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1 Introduction
This technical report has a very specific goal: to examine gains in nowcasting com-
paring a linear regression model using a single aggregate variable with models which
utilise all the underlying disaggregate series. At first, this might seem like a task
with limited scope. However, the applied research should view this approach as only
a part of an overall assessment framework for novel datasets. Our main aim is to
provide a framework which answers the following question regarding a candidate
dataset of new indicators: “Should a national statistics institute invest resources
in organising, editing, polishing and publishing this novel dataset of indicators and
why?”.

There are many ways one could provide an answer to the above question. There
can be legit qualitative answers such as the importance that some indicators have
in monitoring real-time social conditions (e.g., infections/deaths during the COVID-
19 pandemic) which do not require further numerical support. Or, there can be
quantitative answers which provide empirical evidence that a specific dataset is useful
in specific research tasks. This report attempts to answer the big question on dataset
usefulness taking the second stance; that of the gains in empirical exercises.

Kapetanios and Papailias (2021a), and their work in the subsequent technical
report1, already assess a wide dataset of novel indicators, the ONS Real-Time Indi-
cators dataset, in the construction of a coincident index to monitor economic con-
ditions during a crisis using the COVID-19 pandemic as a case study. This already
provides empirical evidence that a large set of (aggregate) indicators can be useful
to applied researchers and, therefore, it worths being maintained and continuously
published with as less delay as possible. However, in this approach their focus is on
different indicator categories (from VAT indices to the use of debit and credit cards,
from online job advertisements to COVID-19 surveys, from online retail prices to
traffic near ports, etc.).

Then, Kapetanios and Papailias (2021c, 2021d) provide the framework to eval-
1See Kapetanios and Papailias (2021b) which assesses the dataset based on gains in economic

nowcasting.
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uate a specific dataset of indicators comparing gains in economic nowcasting. In
particular, they evaluate the predictive content of a targeted set of indicators which
is VAT indices and the CHAPS-based indicator of credit and debit card purchases
and whether their use improves nowcasting. Therefore, one could argue that we al-
ready have the framework to assess whether a novel set of indicators is useful to the
applied researcher; that is via means of nowcasting. Of course nowcasting is not the
only way to assess indicators, however it is one of the most direct ways and this is
why we also adopt it in the current approach of this report.

The previous approaches either evaluate a large number of indicators across dif-
ferent categories (Kapetanios and Papailias, 2021a, 2021b) or focus on the use of
some targeted aggregate indicators (Kapetanios and Papailias, 2021c, 2021d). In
the current approach we take a step further and focus on a specific set of indica-
tors, however this time our aim is to compare gains in nowcasting using the a linear
model with the main aggregate series versus models which use all the underlying
disaggregate series.

The motivation behind this approach is to shed light in all aspects of the novel
dataset and not just the main index which is what -usually- most of the researchers
do. In particular, there might be cases where one could employ the main index
and identify trivial gains in nowcasting and -wrongly- conclude that this dataset is
not really useful in economics applications. However, we must not forget that this
“aggregate” index is based on a large (possible very large) universe of disaggregate
series which, in turn, might prove useful when used in nowcasting and, thus, revert
the conclusion.

It is important to highlight that our aim here is to provide a proof-of-concept
and standardise the way a novel dataset should be considered by national statistics
institutes, such as the ONS in the UK. This justifies our use of the online job ad-
vertisements and the port traffic data which are components of the ONS Real-Time
Indicators dataset. Ideally, one would like to access the data in its most disaggregate
level however, given data access restrictions, this report compares the main aggre-
gates (Total UK indices - Level I) to their disaggregates (Individual Categories or
Regions - Level II). Still, this allows for adequate evidence in support of the evalua-

5



tion framework.
The rest of this report is structured as follows. Section 2 briefly describes the

dataset used in our illustrative examples. Section 3 provides the details on the
econometric setup. Section 4 explains the out-of-sample nowcasting exercise design.
Section 5 briefly discusses the empirical results. Finally, Section 6 offers the con-
cluding remarks.

2 Data Description and Limitations
As discussed in the previous section, this task is heavily based on nowcasting. For
this, one requires a variable which is to be used as the target (i.e. the variable to be
estimated or, in terms of linear regression, the dependent variable). In what follows,
we set the target variable as the “monthly index values of the gross domestic product
(GDP) and the main sectors in the UK to four decimal places”.2. Then, we switch
our focus on two components of the wider ONS Real-Time Indicators dataset. These
are: (i) the Online Job Advertisements3, and (ii) the traffic in UK ports as measured
by the visiting number of ships4.

