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Abstract

This paper extends the temporal disaggregation approach of Labonne

and Weale (2020) to tackle another feature of the VAT data : the delay and

highly noisy nature of the early figures. The main contribution of this paper

lies in the presentation and illustration of a cleaning method which can deal

with non-Gaussian features in the distribution of measurement errors such as

asymmetry and extreme observations.
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1 Introduction

Value-added tax (VAT) returns in the United Kingdom contain business turnover

data similar to those collected in the Monthly Business Survey (MBS) run by ONS

to measure GDP. However, while ONS publish monthly GDP figures about two

∗Email: paul.labonne@bi.no. This work was carried out during my PhD at King’s College

London and has been funded by the ONS as part of the research programme of the Economic

Statistics Centre of Excellence (ESCoE). We thank Ivan Petrella for his comments and suggestions

on this project.
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months after the end of the reference period, at this time only a relatively small

proportion of the VAT data are available, and these take the form of rolling quarterly

aggregates. VAT returns begin accruing shortly after the end of the reference period

but take several months to be complete. Therefore, an important question is whether

one can derive precise estimates of monthly output from the rolling quarterly data

available two months after the end of the reference period.

By nature the VAT-based turnover data become more precise as more respondents

fill their VAT returns, and early releases can be subject to biases. It should be

possible to capture these revisions across releases as well as their differing levels of

measurement errors by modelling them together. Labonne and Weale (2020) show

how monthly figures can be derived from noisy rolling quarterly aggregates using an

unobserved component model. Here this model is extended with successive releases,

or snapshots, of the VAT data, in order to capture the revision pattern and thus

forecast monthly output using early data.

But this nowcasting exercise is complicated by the extremely noisy nature of the

early figures. Applying the Kalman filter and smoother to the original VAT releases,

even when accounting for the heterogeneity across releases, produces very erratic

results. It is necessary to clean the data from very large measurement errors before

estimating the nowcasting model.

Two approaches are explored for cleaning the VAT data prior to nowcasting.

The first approach, which is the common strategy when using state space models,

consists of carrying t-tests on standardised disturbances to detect outlying observa-

tions. These observations are discarded and replaced with missing values and the

model is re-estimated until no new outliers are detected. The Kalman filter - the

recursive algorithm used for estimating state space models - handles missing values

straightforwardly.

But estimation with original figures typically yields residuals which fail to be

normally distributed. And the state space techniques presented in Labonne and

Weale (2020) relies on the data being conditionally normally distributed. To model

openly for non-Gaussian features in the data a second cleaning strategy relying

on score driven methods introduced by Creal et al. (2013) and Harvey (2013) is

exploited. This method deals with large measurement errors without systematically

discarding them; instead it uses a complex weighting scheme for downweighting

large prediction errors which is linked to their conditional distribution.
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The uncertainty surrounding the nature of the noise affecting the VAT figures

implies that combining both cleaning approaches could be beneficial. Therefore, both

approaches are compared with a third strategy consisting of nowcasting separately

with both cleaning approaches and averaging the resulting nowcasts.

The VAT series begin in March 2011 for the seventy-five industries for which

they are available, but vintages are observable only from January 2012. The last

month in which all releases are observable is September 2019; after that the data

are gradually missing. The missing observations at the beginning and end of the

sample are not problematic because the filtering techniques used for estimation

below handle them straightforwardly by producing recursively optimal forecasts for

missing values.

The next section investigates the extend of the revisions across VAT releases

and show that they are biased significantly. Using a simple trimming rule it also

illustrates the magnitude of the noise affecting the data and its asymmetric nature.

Accordingly, section 3 shows how the bivariate model presented in Labonne and

Weale (2020) can be extended with additional components for capturing these

revisions, and section 4 sets out and illustrates the two approaches considered

for cleaning the data of extreme measurement errors before nowcasting. Using a

set Monte Carlo experiments it is shown that the score driven cleaning method

outperforms the standard approach of discarding outliers through t-tests when

measurement errors follow non-Gaussian processes.

The nowcasting exercise is carried out in pseudo real-time to mimic a publication

schedule of a National Statistical Institute, and section 5 discusses the results.

These show that the score driven cleaning approach yields smaller revisions to the

monthly VAT-based output nowcasts than the t-test method, and that averaging both

approaches does not help. Secondly, despite producing early estimates which tends

to be revised downward, the VAT-based nowcasts can indicate timely an economic

recession, as is illustrated with the Covid-19 pandemic period. Finally, although the

VAT returns and MBS provide similar picture of monthly output changes overtime,

there can be some persistent discrepancy in their levels, confirming the finding of

Labonne and Weale (2020).
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2 Descriptive analysis of the revisions and noise

Each month a new series is released which shows a VAT-based quarterly turnover

observation for a new month as well as revised values for past months. The most

recent observation of this vector is stored in a vector showing the first releases

over time; the second observation is stored in a vector showing the second releases

over time, and so on. These successive snapshots of a same variable are usually

represented with a ‘revision triangle’ like Figure 1. The log quarterly turnover for a

given industry in month t, and observable in release i, is defined as yi,t. It is assumed

that the eleventh release is the final release such that i = 1, ..., 11. Observations are

still subject to some revisions after the eleventh release but only on a very small

scale. The VAT figures are observable consistently starting from two months after

the end of the reference period; hence the first release (i = 1) has a two-month lag.

y11,1 y10,1 y9,1 · · · y2,1 y1,1

y11,2 y10,2 y9,2 · · · y2,2 y1
i,2

...
...

...
...

...
...

y11,t y10,t y9,t · · · y2,t y1,t

y10,t+1 y9,t+1 · · · y2,t+1 y1,t+1

. . .
...

...
...

y3,t+8 y2,t+8 y1,t+8

y2,t+9 y1,t+9

y1,t+10


Figure 1: Illustration of the revision triangle of the VAT data for a given industry.
Columns and first subscripts indicate the releases while rows and second subscripts
indicate the month the figures relate to. The maturity of the data increases from
left to right and their timeliness increases from top to bottom. This matrix show
the data observable at t+ 10.

The VAT releases are weighted by ONS to account for the proportion of missing

respondents, but they remain biased and differ in their level of measurement errors.

To illustrate this fact a preliminary analysis is carried out on the revisions between

the early releases and the last release, twelve months after the reference period at

i = 11. These ten revisions are given by

revji,t = yji,t − y
j
11,t, i = 1, ..., 10, (1)

where here j = 1, ..., 75 indicates the industry index.

The first two rows of table 1 show the aggregate mean revision and its standard
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error for each early release. Revisions are computed at industry level using (1)

and weighted using the industries’ shares in total gross value added and shares of

turnover covered by firms in size bands one to three. Hence the weighted mean is

revi =

∑N
j=1

∑T
t=1wj,trev

j
i,t∑N

i=1

∑T
t=1wj,t

, (2)

where

wj,t = Share of turnover covered by firms in size bands 1 to 3 in industry i in month t×

Contribution of industry i in total gross value added in month t.

Gatz and Smith (1995) discuss several methods to compute the standard error of

the mean when the data are weighted. Here the simplest approach is adopted and

the standard error are computed as

sei =

√√√√ 1

NT

∑N
j

∑T
t wj,t(rev

j
i,t − rev

j
i )

2∑N
i

∑T
t wj,t

. (3)

Table 1: Weighted mean and standard error of revisions at each maturity level with
the implied z-scores.

