSe,∗im = δXXS
im + ψi + eim, with ψi being the

unobserved �rm heterogeneity and eim the idiosyncratic error term. The assumed distribution of eim

determines whether the model will be standard normal (probit) or logistic (logit). The explanatory
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variables XXS
im can be from both the survey and the �nancial statements. We can eliminate the

unobserved heterogeneity ψi using the Mundlak (1978) approximation, that is the cross-time �rm-

speci�c averages of all the panel dependent variables ψi ≈ 1
Ti

∑Ti
m X

XS
im , where Ti is the number of

months each �rm i is present in the sample.

After accounting for unobserved �rm heterogeneity in the ordered response models, we can get

(maximum likelihood) consistent and unbiased estimations of δ̂ and compute the estimated latent

variable values, X̂S
e,∗
im. These will be the quanti�ed values of the survey variable, X̂S

e

im That is

X̂S
e

im = X̂S
e,∗
im = δ̂XXS

im . The estimated X̂S
e

im, are the quanti�ed value of the �rm's monthly re-

sponse conditional on XXS
im .49 Finally, we can derive their annualized quanti�ed values using the

weighted average x̂eiy ,
∑

m∈yWim[X̂S
e

im], using the weights given in equation (2).

Table 7.B reports the estimation results of the ordered probit and logit models. The variables that

we have used in the vector of explanatory variables, XXS
im , are (i) XS

e

m = (Nm)−1
∑

iXS
e
im, where

Nm is the number of �rms that responded in month m. This will capture aggregate time-speci�c

e�ects and aggregate information. (ii) the growth rate of sales in the preceding year, xi,y−1, from

the �nancial statements (iii) ORDSim which is a categorical variable from the survey indicating the

level of orders.50

B.6 Statistics on Forecasts and Forecast Errors

Statistics on Survey Forecasts. This section provides an overview about the information on sales

forecasts in the survey. The left subplot of Figure 1.B shows the distribution of monthly responses

to survey question D.2 on �rms' expected sales during the next three months. These possible re-

49An alternative would be to obtain the probability estimates for each possible response, XSim = −1/0/+ 1, and

then compute the mean response. But that would require to use 1
Ti

∑Ti

m XXS
im for the mean response, because the

estimated cut-o� values, a1, a2, are conditional on all explanatory variables, including the �xed e�ects speci�cation.

The problem with using 1
Ti

∑Ti

m XXS
im for the estimation is that we would introduce information to the �rm's forecasts

that were not available to the �rm at the time of the forecast.
50It is based on question B.1 `Your total orders outstanding (from either domestic or foreign markets) you deem,

for this period of the year, to be high/normal/low.'
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Table 7.B: Ordered Probit and Logit Estimations of �rm-month survey responses on sales growth fore-
casts

Probit Logit
(1) (2) (2) (3)

Period y≤2008 y>2008 Period y≤2008 y>2008
Dep. Variable: XSe

im Dep. Variable: XSe
im

XS
e
m 1.631*** 1.565*** XS

e
m 2.784*** 2.666***

xi,y−1 0.0836** 0.0106 xi,y−1 0.141** 0.0176
ORDSim 0.358*** 0.372*** ORDSim 0.615*** 0.645***
a1 -0.958*** -1.211*** a1 -1.620*** -2.023***
a2 0.583*** 0.366*** a2 0.994*** 0.620***

Observations 13,554 8,740 Observations 13,554 8,740
Pseudo-R2 0.0575 0.0750 Pseudo-R2 0.0561 0.0751

Fixed e�ects speci�cation are omitted � but are included in the estimation � to maintain
a simple representation. XS

e
im is the cross-sectional monthly average of the sales forecast

reported based on survey question D.2, xi,y−1 is the growth rate of sales in the preceding
year, from the from the �nancial statements, ORDSim indicates the level of orders based
on survey question B.1. We use robust standard errors and ***, ** and * indicates 1%, 5%
and 10% signi�cance.

sponses, increase/no change/decline, are coded as +1/0/1, respectively. The right subplot of Figure

1.B shows the distribution of annualized survey forecasts based on the same question. We annualize

the monthly survey responses by computing a weighted yearly average
∑

m∈yWim[XSeim], where the

weights are based on equation (2). The right subplot of Figure 2.B documents the number of survey

responses on sales expectations (survey question D.2) per year. The number of responses is relatively

constant across our sample. Towards the end of the sample it is somewhat lower. The reason is that

responses are digitized only about 2 years after they have been received. At the time we obtained

the data not all responses at the end of the sample had been digitized. The left subplot of Figure

2.B shows for each year the share of survey responses on sales growth expectations that indicate an

increase/unchanged/decrease (shown in green/orange/blue). The share of optimistic (pessimistic)

responses is higher in the �rst (second) half of our sample, consistent with the strong boom that

ended in 2008 and the following severe depression.