Starting with the Online Job Advertisements dataset, our aim is to evaluate
gains in nowcasting comparing a linear model where the only predictor is the to-
tal online job advertisements index across all industries in the UK (Aggregate -
Level I) to a large number of models which use the corresponding 43 subindices
of the online job advertisements (Level II aggregates) which include the follow-
ing industries & regions: Accounting/Finance, Admin/Clerical/Secretarial, Cate-
gory Unknown, Catering & Hospitality, Charity/Voluntary, Construction/Trades,
Creative/Design/Arts&Media, CustomerService/Support, Domestic Help, East Mid-
lands, East of England, Education, Energy/Oil&Gas, Engineering, England, Facili-

2As provided on this ONS page; however, we downloaded the same data via the Macrobond
data aggregator.

3As provided on this ONS page; however, we downloaded the same data via the Macrobond
data aggregator.

4As provided on this ONS page; however, we downloaded the same data via the Macrobond
data aggregator.
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ties/Maintenance, Graduate, Healthcare& Social Care, HR & Recruitment, IT/Computing/Software,
Legal, London, Management/Exec/Consulting, Manufacturing, Marketing/Advertising/PR,
North East, North West, Northern Ireland, Other/General, Part-Time/Weekend,
Property, Region Unknown, Sales, Scientific/QA, Scotland, South East, South West,
Transport/Logistics/Warehouse, Travel/Tourism, Wales, West Midlands, Wholesale
& Retail, Yorkshire & the Humber.

Continuing with the traffic in UK ports, our aim is to evaluate gains in nowcast-
ing comparing a linear model where the only predictor is the extracted trend of the
total visits of ships across all UK ports (Aggregate 1 - Level I) and/or the actual
number of the total visits of ships across all UK (Aggregate 2 - Level I), or the com-
bination of these two aggregates. Then, we aim to compare nowcasting based on a
large number of models which use the corresponding 43 subindices of the traffic in
ports which include the following categories & regions: All of UK Cargo & Tankers
SA, All of UK Cargo & Tankers Unique Ships, All of UK Trend Cargo & Tankers,
All of UK Unique Ships, Belfast, Belfast Cargo & Tankers, Belfast Cargo & Tankers
Unique Ships, Belfast Unique Ships, Dover, Dover Unique Ships, Felixtowe, Felix-
towe Cargo & Tankers Unique Ships, Felixtowe Unique Ships, Forth, Forth Cargo &
Tankers Unique Ships, Forth Unique Ships, Grimsby & Immingham, Grimsby & Im-
mingham Cargo & Tankers, Grimsby & Immingham Cargo & Tankers Unique Ships,
Grimsby & Immingham Unique Ships, Liverpool, Liverpool Cargo & Tankers, Liver-
pool Cargo & Tankers Unique Ships, Liverpool Unique Ships, London, London Cargo
& Tankers, London Cargo & Tankers Unique Ships, London Unique Ships, Milford
Have Cargo & Tankers Unique Ships, Milford Haven Unique Ships, Portsmouth,
Portsmouth Cargo & Tankers Unique Ships, Portsmouth Unique Ships, Southamp-
ton, Southampton Cargo & Tankers, Southampton Cargo & Tankers Unique Ships,
Southampton Unique Ships, Tees & Hartlepool, Tees & Hartlepool Cargo & Tankers
Unique Ships, Tees & Hartlepool Unique Ships, Tyne, Tyne Cargo & Tankers Unique
Ships, Tyne Unique Ships.

Our target variable, i.e. the GDP, is expressed in the monthly frequency. On
the other hand, the indicators of interest are -originally- expressed in weekly and/or
daily frequency. This would allow, in principle, the use of the most recent daily
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data (where available) to perform a daily nowcasting exercise for the GDP. However,
something like this would be -perhaps- too noisy and not so informative. For this
reason, we translate any daily data to the weekly frequency by using the weekly
averages. This would allow to calculate four nowcasts per month.

The daily-turned-weekly real-time indicator datasets are available from 2019-04-
07 to 2021-12-19 (i.e., 142 weekly observations). To match the same data as the
real-time indicators, we use the monthly GDP from 2019-04-30 to 2021-10-31 (i.e.,
31 monthly observations)5. In this case we face the following difficulties: (i) first,
there is a mismatch in the frequencies, and (ii) second, the GDP sample size is
very small to be used in any estimation. To overcome both the above issues we
employ a “simple-and-standard” disaggregation of the monthly to weekly time series
by smoothing in a fashion similar to Boot et al. (1967) to obtain the weekly equivalent
of the target variable6. This allows to end up with a weekly version of the GDP,
which includes 134 observations, and allows to have enough observations in-sample
for the first nowcasting round. Then, once the weekly nowcasts are obtained, we can
aggregate back to the monthly frequency and compare the estimate with the actual
value.

Then, for the suggested framework to perform a pseudo out-of-sample cross-
validation, we need to: (i) ensure stationarity of our time series, and (ii) replicate
the pattern of missing values due to publication lags. Regarding stationarity, we
take the period-to-period log growth of the monthly GDP and the first difference of
the real-time indicators (Level I aggregates and Level II disaggregates). Next, we
use a T − 2 months as publication lags for the monthly GDP, which is equivalent to
T − 8 weeks in the weekly disaggregated version, and T − 0 lags for the real-time
indicators7.