Original data

j 1 2 3 4 5 6 7 8 9 10

Mean 0.19 -1.27 -1.02 -0.85 -0.69 -0.58 -0.37 -0.17 -0.13 -0.08
S.E. 0.31 0.19 0.13 0.11 0.1 0.1 0.07 0.04 0.04 0.03

Z-score 0.59 -6.63 -7.78 -7.49 -6.97 -5.72 -5.27 -4.15 -2.84 -2.69

Trimmed data

j 1 2 3 4 5 6 7 8 9 10

Mean 2.34 -0.5 -0.44 -0.39 -0.32 -0.22 -0.17 -0.11 -0.06 -0.05
S.E. 0.09 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.03 0.03

Z-score 25.11 -11.61 -11.05 -10.78 -10.26 -6.47 -5.36 -4.39 -2.11 -1.7

Note: Weighted mean of the revisions revji,t = yji,t − y
j
11,t, i = 1, ..., 10, using

equation (2) with GVA weights. Standard error of the mean using equation (3)

To get an indication of the potential biases present in the early releases the third

row of table 1 shows z-scores for weighted means. In aggregate, revisions are biased

at all maturities and their standard errors typically decrease with maturity. As

more data become available the releases become more precise and less volatile with
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a decreasing bias.

The presence of these biases in the VAT data requires a flexible nowcasting

approach capable of capturing large and potentially dynamic biases. The next

section shows how the bivariate model presented in Labonne and Weale (2020) may

be extended with an additional set of unobserved components aimed at capturing

these specific features of the data.

3 Nowcasting approach

The early VAT data are incomplete because most firms submit their VAT returns

with a delay. As more data accrue over time, the VAT figures are revised and their

precision improves. To produce a timely monthly estimate of turnover from the VAT

data it is necessary to use the earliest release, available with a two-month lag, and

since the data are revised over time, the model should also take into account the

accrual of new information and update past estimates. Both tasks can be achieved

by modelling the eleven VAT releases together in a multivariate framework.

Building on the bivariate model presented in Labonne and Weale (2020), each

VAT release is modelled as

yi,t = ỹ1,t + ri,t,

= ln3 +
1

3
x1,t +

1

3
x1,t−1 +

1

3
x1,t−2 + γ1,t + b

(j)
1,t + β1h

a
1,t + ri,t,

(4)

where ỹ1,t is the VAT-based quarterly turnover signal representing the economically

relevant information common to all release, x1,t the VAT-based monthly seasonally

adjusted figure, γ1,t a seasonal effect, b
(j)
1,t the bias of stagger j, β1 an Easter effect

and ri,t the observation error affecting release i. This measurement error is modelled

as the sum of a bias specific to each early release ci,t, i = 1, ..., 10 and white noise

εi,t:

ri,t = ci,t + εi,t, (5)

where the biases take the form of a random walk:

ci,t = ci,t−1 + τi,t, τi,t ∼ N(0, στ,i), (6)

and εi,t is white noise independent across releases:

εi,t ∼ N(0, σε,i). (7)
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By construction the last release in assumed to be unbiased. Importantly, the

presence of a measurement error in the final release means that the ‘true’ quarterly

turnover might never be observed; this is important because a substantial amount

of noise remains in the final release.

For clarity the covariate is denoted as zt and is modelled as

zt = x2,t + γ2,t + β2h
a
2,t. (8)

The covariate is as timely as the first release and is used to improve the measure

of the seasonally adjusted VAT-based monthly turnover x1,t. This is achieved by

modelling seasonally adjusted figures, x1,t and x2,t, together in a bivariate local

linear trend model. Specifically the logs of the seasonally adjusted covariate and

interpoland follow:

xt = µt + et, et ∼ N(0,Σe),

µt+1 = µt + νt + ξt, ξt ∼ N(0,Σξ),

νt+1 = νt + ζt, ζt ∼ N(0,Σζ),

(9)

where xt = (x1,t, x2,t)
′, µt = (µ1,t, µ2,t)

′ is the vector of dynamic trends, νt =

(ν1,t, ν2,t)
′ is the vector of dynamic slopes and et = (e1,t, e2,t)

′ is the vector of irregular

components. Unlike the measurement error, the irregular component carries economic

meaning, although both are modelled as white noise. The irregular variation in the

covariate are used to help separating the irregular component in the interpoland

from the measurement error. The vectors ξt = (ξ1,t, ξ2,t)
′ and ζt = (ζ1,t, ζ2,t)

′ refer to

the disturbances of the trend and slope components respectively.

It is assumed that the disturbances are uncorrelated across time and across

unobserved components, but there can be a contemporaneous correlation within

each unobserved component. It is through these contemporaneous correlations that

the covariate can be useful in estimating the interpoland. Specifically, the covariance

matrix Σh, h = ξ, ζ, e, is defined as

Σh =

(
σ2

1,h ρhσ1,hσ2,h

ρhσ1,hσ2,h σ2
2,h

)
,

with σ2
1,h the variance of the interpoland’s h component and σ2

2,h the variance of the

covariate’s h component.
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A deterministic rolling quarterly seasonal modelis used for the VAT data :

γ1,t = −γ1,t−2 − γ1,t−5 − γ1,t−8, (10)

where γ1,t is a three-month seasonal effect.

The seasonality in the covariate, which unlike in the VAT data, is observed

monthly and is not subject to measurement errors, can be captured with a stochastic

trigonometric model:

γ2,t =
6∑
j=1

γ2,j,t,

[
γ2,j,t+1

γ∗2,j,t+1

]
=

[
cosλj sinλj

−sinλj cosλj

][
γ2,j,t

γ∗2,j,t

]
+

[
ω2,j,t

ω∗2,j,t

]
, (11)

where λj = 2πj/12, for j = 1, ..., 5, and γ2,6,t+1 = −γ2,6,t + ω2,6,t. The disturbances

ω2,j,t and ω∗2,j,t are independently and normally distributed with zero means and

variance σ2
2,ω for j = 1, ..., 5, and σ2

2,ω/2 for j = 6; for a detailed exposition of

the trigonometric model and a comparison with other seasonal models see Proietti

(2000).

Separately, the stagger biases are modelled explicitly using a dynamic specification

taking the form of random walk:

b
(j)
1,t+1 = b

(j)
1,t + κ

(j)
1,t , κ

(j)
1,t ∼ N(0, σ2

1,κj), j = 2, 3. (12)

It is not possible to identify a bias in all of the three staggers, so the biases in the

second and third staggers are defined with respect to the first stagger, whose bias is

fixed to zero. The covariate is not subject to this bias.

Calendar effects can be classified in two broad categories: moving festivals and

trading days effects. The Easter period is the only significant moving festival in the

UK. Easter can fall either in March or in April and can overlap both months. The

common approach to estimate the Easter effect is due to Bell and Hillmer (1983)

and consists of setting Et = βht, with Et the Easter effect at period t, and ht the

proportion of the total number of days in the Easter period (Ht) that falls in month

t. For the Easter effects to add up to zero over a year, a representation similar to

Harvey (2006) is adopted:

Ei,t = βi(hi,t −
s∑
t=1

hi,t/s) = βih
a
i,t, i = 1, 2, (13)
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where s is the frequency, which is twelve here, and
∑s

t=1 h2,t = 1 while
∑s

t=1 h1,t = 3

(the three-month aggregates ending in April and May include both March and April;

hence two months for which ht is equal to one).

In the US, businesses can see their turnover fluctuate considerably round the

seven days preceding Easter and it is usual to set Ht = 7. However, Russ and Tariq

(2017) suggest using a specific Easter period for the UK. Their results show that it

is better to account for the period Good Friday to Easter Monday, the entire bank

holiday period, or from Monday before Easter Sunday to Friday following it. Here

the former is chosen and Ht is set to four.

State space representation and estimation

The observation and state equations can be cast together in state space form as

yt = Ztαt,

αt+1 = Tαt +Rηt, ηt ∼ N(0, Q),

α1 ∼ N(a1, P1),

(14)

where yt = (y1,t − log3, ..., y11,t − log3, zt)
′ and αt = (α′1,t, α

′
2,t)
′;

α1,t = (µ1,t, µ1,t−1, µ1,t−2, ν1,t, γ1,t, ..., γ1,t−8, e1,t, e1,t−1, e1,t−2, β1, b
1
1,t, b

2
1,t, b

3
1,t,

c2,t, ..., c10,t, ε1,t, ..., ε11,t)
′, α2,t = (µ2,t, ν2,t, γ2,t, ..., γ2,t−10, e2,t, β2)′. Appendix A shows

the full matrix representation of the model.