Statistics on Quanti�ed Forecast Errors. Figure 3.B shows the share of observations classi-

�ed as major positive/negative or minor forecast errors per year. It is evident that the share across

these classi�cations can vary substantially across years, e.g. during 2009, the �rst year of the Greek

crisis resulted in a relatively high share of major negative forecast errors.
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Figure 1.B: Distribution of Sales Forecasts based on Qualitative Survey Data. The �gure on
the left shows the distribution of �rm-month sales forecasts based on survey question D.2. The �gure on
the right shows the distribution of the survey based �rm-year sales forecasts when the monthly survey
responses are annualized using a yearly weighted average.

Figure 2.B: Qualitative Survey Responses on Expected Sales Growth over Time (Survey

Question D.2). The �gure on the left shows the responses indicating an increase/unchanged/decrease
in green/orange/blue as share of total monthly observations per year. The �gure on the right shows the
total number of monthly survey responses per year distribution of �rm-month sales forecasts based on
survey question D.2.
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Figure 3.B:Distribution of Quanti�ed Sales Growth Forecast Errors across years. Blue (green)
indicates the share of major negative (major positive) forecast errors and red stands for the share of
minor forecast errors. Major forecast errors are de�ned for the purpose of this �gure as the 26% of
forecast errors at the top and bottom of the distribution.

B.7 Autocorrelation of Sales Growth

In Table 8.B we report estimates for the autocorrelation of sales growth. In the �rst column, to

eliminate �rm �xed e�ects, we use the biased LSDV estimator. In the other four columns, we use the

Arellano and Bover (1995) Two Step Forward Orthogonal Deviations GMM (FOT). We use distinct

number of lags (for instruments) for robustness (see Roodman (2009), Caselli and Tesei (2016)).

Additionally, because of the small number of �rms (relatively to the moment conditions) we collapse

the instruments and we use the Windmeijer (2005) corrected standard errors (Roodman (2009),

Caselli and Tesei (2016)). Finally, for the realizations, we use the �rst di�erences as instruments as

the instruments in levels indicated serial autocorrelation in the error. Table 8.B shows that annual

real sales growth from the �nancial statements has a negative autocorrelation, and the estimated

coe�cient is robust to di�erent lag lengths. Moreover, the autocorrelation coe�cient of the FOT

estimator is higher than that of the LSDV. This is to be expected as the latter is negatively biased

for samples with �nite time dimension (see e.g. Pesaran (2015)). Overall, we �nd the result of

negative autocorrelation in sales growth is very robust (also across subsamples, results are available
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upon request). This is consistent with evidence on other datasets in the literature, see e.g. Barrero

(2019).

Table 8.B: Autocorrelation of �rms' realized sales growth

(1) (2) (3) (4)
Estimation LSDV FOT
Stand. Errors Robust 2-step, Windmeijer corrected
Lags as Instruments N.A. 2-11 2-6 2-4

Dependent Variable: Sales Growth, xiy
xi,y−1 -0.122*** -0.0995*** -0.103*** -0.0997***
Constant 0.260*** � � �

Observations 15,211 13,994 13,994 13,994
# of Firms 1,217 1,214 1,214 1,214
Over-identi�ed N.A. Yes Yes No
Hansen p-value N.A. 0.251 0.0369 N.A.
m2 test p-value N.A. 0.553 0.617 0.549

Column (1) is with the standard �xed e�ects (LSDV); (2), (3), (4) and (5) are the
Arellano and Bover (1995) 2-Step Forward Orthogonal Deviations GMM (FOT). y
�xed e�ects are included in all estimations, but are omitted. In (2)-(5), we use dis-
tinct number of lags (for instruments) for robustness, all are collapsed. The instru-
ments are lagged �rst di�erences of the right hand side variable dated as indicated.
The Arellano-Bond p-value (m2 test) shows no serial correlation of order 2 in the
errors. xiy is the sales growth observed from the �nancial statements. ***, ** and
* indicates statistical signi�cance at the 1%, 5% and 10% level, respectively.

B.8 Accuracy of the Quanti�cation Methodology: Monte Carlo Exercise

In this section, we describe how arti�cial data is generated and subsequently used to evaluate the

precision of our methodology to quantify qualitative forecasts. We �rst document details of the data

generating process and its calibration. Finally, we discuss results that stress the robustness of the

evidence shown in Table 6.

Generating Arti�cial Data. The following outlines how we generate arti�cial data on �rm's

(continuous) sales growth, ziy, as well as corresponding qualitative expectations, ZSeiy, and quanti-

tative expectations, zeiy. The realized sales growth and the qualitative expectations are then used

as inputs to the quanti�cation methodology in Section 3.1 to generate estimates for quanti�ed sales

growth expectations, ẑeiy. This allows us to evaluate the accuracy between these estimates, ẑeiy, and

the actual underlying expectations, zeiy.
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Our dataset on Greek �rms' sales growth is an unbalanced panel with 799 �rms, 4,104 �rm-year

observations and 25,764 �rm-month observations that spans 18 years. The �nal arti�cial datasets

that we generate exactly matches this structure. We further take into account that the �rst eleven

years in our sample were a boom period and the last seven years a severe bust. We start with

generating a balanced panel that spans 20 years, where the �rst two years are used to inform lagged

values. We now document how each of the three arti�cial variables is generated.

