

escoe.ac.uk

@ESCoEorg

Local variations in the labour market impact of COVID-19

Jessica Hug

Starting at 12.30 PM

ESCOE ECONOMIC MEASUREMENT WEBINARS

Local variations in the labour market impact of COVID-19

Richard Dorsett, Jessica Hug

ESCoE Economic Measurement Webinars

10 March 2022

Research question

- What is the impact of pre-pandemic health of local labour markets on the ability of U and V to match during the Covid Crisis?
 - "Inefficient" labour market
 - ▶ High mismatch between U and V
 - Sustained higher separation rate, with high flow towards U or workers moving jobs filling in new created V
- Local labour markets
 - Regional divide
 - Rural-Urban divide

Motivation

- Understanding the nature of UK spatial disparities
- ▶ Levelling up white paper, executive summary, p.1 (Feb 2022) "... geographical inequality [...] is such a striking feature of the UK"
 - ▶ London and the South East
 - Coastal areas and urban towns
 - ▶ Often larger disparities within areas than between them
 - ▶ Disparities largely reflect the concentration of high skilled workers (Overman and Xu (2022))
 - ▶ Persistent but smaller disparities than 20 years ago

Contributions

- ▶ What geographical variation dominates in the difficulty to match V and U pre pandemic in local labour markets (α_a) ?
 - Novel use of Adzuna data to characterises the efficiency of local labour markets
- ▶ Impact of it on the severity of the initial Covid shock and lasting effect of the crisis?
 - ▶ Using QLFS recall variables to allow for local changes

Literature

- ► Early in the pandemic: highest increase in U in areas with highest U prepandemic or more reliant on shutdown industries during lockdown (McCurdy (2020), Houston, (2020))
- ▶ Local sectoral differences also in V (Cockett and Wilson (2021))
 - ▶ V down in office work, hospitality, leisure, tourism and aviation.
- Using online job board Reed.co.uk: small increase in the number of adverts posted with the lifting of local restrictions (Rudy 2021)
- ▶ WFH: change in the geography of service jobs (De Fraja et al (2021))
- ► Estimation of a spatial Beveridge curve focusing on UK regions: Wall and Zoega (2002)

Measures I

- ▶ Local labour markets: LADs, grouped where within a single TTWA.
- U: Claimant counts from NOMIS.
- V: weekly Adzuna vacancies from 2018 onwards.
- ▶ L: Active population = payrolled employee + claimant counts.
 - ▶ Quarterly data to match the LFS.

Descriptives statistics: U and V

Descriptives statistics: U and V

- Claimant counts - Vacancies

Descriptives statistics: U and V, England only

Measures II: pre-pandemic difficulties of matching V to U:

α_a

► Local Beveridge curve

$$M_a = A_a U_a^{\gamma} V_a^{1-\gamma}$$

▶ In equilibrium and dividing by active population

$$m_a = s_a = A_a u_a^{\gamma} v_a^{1-\gamma}$$

lacktriangle Estimated as, with constant s_a

$$\ln(u_{at}) = \alpha_a + \beta \ln(v_{at}) + \epsilon_{at} \tag{1}$$

$$\alpha_a = \frac{\ln(s_a/A_a)}{\gamma} \approx \ln(v_a) + \ln(u_a), \beta \approx 0.5$$
 (2)

▶ High α_a compatible with high inequality in labour market access in a dynamic market.

Estimated α_a using AJ 2018-2019

			Urban,	Urban,	Urban,	Urban,		
	Mainly	Largely	sig.	city/	minor	major		
	Rural	Rural	rural	town	conurb.	conurb	Missing	All
East Mids	-0.516	-0.490	-0.316	0.464	0.796			0.091
East	-0.366	-0.120	0.249	0.835				0.270
North East		0.185	0.114	0.527		0.684		0.467
North West	-0.726	-0.811	0.307	0.525		0.959		0.666
Scotland							-0.231	-0.231
South East	-0.367	-0.098	-0.002	0.439		1.143		0.722
South West	-0.378	-0.077	-0.137	0.450				0.076
Wales							0.024	0.024
West Mids	-0.443	-0.283	-0.414	0.995		0.706		0.565
Yorks & Humb	-0.491	-0.632	0.098	0.540	0.680	0.637		0.437
All	-0.441	-0.174	0.037	0.620	0.723	1.004	-0.143	0.413

Table: Pre-pandemic measure of labour market deviations from Beveridge curve

Data for econometric analysis

- ▶ 2 LFS quarters: AJ 2020 and 2021
- ► Employment one year earlier available
- lacktriangle Multinomial Logit: effect of $lpha_a$
 - On individual probability to be employed, U or inactive
 - ► Given change in MT
 - Given individual characteristics and employment history

April-June 2020 vs April-June 2021: lasting Covid effect?