The unknown variance parameters are estimated via maximum likelihood, where

the log likelihood function is evaluated with the prediction error decomposition using

the Kalman filter’s output. The Kalman filter is a recursion initialised with the mean

vector a1 and covariance matrix P1 of the initial state vector which are unknown.

The trends, slopes, seasonal effects, Easter effects, stagger biases and release biases

are initialised with an exact diffuse initialisation, that is to say with arbitrary means

and infinite variances, while the stationary states (the irregular components and

noise) are initialised with zero means and their unconditional variances.

While the Kalman filter yields optimal predictions of the state vector, which is

suited to estimation and forecasting, the estimate of the state vector and its error

variance given the entire sample is given by the Kalman smoother. The Kalman

smoother is a backward recursion which makes use of the Kalman filter output when

the parameters are set to their maximum likelihood estimates. The interpolands in
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levels are constructed from the smoothed estimates of the states as

exp(x̂1,t) = exp(µ̂1,t + ê1,t), t = 1, ..., T. (15)

The Kalman filter and smoother algorithms with exact diffuse initialisation of

Durbin and Koopman (2012) and the associated log likelihood function is used.

When revisions are gradually missing towards the end of the series, as is illustrated

with the revision triangle in figure 1, the dimension of the observation vector yt

is adapted accordingly. Hence, the information from early revisions can be used

although not all revisions are available. The Kalman filter produces optimal forecasts

for these missing values.

4 Cleaning strategies

Estimating the nowcasting model presented in section (3) using the original VAT

data produces poor results. This is because the VAT releases are subject to extremely

large measurement errors; these are illustrated for the aggregated data in the first

panel of figure 8. Some of these errors are likely to come from firms reporting

turnover figures with decimal errors. Indeed, since only small and medium size

businesses are analysed, a single business cannot have an important impact on the

industry aggregate unless it is a reporting error. This also means that outlying

observations are most often positive because abnormally low figures do not affect

the aggregate very much.

To improve the VAT-based monthly output nowcasts it is necessary to clean the

data from these very large measurement errors beforehand. For this two separate

approaches are explored because there is a limited understanding regarding the

behaviour of the measurement affecting the VAT data.

4.1 Method 1: Sequentially discarding outlying observations

The first cleaning method consists of carrying out t-tests sequentially on the stand-

ardised observation errors. These are given by

ε̂si,t = ε̂i,t/
√
Hi,t, i = 1, ..., 11, (16)
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where Hi,t is the estimated variance. To derive the standardised observation errors

the bivariate model of Labonne and Weale (2020) is estimated at industry level for

each release, where the VAT data is modelled together with the covariate. After

estimation the Kalman smoother is used to retrieve the smoothed observation errors

and their estimated variance.

Each standardised observation error can be tested for significance using a two-

tailed t-test with the null hypothesis that the corresponding observation is not

an outlier. Outlying observations thus detected are discarded and replaced with

missing values. Next the bivariate model is estimated again and a new set of t-tests

are carried out on the standardised disturbances. This process is iterated until no

standardised disturbances reach the threshold indicating outliers.

It is common to choose a confidence interval of 95% which is associated with

critical values of ±1.96. However, this is a multiple testing problem and too many

outliers would be detected by chance. Because of the large number of industries

studied, analysing each outlying observation individually to decide whether or not it

should be excluded is not feasible. Therefore the confidence interval is set to a very

conservative range of 99.9% which is associated with critical values of ±3.3.

Outliers in these errors indicate observations which cannot be explained by the

model. These can be due to extremely large measurement errors or misspecification

in the model. Setting a high critical value increases the confidence that the outlying

observation detected is a measurement error and not a structural break or one-

off economically relevant event. In addition, since the data are rolling quarterly

aggregates, an outlier carrying economic meaning should appear in three consecutive

observation errors.

An important drawback of the method relying on t-tests is that it requires

choosing critical values indicating outlying observations, and this inevitably generates

a trade-off between discarding too many observations and taking the risk of not

detecting large measurement errors. It also assumes that measurement errors are

normally distributed. However, as discussed above, measurement errors in the VAT

data are most often positive; this could be one source of non-normality. The second

cleaning method proposed below deals with outlying observations without discarding

them completely and can handle non-Gaussian features.
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4.2 Method 2: Downweighting observations with a score

driven model

Creal et al. (2013) and Harvey (2013) derive predictive filters based on the score

of the conditional (or predictive) likelihood, which can arise from a wide range of

distributions. These score driven models provide an alternative approach for cleaning

where outlying observations are downweighted instead of being discarded completely.

The downweighting scheme depends on the magnitude of the prediction errors and

their estimated distribution. Using this approach it is possible to model openly the

non-Gaussian features in the distribution of the measurement errors. In a cleaning

context this method is used to derive pseudo observations where measurement errors

are downweighted depending on their magnitude.

A general location model

The model is based on the general location Dynamic Conditional Score (DCS) model

of Harvey (2013) and Harvey and Luati (2014). The model is univariate; each release

is modelled separately. The general location model is

yi,t = Ztat + vt,

at+1 = Tat + κut,
(17)

for releases i = 1, ..., 11, where κ is a vector of unknown parameters and ut is the

scaled score vector defined as

ut =
∂`t
∂at

.s−1
t , (18)

where `t = lnp(yi,t|Ztat; Θ) is the predictive log likelihood with Θ a vector of fixed

parameters. The scaling factor st is typically related to the information matrix.

Conditional on past observations yi,t follows a generalised asymmetric student-t

(AST) distribution of Zhu and Galbraith (2010). Hence

`t =− lnσ − ν1 + 1

2
ln
[
1 +

1

ν1

( yi,t − Zat
2ασK(ν1)

)2]
1(yi,t ≤ Ztat)

− ν2 + 1

2
ln
[
1 +

1

ν2

( yi,t − Ztat
2(1− α)σK(ν2)

)2]
1(yi,t > Ztat)

(19)

where σ is the scale parameter, α is the skewness parameter which can take values

in [0, 1], ν1 and ν2 are respectively the left and right tail parameters, K(ν) =

Γ((ν+1)/2)/(
√
νπΓ(ν/2)) (Γ(.) being the Gamma function) and 1(x) is an indicator
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variable equal to one if statement x is true and zero otherwise. The distribution is

skewed to the right if α < 1/2 and to the left if α > 1/2.

It is possible to recover well-known Student’s t-distributions by restricting and

redefining the parameters of the AST. With ν1 = ν2 (symmetric tails), α = 0.5 (no

skewness) and redefining the scale as σ = σK(ν), the AST reduces to the Student’s

t-distribution. With ν1 = ν2 and redefining the shape and scale parameters as

α = 1/(1 + γ2) and σ = (γ + 1/γ)σK(ν)/2 the AST is equivalent to the skewed

t-distribution of Fernández and Steel (1996). The skewed Student’s t-distributions

of Azzalini and Capitanio (2003) and Gomez et al. (2007) cannot be recovered by

simple reparametrisation.

An attractive feature of (19) is that each tail can have distinct rates of decay

captured by the tail parameters. This is particularly useful for the VAT data because

extreme measurement errors are most often positive. Hence the right side of the

distribution is likely to exhibit a fat tail but not necessarily the left side.

The score vector is

∂`t
∂at

=
ν1 + 1

1 + 1
ν1

(
vt

2ασK(ν1)

)2 .
vt

ν1(2ασK(ν1))2
1(yi,t ≤ Ztat)

+
ν2 + 1

1 + 1
ν2

(
vt

2(1−α)σK(ν2)

)2 .
vt

ν2(2(1− α)σK(ν2))2
1(yi,t > Ztat).

(20)

and the scaling factor is

st =
ν1 + 1

ν1(2ασK(ν1))2
1(yi,t ≤ Ztat)

+
ν2 + 1

ν2(2(1− α)σK(ν2))2
1(yi,t > Ztat).