First, we generate arti�cial data for �rm's sales growth, ziy, based on an AR(1) process. We use

the MA(∞) representation

ziy =

y−1∑
l=0

θl(εi,y−l +$i), for y > 1; and ziy = εi0 +$i for y = 1.

This is guided by the evidence in Section B.7 (Table 8.B) that this process explains the data well.51

The innovations εiy ∼ N
(
(1 − θ)µ, (1 − θ2)σ2

)
are i.i.d. and $i ∼ N(0, σ2

$i
) is unobserved �rm

heterogeneity.

Second, we generate �rms' annual quantitative sales growth forecasts based on the process

zeiy = (1− θ)µ+ θzi,y−1 +$e
i + εei,y−1,

where $e
i is the unobserved �rm heterogeneity, which can be seen as �rm-speci�c degree of optimism

or pessimism. The innovations εeiy ∼ N(0, σ2
εeiy

) are i.i.d. and capture any additional information the

�rm might include in its forecast. There is no means of inferring the underlying process for expecta-

tion formation from the data. However, since realized sales growth in the data is well explained by

an AR(1) process, it seems likely that such a process is also used by �rms to form expectations.

Third, we generate the qualitative monthly expectations, ZSeim. These expectations need to

correspond to the annual quantitative forecasts zeiy. For this reason, we �rst generate �rms' monthly

quantitative forecasts, zeim, and map these into qualitative categories (decline/unchanged/increase)

in a second step. Firms' monthly quantitative expectations, conditional on their forecast for the

whole year, are generated as

zeim = µ+ γzeiy + εeim,

51Using an AR(2) process to generate the arti�cial data does not materially a�ect the performance of our quanti�-

cation methodology. Results are discussed below and shown in Table 10.B.
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where εeim ∼ N(0, σ2
εeim

) are i.i.d. and capture any additional information that the �rm includes in

its forecast. Note that this procedure to link the arti�cial annual and monthly observations derives

closely from Pesaran (1987).

The only purpose for which the quantitative monthly expectations zeim have been generated,

is to match these into three categories (decline/unchanged/increase) to derive qualitative monthly

expectations, ZSeim. This mapping is constructed so that resulting proportions of observations in

the three categories correspond to the proportion of decline responses, C−%, and the proportion of

increase responses, C+%, in our survey data. In particular, we assign ZSeim = 1 for the largest C+%

of values in zeim; and ZS
e
im = −1 for the smallest C−% of values in zeim. Since the percentage share

of unchanged observations in the survey data equals 100-C+%-C−%, for the remaining observations

in the middle of the distribution of zeim we set the corresponding ZSeim = 0.

Finally, for the three variables based on arti�cial data � ziy, z
e
iy and ZS

e
im � we drop the appro-

priate observations so that we derive an unbalanced panel of arti�cial data that exactly corresponds

to the structure of �rm-year-month observations in our observable dataset.52 We repeat the steps

above to generate 1,000 random samples of arti�cial datasets. Then, for each sample, we use ziy and

ZSeim as input to our quanti�cation methodology and compare the resulting estimate for quantitative

sales growth expectations, ẑeiy, with the true underlying expectations, zeiy.

Calibration. To generate the arti�cial data we need to calibrate a number of parameters. This

exercise is closely informed by our �nancial statements data on annual sales growth realizations and

the survey data on monthly qualitative expectations. Based on the estimates reported in Table

8.B, we set the autocorrelation coe�cient in the AR(1) process for arti�cial sales growth, ziy, to

θ = −0.1. The parameters µ and σ, that govern the moments of the corresponding innovations, are

calibrated to match the respective moments in our sales growth data from the �nancial statements.

Since particularly the mean di�ers across the boom and bust periods in our sample, we di�erentiate

between these episodes and set µ = 0.077 (µ = −0.059) and σ = 0.391 (σ = 0.401) during the boom

52Prior to this, we have also dropped all observations of the �rst two years which had only been employed to inform

values of lagged variables.
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(bust) period.53 The standard deviation of the unobserved �rm heterogeneity, σ$i
, is set to 0.129 to

match the standard deviation of the �rm-speci�c cross-time average of sales growth in the �nancial

statements data.

Since the arti�cially generated qualitative and quantitative expectations variables are linked, we

jointly calibrate the remaining parameters that correspond to these variables to match a number

of statistics in our data. We �rst discuss the parameters that govern the process for annual sales

growth expectations. The �rm speci�c optimism/pessimism, $e
i , should be related to the average

�rm-speci�c performance, $i. We scale $e
i = 0.5 · $i so that the standard deviation of the �rm-

speci�c average of the arti�cial monthly qualitative expectations is close to the corresponding statistic

in the observable dataset (0.431 vs. 0.422). The standard deviation of the innovation, σεeiy = 0.02,

is calibrated so that the standard deviation of the �rm-year averages of the monthly qualitative

expectations in the arti�cial data will be close to the one in the observable data (0.515 vs. 0.478).