5This variable is published with a 2 months publication lag which explains the fact that values
for November and December for 2021 are not observed during the time this report is being written

6By now, there exist other improved disaggregation methodologies, such as Santos Silva and
Cardoso (2001), which , however, rely on explanatory variables. In this case, we want to keep our
approach as less complicated and robust as possible, this is why we prefer a disaggregation based
on smoothing rather than on other indicators.

7This might not be the case for the independent researcher but the ONS in-house researcher
does have early access to this data.
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Stationarity transformations, data descriptions and publication lags are available
in the supporting .xlsx file.

3 Econometric Setup

3.1 Main Aggregates

Let yt, t = 1, ..., T , be the target variable and xt be the main Level I aggregate to
be used in the modelling. We assume that there exists the linear relationship which
can be described as:

yt = a+ βxt + ut (1)

with ut ∼ WN(0, σ2
u) with σ2

u < ∞. It is important to notice that this is a rather
simplistic modelling strategy as we totally ignore lags of yt which could improve
estimation and, thus, nowcasting. However, our purpose here is not to produce
the best nowcasts for yt. Instead, we want to compare a model which uses the
Level I aggregates with models which somehow utilise the Level II disaggregates and
conclude if there is any value on maintaining this dataset or not.

The latter case would involve the xt = (x1t, ..., xNt)
′ Level II disaggregated pre-

dictors. We do not need to assume a particular data generating process for yt but
simply posit the existence of a representation of the form:

yt = a+ f(x1t, ..., xNt) + ut, (2)

which implies that E(ut|x1t, ..., xNt) = 0. While the potential nonlinearity in Equa-
tion (2) might, in principle, be worth exploring, it is extremely difficult to model
nonlinearities in this context.8 As a result, we consider an approximating linear

8However, in the next section we also include nowcasts based on random forests, neural networks
and support vector regression which are able to capture non-linear relationships.
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representation of the form:

yt = a+
N∑
i=1

βixit + ut, (3)

where ut denotes a martingale difference process; depending on the estimation method
this assumption can be relaxed to the standard assumptions in the classical linear
regression framework.

3.2 Best Subset Selection

The next modelling approach is the best subset selection. Under this framework,
the applied researcher aims to evaluate all possible models and choose the one which
optimises a selected statistic; this statistic can be a measure of fit, such as R2 or an
information criterion, or can be an error-based statistics such as the Means Squared
Error (MSE).

The main difficulty with this approach is that there are 2N model combination to
be evaluated. This means that if we have a small universe of indicators, say N = 10,
we would have to evaluate 1,024 models which is easily doable with modern CPU
power. However, in our case we have an FW set of 63 indicators which results in
some millions of models to be estimated at each round in the evaluation exercise;
something like this becomes almost infeasible in standard computers. This problem
can be solved by adopting the “best forward stepwise” (BFW) regressions.

In the BFW approach, we start with the null model:

yt = a+ ut, (4)

which includes only a constant. Then, we also estimate the model by adding the first
available variable, say x1t:

yt = a+ β1x1t + ut, (5)

and evaluate the chosen statistic of interest. We adopt the model which optimises
the chosen statistic and then proceed with the next variable.
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It is important to highlight that this approach can provide a first variable selection
and indicate the relative importance of indicators, however it might miss information
hidden in the cross-section of variables which are not sequential to each other.

3.3 Penalised Regressions

Penalised regression is one of the most popular ways for sparse regression in the
literature which, depending on the nature of the penalty, also allows variable selection
without having to consider the ordering of the variables. Various penalties have been
suggested in order to effectively estimate the βi parameters assigning zeros to the
variables which should not be used in the regression (meaning that these are not part
of the true model) and, consequently, in the nowcasting exercise. In what follows we
denote βN = (β1, ..., βN)

′ and xN = (x1, ..., xN)
′.

3.3.1 Ridge Regression

Ridge Regression creates a linear regression model that is penalised with the L2-
norm which is the sum of the squared coefficients. This has the effect of shrinking
the coefficient values (and the complexity of the model) allowing some coefficients
with minor contribution to the response to get close to zero (but not exactly equal to
zero). The parameter estimators, β̂Ridge, are then computed by solving the following
optimisation problem:

min
βN

{
T∑
t=1

(
yt − a− β

′

Nxt,N

)2
+ λ

N∑
i=1

β2
i

}
, (6)

for given values of a and λ. λ is the penalty parameter. OLS corresponds to the
no penalty case, where β̂Ridge → β̂OLS as λ → 0. Also, it can be easily seen that
β̂Ridge → 0 as λ → ∞. By centering the columns of x, the intercept becomes α̂ = y.
Therefore, we typically center y, xN and do not include the intercept term.
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The variance and bias of the ridge regression estimator can be shown to be:

V ar
(
β̂Ridge

)
= σ2Wx

′

NxNW

Bias
(
β̂Ridge

)
= −λWβ

where W =
(
x

′
NxN + λI

)−1. It can be shown that the total variance (
∑

j V ar
(
β̂j

)
)

is a monotone decreasing sequence with respect to λ, while the total squared bias
(
∑

j Bias2
(
β̂j

)
) is a monotone increasing sequence with respect to λ. The standard

OLS assumptions are also required for Ridge regression.
Nowcasting using Ridge regression is straightforward and easy, in particular when

implemented in a direct rather than iterated way (e.g., see, Marcellino et al., 2006).
The algorithm can be described in three steps.