(21)

The scaled score (18) thus takes the form

ut =
vt

1 +
v2t

ν1(2ασK(ν1))2

1(yi,t ≤ Ztat)

+
vt

1 +
v2t

ν2(2(1−α)σK(ν2))2

1(yi,t ≤ Ztat).
(22)

The form of (22) is close to the scaled score of Harvey (2013) (page 96), where

the scaling factor diverges slightly from the information quantity. Notably ut = vt

in the Gaussian case when ν1, ν2 → ∞ and α = 1/2. The distance between the

prediction error and the scaled score thus indicates the degree of nonlinear weighting
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and divergence from the Gaussian model.

Figure 2 shows the scaled score as a function of the prediction error. Low tail

parameters downweight the effect of large prediction errors, while the scaled score

reduces to the prediction error when tail parameters tend to infinity, which is the

behaviour intended with this specific choice of scaling factor. Note that low tail

parameters do not induce an overweighting of small prediction errors, as is typically

the case when downweighting the score with its information quantity (see notably

Delle-Monache and Petrella (2017)). The absence of overweighting is consistent with

a cleaning application where observation errors are downweighted whereas common

observations remains unaffected.

To compare the score driven with the typical approach of discarding outliers, 2

also plots the response function driving the latent states when the distribution of

the prediction error is constrained to be Gaussian (in this case, score driven models

for location parameters can be equivalent to the Kalman filter at steady state, see

Buccheri et al. (2021)) and outliers are discarded with t-tests. This response function

is an approximation of the response function implied by Gaussian state space models;

it is only an approximation because observation errors in state space models are

derived using the Kalman smoother which, unlike the Kalman filter, makes use of

the entire sample. While the use of t-tests generates a discontinuity in the response

function, the scaled score downweights prediction errors gradually depending on

their magnitude.

The benefit of the asymmetric Student’s t-distribution is illustrated with a

low tail parameters for negative prediction errors (dotted blue line). This set of

parameters yield a larger downweighting of positive errors but a linear response

for negative prediction errors. This behaviour of the scaled score with asymmetric

tails is especially fitted for the VAT data because observation errors tend to be

positive only. Finally, although low tail parameters never yield a response function

larger than the prediction error, this is not a limitation when the model is estimated;

indeed low tail parameters typically yield a smaller scale parameter which in turn

gives a greater scaled score (see equation (22)).

The recursion is initialised with the initial state vector a1 which is typically

unknown. While with the standard Kalman filter one can resort to a diffuse initial-

isation, this is not possible with score driven models. Instead the initial state vector

is estimated via maximum likelihood along the other unknown parameters. Specific-
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Figure 2: Illustration of the response function driving the unobserved components in
score driven and state space models. In a score driven model the response function is
the scaled score ut; In a state space model discarding outliers yields a linear response
function for prediction errors not detected as outliers and zero otherwise (critical
value of +-3.3). The scale parameter is set to one (σ = 1).
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ally, the vector of unknown fixed parameter Θ = (ν1, ν2, α, σ, κ, a
′
1)′ is estimated by

numerical maximisation of the log likelihood as

Θ̂ = arg max
Θ

N∑
t=3

`t.

To improve estimation an analogous Gaussian unobserved components model is

estimated beforehand and the resulting initial smoothed state vector is used as

starting values for a1.

Smoothing

It is not possible to generate directly smoothed unobserved components with score

driven techniques, but pseudo observations where non-Gaussian features have been

alleviated can be retrieved. This is what Caivano et al. (2016) propose through an

iterative algorithm which makes use of a Gaussian unobserved components model.

This method consists of the following iterative scheme

1: Estimate the score driven model (17) with the original data yi,t;

2: Generate pseudo observations as ỹi,t = Ztat + ut;

3: Estimate the unobserved components model with the pseudo observations

ỹi,t and retrieve the smoothed estimates α̂t;

4: Set vt = yi,t − Ztα̂t in (20) which yields new values of ut through (22);

5: Generate pseudo observations as ỹi,t = Ztα̂t + ut;

6: Iterate steps 3 to 5 until convergence.

If the estimated distribution is Gaussian ut = vt, which implies that the pseudo

observations constructed from the score driven recursion are equal to the original

observations. In this case the smoothing algorithm is reduced to the Kalman

smoother. Once the algorithm has converged the pseudo observations ỹi,t are used

for estimating model (14).

The pseudo observations thus derived are not free of measurement errors, but

the remaining noise should be normally distributed and can therefore be captured

effectively with standard state space techniques.
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4.3 Monte Carlo experiments

This section investigates the stability and efficiency of the score driven method

presented above when applied to a relatively short sample (approximately 100

observations) while comparing different level of restrictions on the model generating

the prediction errors. The most efficient model specification is then used in another

experiment designed to analyse the effectiveness of the score driven cleaning approach

compared to the more common strategy of discarding outliers through t-tests.

On the stability and efficiency of the score driven method

For studying the stability of the score driven estimation, synthetic data are generated

using model (17) with different specifications for the distribution of the prediction

error vt. Specifically, in each specification the vector of prediction error vt is generated

using an asymmetric student-t distribution with different levels of restriction on its

parameters. This is useful to understand if a greater flexibility in the distribution of

the prediction error is worth the increase in the number of parameters to estimate,

which can be difficult with a relatively short sample. The efficiency of the score driven

estimation is investigated using the root mean square error between the estimated

pseudo observation Ztât + ût and its true value (stored when generating the data).

The results are calculated from 100 simulations for each model specification.

The different model restrictions tested in the Monte Carlo experiment are shown

in table 2. The most flexible model can be skewed and have different tail parameters.

Restricting the skewness to zero but allowing for distinct tail parameters yields to

a Student-t model with distinct tail parameters. Conversely, restricting the tail

parameters to be identical but allowing the distribution to be skewed yields a Skewed

student-t model. Restricting the tail parameters to be identical and constraining the

skewness to zero yields the Student-t model, while constraining the tail parameters

to very large or infinite values but letting the skewness parameter vary yields a Skew

Normal distribution. Finally, restricting the tail parameters to very large or infinite

values and fixing the skewness to zero gives the Normal distribution.

Tables 3 to 11 show the results. Overall having distinct tail parameters is

important; however, constraining the skewness to zero yields to better results. Next

a new set of simulations examines the performance of the score driven approach

with this asymmetric distribution compared to the classic approach of discarding

outliers through t-tests.
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Table 2: Model specifications for the prediction error in the Monte Carlo experiments.
All specifications are derived from the Asymmetric Student-t distribution with
different degrees of restriction on the parameters.

Model Location Left tail Right tail Scale Shape

FT Skew Asy. µ > 0 ν1 > 0 ν1 > 0 σ > 0 1 > α > 0
FT Asy. µ > 0 ν1 > 0 ν1 > 0 σ > 0 α = 0.5
FT Skew µ > 0 ν > 0 σ > 0 1 > α > 0
FT µ > 0 ν > 0 σ > 0 α = 0.5
Skew µ > 0 ν =∞ σ > 0 1 > α > 0
Gaussian µ > 0 ν =∞ σ > 0 α = 0.5

Table 3: Simulation results with true parameters set to α = 0.5 ν2 = 1; σ =
5 ν1 = 250 k1 = 0.5

Model AIC ν1 ν2 k1 RMSE σ α

FT Skew Asy. -375.87 157.96 1.12 1.13 0.76 4.14 0.42
FT Asy. -373.91 146.72 0.93 0.98 0.66 4.2 0.5
FT Skew -357.25 1.28 1.28 2.2 1.26 3.47 0.44
FT -356.7 1.1 1.1 2.06 1.19 3.51 0.5
Skew -191.2 250 250 0.12 4.36 171.37 0.03
Gaussian -116.94 250 250 0.13 4.42 185.91 0.5

Table 4: Simulation results with true parameters set to α = 0.4 ν2 = 1; σ =
5 ν1 = 250 k1 = 0.5