Next, we turn to the remaining parameters required to generate the monthly expectations. The

standard deviation of the innovations, σεeim , is set to 0.05, based on the within-year variation of

the monthly qualitative survey responses. We measure this variation as the arithmetic mean of the

squared di�erence between the monthly survey responses and their �rm-year average (0.211 in the

arti�cial data vs. 0.259 in the survey responses). The parameter γ is calibrated to 0.8 so that the

correlation between realized annual sales growth and the qualitative monthly expectation responses

in the arti�cial data matches the corresponding correlation in our observable dataset.54

All calibrated parameters and the moments we target are summarized in Table 9.B. Our cali-

bration strategy carefully ensures close correspondence of the arti�cially generated data with our

observable dataset. This is achieved by matching statistics that concern, amongst others, relations

between qualitative survey expectations and quantitative realizations, as well as monthly and annual

data. We now evaluate the appropriateness of the calibration and the assumptions on underlying

53Apart from the mean µ, and the shares C+ and C−, the statistics used to calibrate the parameters in this section

are very similar across boom and bust episodes which is why we refrain from a di�erentiation for these parameters.
54In particular, we run the regression XSe

im = β0 + β1xiy + φi + ηim where φi controls for �rm �xed e�ects and

ηim is an idiosyncratic error.
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Table 9.B: Calibrated parameters to generate arti�cial data

Parameter Value Matched Moment from Financial Statements (FS) or Survey Data

µ 0.077 (-0.059) Mean in boom (bust) period of sales growth from �nancial statements
σ 0.391 (0.401) Standard deviation in boom (bust) period of sales growth from �nancial statements
θ -0.1 Autocorrelation estimates (see Table 8.B) of sales growth from �nancial statements
σ$i 0.129 Standard deviation of �rm-speci�c cross-time average of sales growth in the FS
$e

i 0.5σ$i Scaled to match std. dev. of �rm-speci�c average of monthly qual. survey expectations
σεeiy 0.02 Std. dev. of the �rm-year averages of the monthly qualitative survey expectations

σεeim 0.05 Mean of squared di�erence between monthly survey responses and their �rm-year average

γ 0.8 Correlation: annual sales growth from FS and qualitative monthly survey expectations
C+ 38% (24%) Percentage share of positive monthly responses in the survey data during boom (bust)
C− 11% (24%) Percentage share of negative monthly responses in the survey data during boom (bust)

processes by evaluating how well the arti�cial data conforms to statistics in the observable data that

are not targeted. We document three such statistics. First, for the error of the regression of monthly

qualitative forecasts on annual sales growth realizations, the unobserved �rm heterogeneity accounts

for 35% of its variance in the arti�cial data vs. 33% in the dataset that comprises information from

the survey and the �nancial statements.55 Second, the coe�cient of the regression of annualized

survey responses on sales growth realizations is 0.169 in the arti�cial data vs. 0.193 in the observed

data.56 Third, in the error term of the latter regression (ZSeiy on ziy) unobserved �rm heterogeneity

accounts for 56% of its variance vs. 58% in the observed data. The close correspondence between

arti�cial and observed data in all three statistics is reassuring about the adequacy of our calibration.

The second statistic particularly corroborates our calibration of γ, while the �rst and third statistics

support our calibration of the variance of the unobserved �rm heterogeneity.

Alternative Data Generating Process. Table 6 in the main body demonstrates, based on

arti�cial data, a close correspondence between the estimated and the true quantitative forecast errors.

The arti�cial data on sales growth has been generated based on the above AR(1) process. We now

demonstrate robustness to an alternative Data Generating Process. We relax the AR(1) assumption

55Using the notation for the arti�cial variables the regression is: ZSe
im = β0 + β1ziy +φi + ηim. The corresponding

variables in our empirical dataset have been denoted XSe
im on xiy in the main body.

56Using the notation for the arti�cial variables the regression is ZSe
iy = β′0 + β′1ziy + φ′i + η′iy. Where ZSe

iy is the

�rm-year arithmetic mean of the monthly survey responses.
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and generate sales growth based on the AR(2) process ziy = 1.2µ−0.2zi,y−1−0.1zi,y−1+εiy+$i. Note

that the sales growth expectations are still generated based on the process as shown above which

introduces predictability and autocorrelation in the forecast errors. Table 10.B shows the distribution

of the di�erence between the estimated quantitative forecast error and the true quantitative forecast

error when the arti�cial data is generated based on the AR(2) process. Overall, results are robust to

this change, and the estimated forecast errors still correspond closely to the underlying true forecast

errors.

Table 10.B: Distribution of the di�erence between the estimated quantitative forecast error and the true
quantitative forecast error � alternative data generation

5% 10% 25% Median Mean 75% 90% 95%

-0.085 -0.065 -0.033 0.000 -0.002 0.031 0.058 0.075
(0.011) (0.010) (0.009) (0.008) (0.008) (0.008) (0.008) (0.008)

We report the average across 1,000 sets of arti�cial data of the descriptive statistics. Stan-
dard deviations across the 1,000 sets for these statistics are reported in parenthesis. Sales
growth realizations are generated based on an AR(2) process.

C Forecast Error Predictability and Autocorrelation

This appendix includes additional results that corroborate the robustness of the results on pre-

dictability and autocorrelation of forecast errors shown in the main body and justi�es our choice of

baseline estimation strategy. Amongst other things, we show that our results on threshold regressions

are robust to using fewer lags as recommended by Roodman (2009).57 Our results also show that

the estimates of the original Seo and Shin (2016) FD GMM are close to the biased LSDV estimates.