1. Replace the loss function with minβN,h

{∑T
t=1

(
yt − a− β

′

N,hxt−h,N

)2
+ λ

∑N
i=1 |βi,h|

}
,

where h is the forecast horizon of interest, and compute β̂h

Ridge
for each of a

set of values of the tuning parameter λ.

2. Use a cross-validation (CV) scheme to select the preferred tuning parameter,
λ̂, by minimising the cross-validated squared error risk.

3. Using the β̂h

Ridge
associated with λ̂, produce the h − step ahead forecasts (or

nowcasts) as β̂h

Ridge
xT,N (+α̂).

The above procedure is then recursively repeated in order to obtain the R out-
of-sample nowcasts, ŷT+h, ..., ŷT+R+h .

It must be noted here that the above nowcasting implementation algorithm can
be applied in all variable selection methods. Therefore, all the sparse regression
methods which follow can produce nowcast estimates in the same fashion.

Since Ridge regression does not set coefficients exactly equal to zero (unless λ →
∞, in which case they are all zero), ridge regression cannot perform variable selection
and, even though it might perform well in terms of prediction accuracy, it does not
offer a clear interpretation of the resulting nowcasts.
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3.3.2 LASSO Regression

Least Absolute Shrinkage and Selection Operator (LASSO) creates a regression
model that is penalised with the L1-norm which is the sum of the absolute coeffi-
cients. Because of the nature of this constraint, it tends to produce some coefficients
that are exactly equal to 0 and, hence, gives more interpretable models. Simulation
studies suggest that the LASSO enjoys some of the favourable properties of both
subset selection and ridge regression. As originally noted by Tibshirani (1996), the
lasso regression is better suited for predictor selection compared to the Ridge regres-
sion because the former method performs model/predictors selection keeping those
variables which are more suitable for forecasting. The optimisation problem now
becomes:

min
βN

{
T∑
t=1

(
yt − a− β

′

Nxt,N

)2
+ λ

N∑
i=1

|βi|

}
. (7)

Although we cannot write the explicit formulas for the bias and variance of the
LASSO estimator, the general trend is that the bias increases as λ increases and the
variance decreases as λ increases.

Following Bühlmann and van de Geer (2011), we summarise the key properties
and corresponding assumptions for the LASSO. Considering the true model in Equa-
tion (3), it is:

1

T

T∑
t=1

(
xt,N

(
β̂LASSO − β

))2
= OP

(
N∑
i=1

|βi|
√

log (N) /T

)
, (8)

where OP (·) is with respect to N ≥ T → ∞. This implies that we achieve consistency
of prediction if

∑N
i=1 |βi| ≪

√
T/ log (N).()

Faster convergence rate and estimation error bounds with respect to the L1- or
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L2-norm can be achieved using the so-called oracle optimality condition:

1

T

T∑
t=1

(
xt,N

(
β̂LASSO − β

))2
= OP

(
s0ϕ

−2 log (N) /T
)
,

N∑
i=1

∣∣∣β̂i

LASSO
− βi

∣∣∣q = OP

(
s
1/q
0 ϕ−2

√
log (N) /T

)
, q = {1, 2} , (9)

where s0 equals the true number of non-zero regression coefficients and ϕ2 is the
compatibility constant or restricted eigenvalue which is a number depending on the
compatibility between the design and the L1-norm of the regression coefficient. The
above rate is optimal up to the log (N) factor and the restricted eigenvalue ϕ2.

Additionally to the oracle optimality and assuming the beta-min condition:

min
i∈Sc

0

|βi| ≫ ϕ−2
√

s0 log (N) /T ,

we obtain the screening variable property:

P
[
Ŝ ⊇ S

]
→ 1 (N ≥ T → ∞) , (10)

where Ŝ = {i; β̂i

LASSO
̸= 0, i = 1, .., N} and S = {i; βi ̸= 0, i = 1, .., N}. Consistent

variable selection then means

P
[
Ŝ = S

]
→ 1 (N ≥ T → ∞) . (11)