Model AIC ν1 ν2 k1 RMSE σ α

FT Skew Asy. -361.77 167.55 0.96 1.21 0.69 3.71 0.35
FT Asy. -356.27 174.73 0.76 0.77 0.51 3.94 0.5
FT Skew -344.93 0.83 0.83 2.2 1.05 2.82 0.48
FT -346.64 0.81 0.81 2.27 1.06 2.73 0.5
Skew -147.93 250 250 0.1 4.35 31.58 0.02
Gaussian -62.89 250 250 0.1 4.47 53.65 0.5

Table 5: Simulation results with true parameters set to α = 0.3 ν2 = 1; σ =
5 ν1 = 250 k1 = 0.5

Model AIC ν1 ν2 k1 RMSE σ α

FT Skew Asy. -342.97 230.21 2.25 0.9 0.75 4.33 0.17
FT Asy. -327.04 225.32 1.43 0.47 0.6 4.33 0.5
FT Skew -306.46 0.99 0.99 2.17 1.26 3.71 0.43
FT -305.26 0.86 0.86 2.07 1.27 3.66 0.5
Skew -39.34 250 250 0.1 10.77 483.02 0.03
Gaussian 39.79 250 250 0.1 10.77 506.4 0.5
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Table 6: Simulation results with true parameters set to α = 0.5 ν2 = 3; σ =
5 ν1 = 250 k1 = 0.5

Model AIC ν1 ν2 k1 RMSE σ α

FT Skew Asy. -442.72 153.5 38.48 0.8 0.45 4.01 0.42
FT Asy. -439.23 150.49 23.02 0.72 0.38 4.18 0.5
FT Skew -443.4 49.55 49.55 1.06 0.59 3.85 0.37
FT -439.37 41.72 41.72 1.04 0.6 3.92 0.5
Skew -437.99 250 250 0.29 0.52 5.2 0.22
Gaussian -422.38 250 250 0.3 0.53 5.74 0.5

Table 7: Simulation results with true parameters set to α = 0.4 ν2 = 3; σ =
5 ν1 = 250 k1 = 0.5

Model AIC ν1 ν2 k1 RMSE σ α

FT Skew Asy. -438.26 206.28 14.12 0.81 0.47 4.02 0.28
FT Asy. -429.95 199.63 2.38 0.67 0.35 4.15 0.5
FT Skew -437.39 22.88 22.88 1.26 0.65 3.63 0.26
FT -426.02 6.01 6.01 1.11 0.63 3.87 0.5
Skew -430.74 250 250 0.25 0.72 5.41 0.08
Gaussian -401.75 250 250 0.26 0.73 6.39 0.5

Table 8: Simulation results with true parameters set to α = 0.3 ν2 = 3; σ =
5 ν1 = 250 k1 = 0.5

Model AIC ν1 ν2 k1 RMSE σ α

FT Skew Asy. -436.09 219.83 8.96 0.82 0.53 3.95 0.15
FT Asy. -419.19 215.88 1.63 0.64 0.39 4.04 0.5
FT Skew -427.77 12.6 12.6 1.53 0.71 3.38 0.28
FT -413.76 9.56 9.56 1.36 0.75 3.6 0.5
Skew -414.27 250 250 0.19 1.02 5.88 0.03
Gaussian -370.98 250 250 0.2 1.04 7.54 0.5

Table 9: Simulation results with true parameters set to α = 0.5 ν2 = 250; σ =
5 ν1 = 250 k1 = 0.5

Model AIC ν1 ν2 k1 RMSE σ α

FT Skew Asy. -466.59 147.93 162.4 0.77 0.23 4.08 0.47
FT Asy. -462.55 127.95 134.07 0.75 0.24 4.25 0.5
FT Skew -467.09 173.79 173.79 0.74 0.2 4.2 0.47
FT -463.8 143.6 143.6 0.73 0.2 4.31 0.5
Skew -467.49 250 250 0.53 0.07 4.45 0.48
Gaussian -464.1 250 250 0.52 0.06 4.58 0.5
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Table 10: Simulation results with true parameters set to α = 0.4 ν2 = 250; σ =
5 ν1 = 250 k1 = 0.5

Model AIC ν1 ν2 k1 RMSE σ α

FT Skew Asy. -471.89 193.63 180.92 0.66 0.18 4.07 0.24
FT Asy. -459.99 178.46 116.8 0.67 0.21 4.35 0.5
FT Skew -472.04 189.51 189.51 0.69 0.17 4.12 0.27
FT -461.24 145.06 145.06 0.65 0.18 4.41 0.5
Skew -474.47 250 250 0.52 0.06 4.3 0.23
Gaussian -462.05 250 250 0.5 0.06 4.63 0.5

Table 11: Simulation results with true parameters set to α = 0.3 ν2 = 250; σ =
5 ν1 = 250 k1 = 0.5

Model AIC ν1 ν2 k1 RMSE σ α

FT Skew Asy. -469.5 208 162.17 0.69 0.23 4.07 0.17
FT Asy. -454.32 204.48 95.99 0.69 0.26 4.41 0.5
FT Skew -470.87 182.87 182.87 0.73 0.22 4.11 0.17
FT -454.88 133.44 133.44 0.71 0.22 4.48 0.5
Skew -473.94 250 250 0.5 0.06 4.31 0.13
Gaussian -455.11 250 250 0.49 0.06 4.8 0.5

The score driven approach yields a clear benefit when one tail exhibits a

very low rate of decay

In this section a score driven model with an AST distribution featuring distinct

tail parameters is applied to clean the VAT data using the smoothing algorithm

discussed above. This nonlinear approach is compared to the more common strategy

of discarding outliers through t-tests after estimating a Gaussian state space model.

For this experiment, the synthetic data are generated using the Kalman filter where

the parameters of the model are chosen to be close to the parameters estimated

with the VAT data. In a second step, noise following an asymmetric Student’s

t-distribution is added. Different specification for the asymmetric Student’s t-

distribution are compared.

Table 12 shows the results. The score driven approach performs significantly

better when the tail parameters are low, while its relative advantage decreases when

the tail parameters get close to 3. Experimentation with the VAT data shows that

its tail parameters are close to one for many industries, suggesting that the score

driven approach should be better strategy here.
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Table 12: Simulations investigating the efficiency of the cleaning method. Root
mean square log approximation error (×100). The log approximation error is given
by the difference between the log observation yt minus the log smoothed observation
ŷt. With the score driven approach the pseudo observation is generated with the
iterative score driven smoothing scheme presented in the previous section; when
observations are discarded with t-tests the pseudo observation is the signal in that
period given by the Kalman smoother. Results from 100 simulations. Bold figures
indicate the lowest value.

ν2 α Score driven approach Discarding outlying observations

1 0.3 4.48 5.38
1 0.4 4.49 5.31
1 0.5 6.38 6.51
3 0.3 2.35 2.34
3 0.4 2.07 2.07
3 0.5 1.9 1.91

250 0.3 2.1 2.1
250 0.4 1.87 1.88
250 0.5 1.82 1.83

4.4 Averaging both cleaning approaches

Although measurement errors decrease as more firms submit their VAT returns,

the final estimate remains very noisy. Consequently, there is no benchmark series

which can be used to compare the cleaned series with, complicating the evaluation

of the cleaning methods. This is in contrast to the Monte Carlo experiments of the

previous section where the data generating process is know and hence the evaluation

straightforward. These experiments are useful for deciding which degree of flexibility

in the distribution of the measurement error is reasonable, and how the approach

compares to the standard strategy of using t-tests under a specific environment.

But they should be used with care when drawing conclusions on the modelling

approach most adapted to the VAT data because the nature of the measurement

errors affecting them remains mostly unknown. In this context, where there is an

important uncertainty regarding the appropriate modelling framework, a popular

solution is to average estimates from a set of models instead of choosing a particular

model assumed to be optimal.

The simplest approach to model averaging consists of using equal weights for all

models, but weighting models using Bayesian Model Averaging (BMA) techniques

typically works better, especially in an uncertain and changing environment. BMA
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techniques rely on models’ likelihood functions, that is the likelihood of observing

the data given a particular model (which includes regressors, relationship between

variables and prior distributions). As such models are weighted depending on the

likelihood that the observed data arise from their processes; hence, importantly, the

data used for model evaluation must be common to all models.