This further justi�es our choice for FOT.

57This is particularly important since the Hansen p-values in our GMM estimates can be on the high side. Roodman

(2009) suggests that high Hansen p-values might signal biased estimates as a result of 'instrument proliferation' (or

proliferation of over-identifying restrictions). We want to stress that we have taken every care to avoid instrument

proliferation: our instruments are collapsed and with limited lags. Our robustness checks indicate that our results

are robust to using fewer lags. We also show that the GMM estimated coe�cients are much higher than the biased

LSDV ones. As a result, the Hansen p-value as well as the estimates that we get are not subject to bias resulting from

instrument proliferation.
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C.1 Robustness on Forecast Error Predictability

This section provides additional evidence related to the results on forecast error predictability in

Section 4.1.

Table 11.C summarizes results of alternative estimations of the predictability without the thresh-

old, equation (12). Column (1) is estimated with the Arellano and Bover (1995) FOT GMM, but

without additional lags, that is without any over-identifying restrictions. The results in column (1)

also have a high Hansen p-value, and the coe�cient of xi,y−1 is very close to the one in our baseline

estimate (-0.158 here vs. -0.161 in Table 8). The proximity of the two coe�cients clearly demon-

strates that our baseline estimates are not biased as a result of instrument proliferation. Column (2)

shows estimation results with the LSDV which serves as a benchmark for the dynamic panel bias.

Given that the LSDV estimates su�er from the negative Dynamic Panel bias (Nickell (1981)), and

our estimates using Dynamic Panel Data methods are higher than the LSDV ones, we can conclude

that our baseline speci�cation corrects this bias.

Table 11.C: Predictability of �rms' forecast errors of sales growth � Robustness Checks for the Speci�-
cation without Threshold.

(1) (2)
Estimation FOT LSDV
Stand. Errors 2-step, Windmeijer (2005) corrected Robust
Lags as Instruments 2 N.A.

Dependent Variable: Sales Growth Forecast Error, xfeiy
xi,y−1 -0.158*** -0.221***
xIND,y 0.827*** 0.830***
Constant -0.0142***

Observations 2,805 3,559
# of Firms 590 754
Over-identi�ed No N/A
Hansen p-value N.A. N.A.
m2 test p-value 0.882 N.A.

Table shows alternative estimations of equation (12) without the threshold. Column (1)
is estimated with the Arellano and Bover (1995) FOT GMM; column (2) with the LSDV.
In column (1), the instruments are with only one lag dated in y − 2 and collapsed. The
Arellano-Bond p-value (m2 test) shows no serial correlation of order two in the errors. We
proxy the aggregate annual e�ects with the NACE two-digit industry, IND, year average

of sales growth from the entire sample of the �nancial statements, xIND,y . x
fe
iy is the

forecast error of sales growth for year y; xi,y−1 is the lagged realized sales growth. ***
indicates statistical signi�cance at the 1% level, respectively.

Table 12.C provides robustness on the estimation of equation (13) which includes the threshold.

Columns (1) and (4) are estimated using the biased LSDV for pre-estimated threshold cut-o� values.

In column (1), we document a coe�cient estimate of −0.236 for xi,y−1FEL
q
i,y−1, compared to the
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−0.146 in our baseline estimation. This indicates that we corrected the dynamic panel bias in the

baseline speci�cation. Column (2) shows that our baseline speci�cation without over-identifying

restrictions delivers estimated coe�cients (−0.157 vs. −0.146 in our baseline estimation) and a

threshold cut-o� (28% vs. 26% in baseline) close to the corresponding �gures based on our baseline

setup. Our estimates in Section 4.1 are robust to having no over-identifying restrictions, which

indicates that our choice of instruments is valid. In column (3), with the FD GMM, the estimated

threshold cut-o� is very close to the ones obtained with our modi�ed methodology: 27% vs. 26%

in our baseline estimation, and 28% when the GMM system is just identi�ed. This implies that

our threshold estimate is robust to using the original Seo and Shin (2016) estimator. However, the

coe�cient estimate (−0.198) is close to the biased LSDV ones (−0.235) indicating the presence of

bias and justifying our choice of FOT for our baseline results.

Overall, evidence in this section corroborates our baseline result and choice of estimation method-

ology. The predictability and autocorrelation coe�cients become non-zero following a major forecast

error and this �nding is robust to the lag length of instruments. With our data, the original Seo and

Shin (2016) estimation with the Arellano and Bond (1991) FD delivers biased coe�cient estimates

which justi�es our choice of Arellano and Bover (1995) FOT estimator as a baseline.

C.2 Robustness on Forecast Error Autocorrelation

In this subsection we show that our results on the autocorrelation of sales growth forecast errors in

Section 4.2 also hold using alternative estimations techniques for the threshold regression.