3.3.3 Adaptive LASSO

Zou (2006) introduces the adaptive LASSO (A-LASSO) estimator where the L1-
norms in the penalty are re-weighted. He shows that, if a reasonable initial estimator
is available, under appropriate conditions, the A-LASSO correctly selects covariates
with nonzero coefficients with probability converging to one, and that the estimators
of nonzero coefficients have the same asymptotic distribution they would have if the
zero coefficients were known in advance.
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The optimisation problem now is:

min
βN

{
T∑
t=1

(
yt − a− β

′

Nxt,N

)2
+ λ

N∑
i=1

ŵi |βi|

}
, (12)

where ŵi = 1/| β̂init,i|γ, β̂init is an initial estimator and γ > 0. Usually, the initial
estimator is the LASSO estimator with the constraint parameter tuned in the usual
way with CV scheme as discussed earlier. Then, in the second stage CV is again
used to select the λ parameter in Equation (12).

Following Haung et al. (2008) we consider the following conditions to hold for
the variable selection and asymptotic normality of the A-LASSO in large samples.

1. The errors are iid.

2. The initial estimators β̂init,i are rT -consistent for the estimation of certain ηT i:

rT max
i≤N

∣∣∣β̂init,i − ηT,i

∣∣∣ = OP (1) , rT → ∞

where ηT i are unknown constants depending on βN and satisfy

max
i/∈JT1

|ηT,i| ≤ MT2,
{∑

i∈JT1

(
1

|ηT i|
+

MT2

|ηT i|2

)2
}1/2

≤ MT1 = o (rT ) .

3. Adaptive irrepresentable condition. For sT1 =
(
|ηT i|−1 sgn (βi) , i ∈ JT1

)′ and
some κ < 1

1

T

∣∣∣∣∣x′

iX1

−1∑
T11

sT1

∣∣∣∣∣ ≤ κ

|ηT i|
, ∀i /∈ JT1.

4. The constants {kT ,mT , λT ,MT1,MT2, bT1} satisfy

(log T )I{d=1}

{
(log kT )

1/d

T 1/2bT1

+ (logmT )
1/d T

1/2

λT

(
MT2 +

1

rT

)}
+

MT1λT

bT1T
→ 0.

5. There exists a constant τ1 > 0 such that τT1 ≥ τ1 for all T .
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Following Haung et al. (2008), Condition 1 is standard for variable selection in
linear regression. Condition 2 assumes that the initial β̂init,i actually estimates some
proxy ηT,i of βi so that the weights are not too large for β0i ̸= 0 and not too small for
β0i = 0. The adaptive irrepresentable condition becomes the strong irrepresentable
condition for the sign-consistency of the Lasso if the |ηT,i| are identical for all i ≤ N .
Condition 4 restricts the numbers of covariates with zero and nonzero coefficients,
the penalty parameter, and the smallest non-zero coefficient. Condition 5 assumes
that the eigenvalues of ΣT11 are bounded away from zero, which is reasonable since
the number of nonzero covariates is small in a sparse model. If the above conditions
hold, then P

[
β̂A−LASSO = β

]
→ 1 .

3.3.4 Elastic Net

Elastic Net (EN) creates a regression model that is penalised with both the L1-norm
and L2-norm. Introduced by Zou and Hastie (2005), the elastic net has the effect of
effectively shrinking coefficients (as in ridge regression) and setting some coefficients
to zero (as in LASSO). The optimisation problem now is:

β̂naiveEN = min
βN

{
T∑
t=1

(
yt − a− β

′

Nxt,N

)2
+ λ1

N∑
i=1

|βi|+ λ2

N∑
i=1

β2
i

}
. (13)

The above is called the naive elastic net. A correction which leads to the elastic net
is then:

β̂EN = (1 + λ2) β̂
naiveEN .

The correction factor (1 + λ2) is best motivated from the orthonormal design where
1
T
x

′
NxN = I. The main advantage of the elastic net is its usefulness when the number

of predictors is much bigger than the number of observations, which is usually the
case in our big data context.

The reason for adding an additional squared L2-norm penalty is motivated by
Zou and Hastie (2005) as follows. For strongly correlated covariates, the LASSO may
select one but typically not both of them (and the non-selected variable can then be
approximated as a linear function of the selected one). From the point of view of
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sparsity, this is what we would like to do. However, in terms of interpretation, we
may want to have two even strongly correlated variables among the selected variables:
this is motivated by the idea that we do not want to miss a “true” variable due to
selection of a “non-true” which is highly correlated with the true one.

3.4 Factor Extraction via PCA

Another set of methods for modelling with a large panel of indicators involves the
adoption of dimension reduction via techniques which do not require or impose any
iid assumptions. In what follows we discuss the Principal Components Analysis
(PCA) which has dominated the literature. This method is also frequently used for
creating composite indicators (see Kapetanios and Papailias, 2021, and the references
therein, for a recent discussion using the same dataset).