The model selection problem faced in this paper diverges from those typically

encountered in the economic and forecasting literature because the uncertainty

arises from the cleaning method, and the very nature of cleaning consists of altering

the data. While BMA is used to overcome the uncertainty arising from model

specification when there is no or very little uncertainty regarding the data, the

uncertainty here arises from the data used for estimation and forecasting. It is

difficult to know which dataset - the data when outliers are excluded using t-tests

or the data arising from the score driven cleaning method - is closer to reality. In

this context BMA is not applicable.

Given the high uncertainty surrounding the data and the inability to compare

the different cleaning strategy to a common benchmark, since the true data are

never observed, using equal weights in the averaging scheme is the only reasonable

option.

4.5 Illustration of the cleaning strategies using one industry

as a case study

This section illustrates both cleaning strategies using one industry as a case study.

This industry is one of the largest in terms of gross value added for small and

medium size firms.

T-test approach

The t-test approach is illustrated first. In this strategy outlying observations are

discarded sequentially using t-tests. Outlying observations are detected by testing

the standardised observation errors given by (16) for significance with a critical

value of +- 3.3. The standardised observation errors resulting from the first round

of estimation using the original VAT data are shown in the first panel of figure 3.

Each of those points may be interpreted as two-tailed t-tests and the horizontal

lines indicate the threshold of +/- 3.3. Three observations are outside this threshold

and therefore considered as outliers.
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A complimentary standard robustness check with Gaussian state space models

consists of analysing the one-step ahead forecast errors given by

vst = vt/
√
Ft, (23)

with Ft the variance of the prediction error.

The Kalman filter relies on normally distributed one-step ahead forecast errors,

an assumption which can be verified by testing the standardised prediction errors

given by (23) for normality using the skewness and kurtosis statistics. Bowman and

Shenton (1975) show that if the normality assumption is respected these statistics

should asymptotically be distributed as

S ∼ N(0, 6/n), K ∼ N(0, 24/n),

where n is the sample size.

The second panel of figure 3 shows the standardised prediction error resulting

from the first round of estimation. Panel three shows the histogram and kernel

density estimate of these errors, while panel four shows their associated Q-Q plot.

From these figures it is clear that the standardised prediction errors are not normally

distributed. This is confirmed with skewness and kurtosis statistics of 3.33 and 15.56,

which yield z-scores of 11.93 and 22.49, both clearly rejecting the null hypothesis of

normally distributed errors.

In the second round of estimation the observations previously detected as outliers

in the first round are discarded and replaced with missing values. The results are

presented in figure 4. There is one outliers in the standardised observation errors,

and the standardised prediction errors fail again to be normally distributed with

skewness and kurtosis statistics of 5.2 and 14.

Discarding the outlier found in the second round of estimation and re-estimating

the model yields the results presented in figure 5. No outliers are detected, and with

skewness and kurtosis statistics of -0.06 and 2.62 (giving z-scores of -0.19 and -0.67)

the null hypothesis that the standardised prediction error is normally distributed is

not rejected any more. Since no new outliers are detected, the data after the second

round of estimation can be used for estimating the nowcasting model.

23



Score driven approach

Score driven models provide an alternative approach for cleaning where outlying

observations are downweighted instead of being discarded completely.

The estimated degrees of freedom with the score driven method are 250 for the

left tail and 0.62 for the right tail. The degrees of freedom for the right tail is

very low, but this is necessary to capture the extremely large outlying observations

observable in the first plot. The left tail, on the other hand, is Gaussian, hence

negative prediction errors are never downweighted and the pseudo observations are

equal or below the original figures, but never above.

Figure 6 illustrates the downweighting behaviour of the score driven cleaning

approach. The red line shows the downweighting applied to the data, which are

shown using the vertical bars. Large outliers are downweighted whereas relatively

small errors are not affected. Importantly negative prediction errors are not subject

to any downweighting due to the very large tail parameter on the left side of the

distribution.

24



0 20 40 60 80 100

−
1

0
1

2
3

4
5

Standardised observation error

Histogram and density estimates
of the standardised prediction errors

−1 0 1 2 3 4 5

0.
0

0.
4

0.
8

0 20 40 60 80

−
1

0
1

2
3

4
5

Standardised prediction error
S = 3.33 (Z−score =11.93), K = 15.56 (Z−score =22.49)

−2 −1 0 1 2

−
1

0
1

2
3

4
5

Normal Q−Q plot of prediction errors

Figure 3: Results from the bivariate model estimated with VAT and MBS data for
the transport industry. The VAT data are taken from the first release. The density
of the standardised prediction errors is derived using a kernel density estimation
with a Gaussian kernel (density() function in R). The first 25 standardised prediction
errors are excluded because of the diffuse initialisation. Only outputs from the
model with which it is not possible to re-construct the original data are shown to
respect the confidentiality of the VAT respondents.
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Figure 4: Results from the bivariate model estimated with VAT and MBS data for
the transport industry. The VAT data are taken from the first release. VAT figures
at time points 40, 73 and 76 are discarded. The density of the standardised
prediction errors is derived with a kernel density estimation with a Gaussian kernel
(density() function in R). Only outputs from the model with which it is not possible
to re-construct the original data are shown to respect the confidentiality of the VAT
respondents.
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Figure 5: Results from the bivariate model estimated with VAT and MBS data
for the transport industry. The VAT data are taken from the first release. VAT
figures at time points 40, 73, 76 and 93 are discarded. The density of
the standardised prediction errors is derived with a kernel density estimation with
a Gaussian kernel (density() function in R). Only outputs from the model with
which it is not possible to re-construct the original data are shown to respect the
confidentiality of the VAT respondents.
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Figure 6: Illustration of the score driven cleaning method using VAT data from the
first release (industry 493T495). The vertical bars show the prediction errors in log
units derived from the score driven model with an asymmetric student distribution.
The red line shows the difference in logs between the original VAT data and the
pseudo ”clean” observations derived using the score driven smoothing algorithm.
Only outputs from the model with which it is not possible to re-construct the original
data are shown in order to respect the confidentiality of the VAT respondents.
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5 Pseudo real-time exercise

The VAT data are regularly revised over time; i.e. the first estimate of the VAT

observation for March 2020 using the first release of the quarterly March VAT

observation (released in May) differs from the estimate when estimation is carried in

July when the second and third release for May have been published, and quarterly

estimates for April and May have become available. To investigate how the model

would have performed in real time in May 2020 when forecasting monthly output

for March 2020 it is important to use only the data that were available at the time.

Proceeding this way it is then possible to analyse the revisions to the nowcasts as

more data become available.

To analyse the performance of the model over time, estimation is carried out

over a period of 40 months using 40 vintages of the data. Figure 7 illustrates two

successive vintages. This is a pseudo real-time exercise because all VAT releases are

cleaned together using the last vintages. Cleaning the VAT observations at each

step of the rolling estimation in addition to estimating the nowcasting model would

slow done the analysis excessively.
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Figure 7: Illustration of the successive vintages data used for estimation in a pseudo
real-time setting. yi,t represents the quarterly VAT data from release i in month t.
Columns and first subscripts indicate the releases while rows and second subscripts
indicate the month the figures relate to. The maturity of the data increases from left
to right and their timeliness increases from top to bottom.zt represents the monthly
covariate (the MBS for large businesses) in month t. In step t of the real-time pseudo
exercise only black terms are available for estimation, while in step t+ 1 both black
and red terms are used.

At each step of the rolling estimation the vector of seasonally adjusted monthly
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output estimates (both smoothed and filtered) in logs x̂T = (x̂T1 , x̂
T
2 , ..., x̂

T
N)′, where

T indicates the last month all maturities are observable and N = T + 10, are stored.

By taking T forward gradually it is possible to simulate the real-time accrual of the

data.