Table 13.C, summarizes results of alternative estimations of the predictability equation (14) with-

out the threshold. Column (1) is estimated with the Arellano and Bover (1995) FOT GMM and only

one lag in instruments (no over-identifying restrictions). The results in column (1) also have a high

Hansen p-value, and the coe�cient of xfei,y−1 is very close to the one in our baseline estimate (-0.163

here vs. -0.164 in Table 9). The proximity of the two coe�cients clearly demonstrates that our

baseline estimates are not biased as a result of instrument proliferation. Column (2) shows estimates

with the LSDV which serves as a benchmark for the dynamic panel bias. Given that the LSDV
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Table 12.C: Predictability of �rms' sales growth forecast errors �
Robustness Checks for the Threshold Speci�cations.

(1) (2) (3) (4)
Estimation LSDV FOT FD LSDV
Stand. Errors Robust 2-step, Windmeijer corrected Robust
Lags as Instruments N.A. 2 2-6 N.A.
Estimated Threshold q P 26% 28% 27% P 27%

Dependent Variable: Sales Growth Forecast Error, xfeiy
xi,y−1 ∗ (1− FELq

i,y−1) -0.162* -0.0936 -0.0941 -0.166*

xi,y−1 ∗ FELq
i,y−1 -0.236*** -0.157*** -0.198** -0.235***

FELq
i,y−1 -0.000848 -0.0279 -0.0224 -0.00643

xIND,y 0.826*** 0.824*** 0.852*** 0.825***
Constant -0.0159** � � -0.0129*

Observations 2,643 2,069 1,915 2,643
# of Firms 574 432 423 574
Over-identi�ed N.A. No Yes Yes
Hansen p-value N.A. N.A. 0.901 N.A.
m2 tes pt-value N.A. 0.976 0.656 N.A.

Instruments in all speci�cations are collapsed; P indicates pre-estimated threshold cut-o� value.
The table shows alternative estimations of equation (13). Columns (1) and (4) are estimated
using the biased LSDV for pre-estimated threshold cut-o� values. For Columns (1) we used the
estimated threshold from the baseline speci�cation of Table 8; for (4) the threshold is estimated
in column (3). Column (2) is the adapted Dynamic Panel Threshold estimator using the Arellano
and Bover (1995) FOT GMM without any over-identifying restrictions; instruments lagged at
y− 2 and collapsed. Column (3) is with the original Seo and Shin (2016) with the Arellano and
Bond (1991) First-Di�erence GMM (FD), with lags dated from y−2 to y−6. The Arellano-Bond
p-value (m2 test) shows no serial correlation of order two in the errors. We proxy the aggregate
annual e�ects with the NACE two-digit industry, IND, year average of sales growth from the

entire sample of the �nancial statements, xIND,y . x
fe
iy is the forecast error of sales growth for

year y; xi,y−1 is the lagged realized sales growth. FELiy takes value one when the forecast
error lies at the lower or upper q% of its empirical pool distribution. ***, ** and * indicate
statistical signi�cance at the 1%, 5% and 10% level, respectively.

estimates su�er from the negative Dynamic Panel bias (Nickell (1981)), and our estimates using

Dynamic Panel Data methods are higher than the LSDV ones, we can conclude that our baseline

speci�cation corrects this bias.

Table 13.C: Autocorrelation of �rms' forecast errors of sales
growth � Robustness the Speci�cation without Threshold.

(1) (2)
Estimation FOT LSDV
Stand. Errors 2-step, Windmeijer (2005) corrected Robust
Lags as Instruments 2 N.A.

Dependent Variable: Sales Growth Forecast Error, xfeiy
xfei,y−1 -0.163*** -0.238***

xIND,y 0.817*** 0.809***
Constant � -0.0206***

Observations 2,069 2,643
# of Firms 432 574
Over-identi�ed No N.A.
Hansen p-value N.A. N.A.
m2 test p-value 0.900 �

Table shows alternative estimations of equation (14) without the threshold. Column (1)
is estimated with the Arellano and Bover (1995) FOT GMM estimator; column (2) shows
estimates based on the LSDV. Column (1) uses collapsed instruments with lags in y − 2
(not over-identi�ed). The Arellano-Bond p-value (m2 test) shows no serial correlation
of order two in the errors. We proxy the aggregate annual e�ects with the NACE two-
digit industry, IND, year average of sales growth from the entire sample of the �nancial

statements, xIND,y . x
fe
iy is the forecast error of sales growth for year y. *** indicate

statistical signi�cance at the 1% level, respectively.
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Table 14.C provides robustness on the estimation of equation (15) which includes the threshold.

Columns (1) and (4) are estimated using the biased LSDV for pre-estimated threshold cut-o� values.

In column (1), we document a coe�cient estimate of −0.24 for xfei,y−1FEL
q
i,y−1, compared to the

−0.167 in our baseline estimation. This indicates that we corrected the dynamic panel bias in the

baseline speci�cation. Column (2) shows that our baseline speci�cation without over-identifying

restrictions delivers estimated coe�cients (−0.168 vs. −0.167 in our baseline estimation) and a

threshold cut-o� (20% vs. 26% in baseline) not too far from the corresponding �gures based on our

baseline setup. Our estimates in Section 4.2 are robust to having no over-identifying restrictions,

which indicates that our choice of instruments is valid. In column (3), with the FD GMM, the

estimated threshold cut-o� is exactly the same as the one obtained with the baseline estimation (26%).