Factor methods have been at the forefront of developments in forecasting with
large data sets and in fact started this literature with the influential work of Stock
and Watson (2002a). The defining characteristic of most factor methods is that
relatively few summaries of the large data sets are used in forecasting equations,
which thereby become standard forecasting equations as they only involve a few
explanatory variables.

The main assumption is that the co-movements across the indicator variables xt,
where xt = (x1t · · · xNt)

′ is a vector of dimension N × 1, can be captured by a r × 1

vector of unobserved factors Ft = (F1t · · ·Frt)
′:

x̃t = Λ′Ft + et (14)

where x̃t may be equal to xt or may involve other variables, such as lags, leads or
products of the elements of xt, and Λ is an r × N matrix of parameters describing
how the individual indicator variables relate to each of the r factors, which we denote
with the terms ‘loadings’. In Equation (14) et is a zero-mean I(0) vector of errors
that represent, for each indicator variable, the fraction of dynamics unexplained by
Ft, the ‘idiosyncratic components’. The number of factors is assumed to be finite.
So, implicitly, in Equation (3) α′ = α̃′Λx̃t, where Ft = Λx̃t, which means that a
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small, r, number of linear combinations of x̃t represent the factors and act as the
predictors for yt, the target variable. The main difference between different factor
methods relates to how Λ and the factors are estimated.

The use of PCA for the estimation of factor models is, by far, the most popular
factor extraction method. It has been popularised by Stock and Watson (2002a,b),
in the context of large data sets, although the idea had been well established in the
traditional multivariate statistical literature. The method of principal components
is simple. Estimates of Λ and the factors Ft are obtained by solving:

V (r) = min
Λ,F

1

NT

N∑
i=1

T∑
t=1

(x̃it − λ′
iFt)

2, (15)

where λi is an r×1 vector of loadings that represent the N columns of Λ = (λ1 · · ·λN).
One, non-unique, solution of Equation (15) can be found by taking the eigenvectors
corresponding to the r largest eigenvalues of the second moment matrix X ′X, which
then are assumed to represent the rows in Λ, and the resulting estimate of Λ provides
the forecaster with an estimate of the r factors F̂t = Λ̂x̃t. To identify the factors up to
a rotation, the data are usually normalised to have zero mean and unit variance prior
to the application of principal components; see Stock and Watson (2002a) and Bai
(2003). We note that factor estimates obtained via PCA estimation are min(

√
N, T )-

consistent. Further, if
√
T/N = o(1), using estimated factors rather than true factors

in predictive regressions produces negligible estimation errors. PCA estimation of the
factor structure is essentially a static exercise as no lags or leads of xt are considered.

3.5 Random Forests

In the above sections, we have reviewed methods based on the specification of a
parametric model, typically a linear regression, which links the target variable y

with a, possibly big, number of explanatory variables x. Regression trees are based
on a partition of the space of the dependent variable y into M subsets Rm, with
y allocated to each subset according to a given rule and modelled as a different
constant cm in each subset. This is a powerful idea, since it can fit various functional
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relationship between y and a set of explanatory variables x, say y = f(x), without
imposing linearity or additivity, which are commonly assumed in standard linear
regression models. Let

y = f(x) =
M∑

m=1

cm1 (x ∈ Rm) ,

where 1 denotes the indicator variable taking value 1 if the condition is satisfied, 0
otherwise. Then, given a partition, minimising:

∥y − f(y)∥2 =
N∑
i=1

(yi − f(yi))
2 , (16)

with respect to cm yields ĉm = ym, where ym denotes the sample mean of y over each
region Rm.

A much more difficult problem is to find the best partition in terms of minimum
sum of squares. Even in the two dimensional case, i.e when N = 2 so that X =

[x1, x2] , finding the best binary partition to minimise the sum of squares is not
computationally feasible. Instead, greedy algorithms are commonly used. The idea
is to do one split at a time. Consider a splitting variable j (where j = 1, .., k) and a
splitpoint s such that a region R1(j, s) is defined as

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}

Then, the sum of squares) is minimised with respect to j and s. For each splitting
variable, the split point s can be found and, hence, by scanning through all of the
variables Xj, determination of the best pair (j, s) is feasible. Having found the best
split, the data are partitioned into two resulting regions and the same splitting
exercise is repeated on each of the two regions. Then this process is repeated on
all of the resulting regions and so on. How many rounds of the algorithm are done
determines how deep the resulting tree is. On one hand, shallow trees might fail to
capture the structure of the data. On the other hand, however, deeper trees might
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overfit the data and, hence, do poorly in prediction.
There are ways to further improve the performance of regression trees. Bootstrap

requires choosing with replacement a subsample and re-estimating the tree in order
to get a sampling distribution of various statistics. Bagging is a general method
that generates multiple versions of a predictor and uses these to get an aggregated
predictor. Breiman (1996) offers an overview. In the context of regression trees,
bagging averages across trees is estimated with different bootstrapped samples.