The revisions to the seasonally adjusted figures of interest are:

revisionji,t = x̂11
t − x̂

j
t , j = 1, ..., 10, (24)

where x̂t is the log of monthly seasonally adjusted output derived from the Kalman

filter or smoother.

Two rounds of rolling estimation carried out, one for each data set (i.e. the one

obtained when excluding outliers and the one obtained with the score driven cleaning

approach). The revisions implied by both methods are analysed and compared with

the revisions resulting from averaging nowcasts.

Sources of revision

There are four channels through which the accrual of releases can yield to revisions.

First, noise in the aggregate figures should decrease with maturity, i.e. y4,t should

be a better estimate of the signal ỹ1,t than y1,t is. More precise aggregate figures

should yield better estimates of the underlying seasonally adjusted figures.

Secondly, as revised aggregate figures for month t become available, early figures

for periods succeeding t also become available. Notably, when all releases for month t

are available, estimates of aggregate figures for periods up to t+ 10 are also available

(as illustrated in figure 7). Assuming that the target is the seasonally adjusted

monthly estimate for month t, the data succeeding t will affect the smoothed estimate

of the target. This is because the smoothed estimate is the best estimate given past,

current and future observations.

Another source of revision arising from using data succeeding the targeted

period and affecting the smoothed estimate comes from the temporal aggregation

constraints. All monthly figures are related through the temporal aggregation

constraints because the observations are overlapping; modifying one quarterly figure

affects the entire series of seasonally adjusted estimates. For these reasons large

revisions to the smoothed series should not be taken to imply that the early releases

are uninformative.
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5.1 Aggregating then nowcasting

This section reports the results when cleaned VAT observations are aggregated across

all seventy five industries before carrying out the real-time estimation exercise. This

approach contrasts with nowcasting output for each industry and then aggregating

these nowcasted figures.

The first plot of Figure 8 shows the original eleven releases of VAT observations

taken from the most recent vintage. The figures represent all 75 industries and the

data have been aggregated using gross value-added weights. Missing observations

in the original series have been replaced with the average observation of the series

for aggregation purpose. This plot illustrates well the extend and magnitude of the

noise affecting the VAT data.

The second plot shows the same observations where extreme outliers have been

discarded using t-tests, while the third plot shows the pseudo observations derived

with the score driven method. From these two plots it is possible to get a much

better picture of the VAT-based quarterly turnover.

The score driven cleaning approach produces smaller revisions and aver-

aging does not help

Table 13 shows the mean absolute revision derived with (24) across each early release.

These are revisions to the monthly seasonally adjusted output estimate in logs. The

score driven method produces the lowest revisions in absolute values on average.

Importantly the revisions’ magnitude decreases monotonically as the maturity of

the data increases, with a mean absolute revision of 1.3 percentage point for the

first release, compared to 0.06 percentage point for the last.

Table 13: Mean absolute revision (×100) each cleaning approach and across releases.
The revisions represent the differences in logs between the early estimates (i =
1, ..., 11) and last estimate (i = 12) of monthly seasonally adjusted output (equation
(24)). Bold figures indicate the lowest mean absolute revision at each maturity.

.
Release i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

Average 1.335 1.2 0.829 0.636 0.402 0.333 0.273 0.239 0.165 0.126
Score driven 1.306 1.187 0.509 0.403 0.261 0.227 0.175 0.15 0.099 0.06

T-test 1.692 1.532 1.315 1.006 0.626 0.508 0.42 0.37 0.278 0.213
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(c): T−test

(b): DCS

(a): Original
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Figure 8: Aggregate non-seasonally adjusted VAT releases (representing approxim-
ately a quarter of GVA in the UK). Original VAT observations (most recent data
vintage) compared with the observations obtained when using the t-test and score
driven cleaning approaches.
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Early VAT-based estimates tend to be revised towards

Table 14 shows the mean revision with its standard error and associated t-statistic

across each early releases. While the absolute revision is useful to analyse the

magnitude of the revisions, the mean revision and its standard error are used to

investigate the biases in the early releases. Here again the score driven method

performs better than the other two approaches as it tends to produce lower means

and standard errors.

Table 14: Mean revision and standard error (×100) with implied t-statistic for each
cleaning approach and across releases. The revisions represent the differences in
logs between the early estimates (i = 1, ..., 11) and last estimate (i = 12) of monthly
seasonally adjusted output (equation (24)). Bold figures indicate the lowest mean
revision at each maturity.

.
Cleaning Stat. j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

Average Mean -0.931 -0.906 -0.532 -0.336 -0.198 -0.155 -0.12 -0.115 -0.084 -0.067
Average S.E. 0.274 0.214 0.16 0.12 0.067 0.059 0.053 0.046 0.036 0.032
Average t-stat -3.397 -4.227 -3.327 -2.795 -2.982 -2.616 -2.249 -2.522 -2.319 -2.082

Score driven Mean -0.977 -0.79 -0.286 -0.175 -0.123 -0.075 -0.046 -0.033 -0.029 -0.021
Score driven S.E. 0.283 0.229 0.085 0.07 0.049 0.045 0.038 0.034 0.02 0.014
Score driven t-stat -3.454 -3.454 -3.359 -2.503 -2.484 -1.659 -1.215 -0.96 -1.42 -1.483

T-test Mean -0.875 -1.015 -0.773 -0.495 -0.275 -0.234 -0.193 -0.197 -0.138 -0.113
T-test S.E. 0.336 0.294 0.272 0.202 0.113 0.101 0.09 0.081 0.071 0.063
T-test t-stat -2.609 -3.455 -2.846 -2.455 -2.443 -2.314 -2.137 -2.428 -1.949 -1.802

But unfortunately the first five releases exhibit a significant negative bias. This

is not necessarily a bad feature because it can arise from relatively small standard

errors, indicating a low volatility in the mean revisions which is desirable since these

are small. However, this also implies that the monthly output estimates tend to be

revised downwards as more data become available.

Figure 9 helps to shade light on the nature of this negative bias; it shows the first

release of monthly output alongside the last release and the implied revision. While

both estimates tend to be close, there are few discrepancies where the first release

shows a large increase in output which does not materialise in the last release. This

is probably due to the cleaning approach which fails to capture large measurement

errors in these few months. The negative bias is likely to be driven by these few large

discrepancies. These large negative revisions can also be seen in figure 10 which
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shows output estimates from each releases across the entire real-time estimation

period.

b: log(11th estimate) − log(1st estimate)

a: Monthly seasonally adjusted interpoland
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Figure 9: Seasonally adjusted figures representing small and medium size businesses
in 75 industries (a quarter of GVA in the UK). First and last (eleventh) VAT
estimates. Estimation using pseudo real-time data. The VAT-based figures are
derived using the score driven method for cleaning. Index July 2014=100.

5.1.1 The VAT data can provide a timely indication of economic slumps

Although the VAT-based monthly output estimates tend to be revised towards, they

can still provide a timely picture of economic activity. Figure 11 shows the first

releases of the VAT-based monthly output estimates alongside the estimate arising

from the MBS. The VAT-based estimate indicate a clear important reduction of

economic activity starting from March 2020, albeit on of a smaller magnitude than

the picture given by the MBS.
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Figure 10: VAT-based nowcasted monthly output. Seasonally adjusted figures
representing small and medium size businesses in 75 industries (a quarter of GVA in
the UK). First VAT estimate with the next ten revisions. Estimation using pseudo
real-time data. The VAT-based figures are derived using the score driven method
for cleaning. Index July 2014=100.

5.1.2 Overtime the VAT and MBS-based monthly output signals coincide

but there remains some differences in their levels

Figure 12 shows the monthly output figures derived using the latest available vintage

of the VAT data, that is in the last step of the real-time estimation exercise. Here

both cleaning strategies are illustrated. These series are compared with the monthly

output estimate derived with the MBS data. The first plot shows the levels while

the second plot shows log differences.