However, the coe�cient estimate (−0.217) is close to the biased LSDV ones (−0.240) indicating the

presence of bias and justifying our choice of FOT for our baseline results.

Overall, evidence in this section corroborates our baseline result and choice of estimation method-

ology. The autocorrelation coe�cient becomes non-zero following a major forecast error and our

�nding is robust to the lag length of instruments. With our data, the original Seo and Shin (2016)

estimation with the Arellano and Bond (1991) FD delivers biased coe�cient estimates which justi�es

our choice of Arellano and Bover (1995) FOT estimator as a baseline.

C.3 Autocorrelation and Predictability in Survey-Based Forecast Errors

This section documents the details on the probit models used to evaluate whether large survey-based

monthly forecast errors are autocorrelated and predictable only in years that our quanti�cation

methodology �ags as involving a major forecast error.

We test for predictability using the following probit model which is directly comparable to the

continuous regressions (13)

P
{
XSLfeim = 1

∣∣XSim, FELiy} = G

(
ϕ′1XSim ∗ (1− FELiy) + ϕ′2XSim ∗ FELiy

+ϕ′3FELiy + Ψ′y + Ψ′i

)
(31)
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Table 14.C: Autocorrelation of �rms' forecast errors on sales growth
� Robustness for the Threshold Estimation.

(1) (2) (3) (4)
Estimation LSDV FOT FD LSDV
Stand. Errors Robust 2-step, Windmeijer corrected Robust
Lags as Instruments N.A. 2 2-6 N.A.
Estimated Threshold q P 26% 20% 26% P 26%

Dependent Variable: Sales Growth Forecast Error, xfeiy
xfei,y−1 ∗ (1− FEL

q
i,y−1) -0.145 0.0494 0.304* -0.145

xfei,y−1 ∗ FEL
q
i,y−1 -0.240*** -0.168*** -0.217*** -0.240***

FELq
i,y−1 -0.00256 -0.0234 -0.0338 -0.00256

xIND,y 0.808*** 0.813*** 0.867*** 0.808***
Constant -0.0179*** -0.0179***

Observations 2,643 2,069 1,915 2,643
# of Firms 574 432 423 574
Over-identi�ed N.A. No Yes N.A.
Hansen p-value N.A. N.A 0.955 N.A.
m2 test p-value N.A. 0.943 0.535 N.A.

Instruments in all speci�cations are collapsed; P indicates pre-estimated threshold cut-o� value.
The table shows alternative estimations of equation (15). Columns (1) and (4) are estimated
using the biased LSDV for pre-estimated threshold cut-o� values. For Columns (1) we used the
estimated threshold from the baseline speci�cation of Table 9; for (4) the threshold is estimated
in column (3). Column (2) is the adapted Dynamic Panel Threshold estimator using the Arellano
and Bover (1995) FOT GMM without any over-identifying restrictions; instruments lagged at y−2
and collapsed. Column (3) is with the original Seo and Shin (2016) with the Arellano and Bond
(1991) First-Di�erence GMM (FD), with lags dated from y−2 to y−6. The Arellano-Bond p-value
(m2 test) shows no serial correlation of order two in the errors. We proxy the aggregate annual
e�ects with the NACE two-digit industry, IND, year average of sales growth from the entire

sample of the �nancial statements, xIND,y . x
fe
iy is the forecast error of sales growth for year

y. FELiy takes value one when the forecast error lies at the lower or upper q% of its empirical
pool distribution. ***, ** and * indicates statistical signi�cance at the 1%, 5% and 10% level,
respectively.

where Ψ′i and Ψ′y control for �rm and year �xed e�ects, FELiy takes the value 1 when there is a

major forecast error (lower or upper 26% of the annual quanti�ed forecast error distribution). We

subtract the expectational survey responses from the corresponding realization ones, and we construct

monthly forecast errors with values XSfeim = {−2,−1, 0,+1,+2} (following Bachmann et al. (2013)

and Massenot and Pettinicchi (2018)). XSLfeim = 1 is a binary variable taking value one when the

survey-based forecast error is XSfeim = ±2. XSim is the survey-based realization. The extrapolation

bias in years with minor forecast errors is ϕ′1, whereas during a major forecast error, �rm's bias is ϕ
′
2.

ϕ′3 indicates whether the occurrence of a major forecast error has any e�ect on the survey forecast

errors of that year. P{·|·} is the conditional probability and G() is the standard normal distribution

which gives us the probit model.

Analogous to the predictability test we have the following dynamic probit for the persistence of
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the survey forecast errors, directly comparable to the continuous version, equation (15),

P
{
XSLfeim = ±2

∣∣XSLfei,m−3, FELiy

}
= G

(
ρ′1XS

Lfe
i,m−3 ∗ (1− FELiy) + ρ′2XS

Lfe
i,m−3 ∗ FELiy

+ρ′3FELiy + Ψ′y + Ψ′i

)
. (32)

The persistence in years with minor forecast errors is given by ρ′1, while during a major forecast error,

survey forecast errors show persistence with coe�cient ρ′2. If only ρ′2 is statistically signi�cant for

the estimated threshold 26%, then forecast errors show persistence only following a major forecast

error.58

Table 15.C: Predictability and Persistence of �rms' forecast errors of sales growth in the qualitative
survey data. Probit Estimates.