Random forests were introduced by Breiman (2001). The idea is exactly as
bagging applied on regression trees: to grow a large collection of de-correlated trees
(hence, the name forest) and then average them. This is achieved by bootstrapping
a random sample at each node of every tree. In order to induce “decorrelation” of
trees, when growing trees, before each split, select a subset of the input variables at
random as candidates for splitting. This prevents the “strong” predictors imposing
too much structure on the trunk of the tree.

3.6 Neural Networks

We continue with machine learning-based nonlinear methodologies and include two
artificial neural network (ANN)-based approaches: (i) the Multilayer Perceptron
(MLP) neural networks, and the (ii) Extreme learning machines (ELM) neural net-
works. Both MLP and ELM are feedforward artificial neural network with -at least-
three layers of nodes: an input layer, a hidden layer (or multi-layers) and an output
layer. Except for the input nodes, each node is a neuron that uses a nonlinear acti-
vation function. Both MLP and ELM are supervised machine learning approaches.
In the following subsections, we provide some introduction to these approaches dis-
cussing their advantages and disadvantages. However, as it is beyond the scope of
this task, we refer the reader to Ord et al. (2017) for more theoretical details on
neural networks.

Figure 1 and Figure 2 provide two examples of the discovered layers using MPL
and EML. Figure 1 is the estimation on the first in-sample date (2020-01-26), whereas
Figure 2 is the estimation on the last in-sample date (2021-10-24). Both MPL and
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EML use the sigmoid functions in the neurons. Learning occurs in both methods
by changing connection weights after each piece of data is processed, based on the
amount of error in the output compared to the expected result. This is an example
of supervised learning and is usually carried out through backpropagation. However,
in the two neural networks incarnations we apply here we use the lasso approach
instead of backpropagation.

3.6.1 Multilayer Perceptron

MLP is one of different kinds of ANNs. The term MLP can be used to loosely
describe any feedforward ANN, sometimes strictly referring to networks composed
of multiple layers of perceptrons (with threshold activation). MLPs with a single
hidden layer are usually called “vanilla” neural networks; this is also the case in our
empirical results later.

If a multilayer perceptron has a linear activation function in all neurons, that is,
a linear function that maps the weighted inputs to the output of each neuron, then
linear algebra shows that any number of layers can be reduced to a two-layer input-
output model. In MLPs we can have some neurons to use a non-linear activation
function.

The most commonly used form of ANNs for forecasting is the feedforward mul-
tilayer perceptron. The one-step ahead forecast ŷt+1 is computed using inputs that
are lagged observations of the time series or other explanatory variables. I denotes
the number of inputs pi of the ANN. Its functional form can be described as:

ŷt+1 = α +
H∑

h=1

βhg

(
γ0i +

I∑
i=1

γhipi

)
. (17)

In the equation above, w = (β,γ) are the network weights with β = [β1, . . . , βH ]

and γ = [γ11, . . . , γHI ] being the output and the hidden layers respectively. α and γ0i

are the biases of each neuron, which for each neuron act similarly to the intercept
in a regression. H is the number of hidden nodes in the network and g(·) is a non-
linear transfer function which is usually either the sigmoid logistic or the hyperbolic
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tangent function. ANNs can model interactions between inputs, if any. The outputs
of the hidden nodes are connected to an output node that produces the forecast.

In the time series forecasting context, neural networks can be perceived as equiv-
alent to nonlinear autoregressive models. Lags of the time series, potentially together
with lagged observations of explanatory variables, are used as inputs to the network.
During training, pairs of input vectors and targets are presented to the network. The
network output is compared to the target and the resulting error is used to update
the network weights. ANN training is a complex nonlinear optimisation problem and
the network can often get trapped in local minima of the error surface. In order to
avoid poor quality results, training should be initialised several times with different
random starting weights and biases to explore the error surface more fully.

Note that the objective of training is not to identify the global optimum. This
would result in the model over-fitting to the training sample and would then gener-
alise poorly to unseen data, in particular given their powerful approximation capa-
bilities. Furthermore, as new data becomes available, the prior global optimum may
no longer be an optimum. In general, as the fitting sample changes, with the avail-
ability of new information, so do the final weights of the trained networks, even if the
initial values of the network weights were kept constant. This sampling-induced un-
certainty can again be countered by using ensembles of models, following the concept
of bagging.

Advantages

1. MLPs are useful in research for their ability to solve problems stochastically,
which often allows approximate solutions for extremely complex problems like
fitness approximation.

2. MLPs are universal function approximators as shown by Cybenko’s theorem,
so they can be used to create mathematical models by regression analysis. As
classification is a particular case of regression when the response variable is
categorical, MLPs make good classifier algorithms.
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3. MLPs were a popular machine learning solution in the 1980s, finding applica-
tions in diverse fields such as speech recognition, image recognition, and ma-
chine translation software, but thereafter faced strong competition from much
simpler (and related) support vector machines.