Both VAT-based series show similar trends, but these diverge locally with the

trend underlying the MBS figures. This is consistent with the result obtained

in Labonne and Weale (2020). Separately, the score driven approach produces

monthly changes closer to the MBS monthly changes, with a correlation coefficient

of 0.87 when using the score driven approach compared to 0.76 when using the

t-test cleaning. Hence, in addition to producing lower revisions, the score driven
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Figure 11: Real-time nowcasts of monthly output. Seasonally adjusted figures
representing small and medium size businesses in 75 industries (a quarter of GVA in
the UK). First VAT estimate and the four subsequent revisions. The VAT-based
figures are derived using the score driven method for cleaning. Index February
2020=100.

approach yields a picture of economic activity closer to the MBS that the t-test

cleaning method.

The covariate helps in estimating VAT-based monthly changes

Table 15 shows the estimation results when estimating the nowcasting model (14)

with VAT observations cleaned using the score driven method, since the previous

section shows that it is the cleaning method which yields the lowest revisions and

therefore is preferable.

The first row shows variance and correlation estimates of the local linear trend

model, which estimated smoothed components are plotted in figure 13. The VAT and

MBS disturbances in the local linear trend model governing the monthly seasonal

adjusted output estimates are strongly correlated. This highlights the importance

of the MBS as covariate for improving VAT-based monthly output.

The bias in the first release changes rapidly

The second row of table 15 shows the variance estimates of the releases biases’

disturbances, while the release biases are plotted in figure 14. These show that
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Figure 12: VAT-based and MBS-based nowcasted monthly output. Seasonally
adjusted figures representing small and medium size businesses in 75 industries (a
quarter of GVA in the UK). The VAT data are taken from the most recent vintage.
Index January 2011=100. Corr log differences MBS and VAT when score driven
cleaning = 0.87; Corr log differences MBS and VAT when t-test cleaning = 0.76.

the bias in the first release changes significantly over time, a phenomenon less

pronounced in more mature releases.

The first two releases are significantly more noisy than later ones

The third row shows the estimated variance of the releases’ observation errors.

The first and second releases are much more noisy than later releases. Separately,

estimated noise remains relatively strong in the last release, which shows that even

mature figures are subject to non-negligible measurement errors.
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Table 15: Estimation results from the nowcasting model using the latest vintage of
VAT data cleaned with the score driven approach. The first line shows the estimated
variance and correlation parameters of the bivariate local linear trend model at
the core of the nowcasting model. The second line shows the estimated variance
parameters of the disturbances in the release biases. The third line shows the
estimated variance parameters of the release observation errors. Variance parameters
are reported ×1e4.

σµ,1 σν,1 σe,1 σµ,2 σγ,2 σν,2 σe,2 ρν ρµ ρe
0.620 0.090 7.990 3.970 0 0.110 5.220 1 1 0.930
σc,1 σc,2 σc,3 σc,4 σc,5 σc,6 σc,7 σc,8 σc,9 σc,10

0.130 0.030 0.010 0.010 0.010 0 0 0 0.010 0.060
σε,1 σε,2 σε,3 σε,4 σε,5 σε,6 σε,7 σε,8 σε,9 σε,10 σε,11

5.620 5.860 0.170 0.270 0.040 0.080 0.210 0.370 0.380 0.090 0.210
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Figure 13: Smoothed estimates, in log units, of the bivariate local linear trend model
at the core of the nowcasting model. Estimation with the most recent data vintages
which have been cleaned using the score driven method and aggregated across all 75
industries using gross value-added weights. Monthly seasonally adjusted figures are
derived by adding up the trend with the irregular component.
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Figure 14: Bias of the first ten VAT releases with respect to the eleventh (and last)
release. Log units. Estimation with the most recent data vintages which have been
cleaned using the score driven method and aggregated across all 75 industries using
gross value-added weights.

40



6 Conclusion

This paper has presented and illustrated a flexible nowcasting approach for data

subject to large measurement errors and revisions. It has shown that, in the

presence of extremely large and asymmetric measurement errors, using a score

driven approach works better than discarding outlying observations. This finding is

illustrated through the production of a monthly output series from noisy VAT-based

quarter figures which can be used as a timely indicator of the economic recession

resulting from the coronavirus pandemic.
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Appendix A Multivariate model for nowcasting

The state space representation (??) is

yt = Ztαt,

αt+1 = Tαt +Rηt, ηt ∼ N(0, Q),

α1 ∼ N(a1, P1).

0m×n as a matrix of zeros with m rows and n columns. The observation matrix is

Zt = (Z0,t, Zn, Zχ, Zc), where

Z0,t = (Z1,t, Z1,t, Z1,t, Z1,t, Z1,t, Z1,t, Z1,t, Z1,t, Z1,t, Z1,t, Z1,t, Z2,t)
′;

Z1,t = (1/3, 1/3, 1/3, 0, 1, 08×1, 0, 1/3, 1/3, 1/3, h
a
1,t, 1

1
b,t, 1

2
b,t, 1

3
b,t, 1

1
χ,t, 1

2
χ,t, 1

3
χ,t, 014×1),

Z2,t = (024×1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, h
a
2,t). The variables 1jb,t, j = 1, 2, 3, are

stagger dummy variables relating to the stagger biases, while 1jχ,t, j = 1, 2, 3, are

stagger dummy variables relating to the persistent measurement errors linked to the

eleventh release (which therefore affect all releases).

The state vector is αt = (α′1,t, α
′
2,t)
′, where

α1,t = (µ1,t, µ1,t−1, µ1,t−2, ν1,t, γ1,t, ..., γ1,t−8, e1,t, e1,t−1, e1,t−2, β1, b
1
1,t, b

2
1,t, b

3
1,t, χ

1
1,t, χ

2
1,t, χ

3
1,t)
′,

α2,t = (µ2,t, ν2,t, γ2,1,t, γ
∗
2,1,t, γ2,2,t, γ

∗
2,2,t, ..., , γ2,5,t, γ

∗
2,5,t, γ2,6,t, e2,t, β2)′.

Zn =


1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

; Zε =


0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0

; Zc =


1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

.

The transition matrix is T = diag(T1,LLT , T1,γ, T1,e, T1,β, T1,b, T1,ε, T2,LLT , T2,γ, T2,e, T2β),

where T1,LLT =


1 0 0 1

1 0 0 0

0 1 0 0

0 0 0 1

; T1,γ =


0 0 −1 0 0 −1 0 0 −1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

;

T1,e =


0 0 0

1 0 0

0 1 0

 ; T1,β = 1, T1,b = I2; T1,ε = 03×3; T2,LLT =

(
1 1

0 1

)
; T2,e = 0

T2,γ = diag(T2,1,γ, T2,2,γ, T2,3,γ, T2,4,γ, T2,5,γ,−1); T2,j,γ =

(
cos(2πj/12) sin(2πj/12)

−sin(2πj/12) cos(2πj/12)

)
;
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T2,β = 1. R = diag(R1,µ, R1,ν , R1,e, R1,b, R1,ε, R2,µ, R2,ν , R2,γ, R2,e), Tε = 010×10

Tχ = 010×10, Tc = 110×10, where R1,µ = R1,e =
(

1 0 0
)′

; R1,ν = 1; R1,b = I2;R1,ε =

I3 R2,µ = R2,ν = R2,e = 1; R2,γ = I11.

Q is a 23× 23 matrix with diagonal (σ2
1,ξ, σ

2
1,ζ , σ

2
1,e, σ

2
1,κ2, σ

2
1,κ3, σ

2
1,ε1, σ

2
1,ε2, σ

2
1,ε3,

σ2
2,ξ, σ

2
2,ζ , σ

2
2,ω, ..., σ

2
2,ω, σ

2
2,ω/2, σ

2
2,e), and Q[1,5] = ρξσ1,ξσ2,ξ, Q[2,6] = ρζσ1,ζσ2,ζ , Q[3,7] =

ρeσ1,eσ2,e.

For estimation, Q is expressed using the Cholesky factorisation as Q = LL′ and

minimise the negative log likelihood function with respect to the parameters in

the lower triangular matrix L. Thus, the estimated variance-covariance matrix Q is

positive semi-definite.
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