	M	ales	Females					
	Unemp	Inac	Unemp	Inac				
Controlling for 2018-19 area fixed effect, $lpha_a$								
year 2021	-0.445**	-0.531***	0.0628	-0.290***				
	(0.148)	(0.0973)	(0.164)	(0.0782)				
$\Delta v_{at}/u_{at}$	0.0681	0.123	0.00291	0.0622				
	(0.105)	(0.0680)	(0.104)	(0.0529)				
α_a	0.0341	-0.0412	0.254	0.0987*				
	(0.0845)	(0.0486)	(0.130)	(0.0406)				
$lpha_a imes$ year 2021	0.333**	0.124	-0.0617	-0.00970				
	(0.107)	(0.0715)	(0.109)	(0.0651)				
Observations	28730		32788					

 $^{^{\}ast}$ p < 0.05 , ** p < 0.01 , *** p < 0.001

Estimated probabilities 2021

Emp	Males Unemp	Inac	Emp	Females Unemp	Inac			
Controlling for 2018-19 area fixed effect, $lpha_a$								
0.843	0.022 0.028	0.134	0.757 0.751	0.024 0.027	0.219 0.223 0.227			
	Uling for 2	Emp Unemp Unemp Unemp Unemp Unemp Unemp Unemp Unemp	Emp Unemp Inac Unemp Inac	Emp Unemp Inac Emp Iling for 2018-19 area fixed effect, 0 0.843	Emp Unemp Inac Emp Unemp Unifor 2018-19 area fixed effect, α_a 0.843 0.022 0.134 0.757 0.024 0.836 0.028 0.136 0.751 0.027			

Table: Estimated probabilities of employment, employment, unemployment or inactivity at the 10th, 50th and 90th percentiles of α_a .

Local skill mismatch: measurement

- ► Experimental!
- ▶ V: sectors of Adzuna categories converted to 2-digit SIC07 codes
- ▶ U: previous employment 2-digit SIC07 of LFS ILO-unemployed
- ▶ Degree industries: where more than 50% of degree holding workers
 - ▶ Share of V and U in type of industries in grouped LADs
 - Average across regions and area type

Change in skill mismatch: Regional divide

- Share of unemployed in Non Degree Industries - Share of vacancies in Non Degree Industries

Change in skill mismatch: Urban-rural divide

- Share of unemployed in Non Degree Industries - Share of vacancies in Non Degree Industries

Conclusion

- ► Employment recovery harder for men in areas where more difficult matching of U and V pre-pandemic.
- No local variation for women in AJ 2021 compared to AJ 2020.
 - ▶ more likely to be inactive both in 2020 and 2021 in areas with high α_a .
- ➤ Smaller decrease in industry skill mismatch in London and Urban with Major Conurbation. Not strongly the case though for the North East.

References

- McCurdy, C. (2020). Local differences: Responding to the local economic impact of coronavirus. Resolution Foundation https://www.resolutionfoundation.org/app/uploads/ 2020/06/Local-differences.pdf.
- Cockett, J. and Wilson, T. (2021). Situations vacant: Online job adverts during the crisis and recovery. Institute for Employment Studies https://www.employmentstudies.co.uk/system/files/resources/files/Adzuna%20IES20online%20vacancy%20analysis%20June%202020.pdf.
- ▶ Overman, H. and Xu, X. Spatial disparities across labour markets. IFS Deaton Review
- Wall, H. J. and Zoega, G. (2002). The british beveridge curve: A tale of ten regions. Oxford Bulletin of Economics and Statistics, 64(3):257–276.
- Rudy, A. (2021). Studying the UK job market during the COVID-19 crisis with online job ads. PLoS One. 16(5)
- Heather T., R. Florisson, A. Frost and G. Athey (2021). Impact of Covid-19 on the UK labour market: The case for a place-based recovery https://www.lancaster.ac.uk/work-foundation/news/blog/impact-of-covid-19-on-the-uk-labour-market-the-case-for-a-place-based-recovery (Blog)
- ▶ De Fraja, G. and Matheson, J. and Rockey, J., Zoomshock: The Geography and Local Labour Market Consequences of Working from Home (December 21, 2020). Covid Economics, Issue 64, 13 January 2021, 1-41, Available at SSRN: https://ssrn.com/abstract=3752977 or http://dx.doi.org/10.2139/ssrn.3752977.
- Houston, D. (2020). Local resistance to rising unemployment in the context of the Covid-19 mitigation policies across Great Britain. Regional Science Policy and Practice, 12(6), 1189-1209.