Panel A: Predictability Panel B: Autocorrelation

XSim ∗ (1− FELiy) -0.0398 XSLfe
i,m−3 ∗ (1− FELiy) -0.0554

XSim ∗ FELiy -0.133*** XSLfe
i,m−3 ∗ FELiy 0.326***

FELiy 0.407* FELiy 0.0543

XSLfe
i,0 0.918*** XSLfe

i,0 0.422*

XSi 0.0177 �

FELi -0.207 FELi -0.231
Constant -1.527*** Constant -1.548***

Observations 8,659 Observations 5,592
Number of �rms 411 Number of �rms 328

Probit estimation of the conditional probability of large survey-based forecast error

of sales growth, P
{
XS

Lfe
im = 1

}
. The de�nition of XS

Lfe
im is in the main text. Panel

A shows estimates of predictability and Panel B of persistence. XSim is the survey-
based realization. FELiy takes value one when the annual quanti�ed forecast error

lies in the lower or upper 26% of its empirical pool distribution. XS
Lfe
i,0 is the �rst

observed survey forecast error of �rm i and addresses the initial conditions problem
(see Wooldridge (2010)). XSi and FELi are �rm-speci�c cross-time averages and
control for the �rm �xed e�ects. Fixed year e�ects are also included. ***, ** and *
indicate statistical signi�cance at the 1%, 5% and 10% level, respectively.

58To proxy for the �rm �xed e�ects we follow Wooldridge (2010). In equation (31), we use the �rm speci�c cross-

time average of the right hand side variables XSim and FELiy, and in (32), the �rm-speci�c average of FELiy. To

address the initial conditions problem we also include the observation of the dependent variable for each �rm, XSLfe
i,0 ,

on the right hand side (see Wooldridge (2010)).
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D Model Derivations

D.1 Derivation of Equation (22)

To derive equation (22) for the optimal choice of attention, we begin from the original problem,

max
λ

[
EU(λ)− C(λ)

]
. (33)

and we follow Gabaix (2014). We take the Taylor expansion of U(λ) around the rational expectations

solution, λ = 1,59

U(λ)− U(1) =
∂U

∂λ

∣∣∣∣
λ=1

(
λ− 1

)
+

1

2

∂2U

∂λ2

∣∣∣∣
λ=1

(
λ− 1

)2
+ o(λ3), (34)

where o(λ3) = 0, because the utility is quadratic, so higher order derivatives with respect to λ

are zero. U(λ) is given by equation (20), so that for the derivatives in equation (34) we need to

calculate ∂xey+1(λ)/∂λ. Before we proceed, we introduce some useful notation. Our utility has the

general form: U(A,B) = −1
2
(A − B)2. Then, we can de�ne the trivial derivatives U1 , ∂U/∂A,

U2 , ∂U/∂B, U11 , ∂2U/∂A2 = −1, U22 , ∂2U/∂B2 = −1 and U12 , ∂2U/∂A∂B = 1.

Recall that xey+1(λ) , xey+1

(
λsy
)

= arg maxxy+1 U(xy+1, λsy). The �rst order condition implies

U1

(
xey+1(λ), λsy

)
= 0. Therefore, we can use the implicit function theorem on the �rst order condition

and obtain
∂xey+1(λ)

∂λsy
= −U12

U11

= 1, ∀λ.

Subsequently:
∂xey+1(λ)

∂λ
=
∂xey+1(λ)

∂λsy

∂λsy
∂λ

= −U12

U11

sy = sy, ∀λ.

We can now calculate the partial derivatives of the Taylor polynomial (34). Firstly, for the �rst

59Even though the utility function is quadratic, we cannot directly analytically solve equation (33), because of the

presence of term xey+1(λ) which is unknown without knowing the choice for λ. However, with the Taylor expansion

around λ = 1, this term reduces to xey+1(1) which is the known rational expectations solution.
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order term:

∂

∂λ
U

(
xey+1(λ), λsy

)
= U1

∂xey+1(λ)

∂λ
+ U2

∂λsy
∂λ

= U2sy, ∀λ,

because U1 = 0 at the optimum (recall that we are working with the indirect utility). Next, for the

second order term:

∂2

∂λ2
U

(
xey+1(λ), λsy

)
= U21

∂xey+1(λ)

∂λ
sy + U22

∂λsy
∂λ

sy = −s2y, ∀λ,

because, the cross-partial derivatives of the indirect utility are zero at the optimum, U21 = 0, and

U22 = −1.

Substituting these results of the Taylor expansion into the maximization problem of equation

(33), we obtain

max
λ

{
− E

[
1

2
s2y(λ− 1)2

]
− C(λ, cy)

}
.

This result follows from the fact that U2

∣∣
λ=1

= 0 and U(1) = 0.

Finally, using the fact that Esy = Exy = 0 and that Eεyxy = 0, ∀y, we have that Es2y = σ2
s =

σ2
x + σ2

ε . This results in equation (22) in the main body.
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