Disadvantages

1. Computations are difficult and often time consuming.

2. The proper functioning of the model depends on the quality of the training.

3.6.2 Extreme Learning Machines

ELMs are feedforward neural networks for classification, regression, clustering, sparse
approximation, compression and feature learning with a single layer or multiple layers
of hidden nodes, where the parameters of hidden nodes need not be tuned. These
hidden nodes can be randomly assigned and never updated, i.e. they are random
projections but with nonlinear transforms, or can be inherited from their ancestors
without being changed. In most cases, the output weights of hidden nodes are usually
learned in a single step, which essentially amounts to learning a linear model.

Given a training set ℵ = {(xi, ti) | xi ∈ Rn, ti ∈ Rm, i = 1, . . . , N}, activation
function g(x), and hidden node number Ñ , we can describe the ELM generic algo-
rithm as follows.

Step 1 : Randomly assign input weight wi and bias bi, i = 1, . . . , Ñ ,

Step 2 : Calculate the hidden layer output matrix H,

Step 3 : Calculate the output weight β defined as:

β = H†T, (18)

where T = [t1, . . . , tN ]
T. In principle, this algorithm works for any infinitely dif-

ferential activation function g(x). Such activation functions include the sigmoidal
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functions as well as the radial basis, sine, cosine, exponential, and many non-regular
functions. The upper bound of the required number of hidden nodes is the number
of distinct training samples, that is Ñ 6 N .

Advantages & Disadvantages. The black-box character of neural networks, in
general, and ELMs in particular is one of the major concerns that repels engineers
from application in unsafe automation tasks. This particular issue was approached
by means of several different techniques. One approach is to reduce the dependence
on the random input. Another approach focuses on the incorporation of continuous
constraints into the learning process of ELMs which are derived from prior knowl-
edge about the specific task. This is reasonable, because machine learning solutions
have to guarantee a safe operation in many application domains. The mentioned
studies revealed that the special form of ELMs, with its functional separation and
the linear read-out weights, is particularly well suited for the efficient incorporation
of continuous constraints in predefined regions of the input space.

3.7 Support Vector Regression

The final methodology we include in this report the Support Vector Regression
(SVR). It can be argued that SVR is the adapted form of Support Vector Machines
when the dependent variable is numerical rather than categorical. A major benefit
of using SVR is that it is a non-parametric technique. Unlike the classical linear re-
gression which depends on the Gauss-Markov theorem, the output model from SVR
does not depend on distributions of the underlying dependent and independent vari-
ables. Instead the SVR technique depends on the kernel function which is employed
to captured the underlying possibly non-linear relationships.

The success of the SVR is based on the fit of the kernel functions in the data. The
most popular kernel functions include: (i) the linear, (ii) the polynomial, (iii) the
sigmoid, and (iv) the radial basis function. It is important to highlight that different
kernel functions result to different models and, therefore, different estimations and
subsequent nowcasts. However, it is beyond the scope of the current report to provide
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an extensive discussion on the advantages and disadvantages of each kernel function.
In what follows, we stick to the radial basis function.

The kernel allows the SVR to find a fit and then the data is mapped to the
original space. In our setup, SVR works as simple non-linear model described as:

yt = WK(xt, x) + b, (19)

where W is the product of the coefficients and the resulting support vectors and
b is the negative intercept. We refer the reader to Chang and Lin (2021) Python
implementation and references therein.

— The final methodology we include in this report is the Support Vector Re-
gression (SVR). It can be argued that SVR is the adapted form of Support Vector
Machines when the dependent variable is numerical rather than categorical. A major
benefit of using SVR is that it is a non-parametric technique. Unlike the classical
linear regression which depends on the Gauss-Markov theorem, the output model
from SVR does not depend on distributions of the underlying dependent and inde-
pendent variables. Another advantage of SVR is that it permits for construction
of a non-linear model without changing the explanatory variables, helping in better
interpretation of the resultant model.

The basic idea behind SVR is not to care about the prediction as long as the error
(ϵ) is less than certain value. This is known as the principle of maximal margin. This
idea of maximal margin allows viewing SVR as a convex optimization problem. The
regression can also be penalized using a cost parameter, which becomes handy to
avoid over-fit. SVR is a useful technique provides the user with high flexibility in
terms of distribution of underlying variables, relationship between independent and
dependent variables and the control on the penalty term.

SVR gives the flexibility to define how much error is acceptable in a model and
will find an appropriate line (or hyperplane in higher dimensions) to fit the data.
In contrast to OLS, the objective function of SVR is to minimise the coefficients —
more specifically, the l2-norm of the coefficient vector — not the squared error. The
error term is instead handled in the constraints, where we set the absolute error less
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than or equal to a specified margin, called the maximum error, ϵ. ϵ can be tuned to
gain the desired accuracy in a model.

The SVR technique depends on the kernel function which is employed to captured
the underlying possibly non-linear relationships. The success of the SVR is based on
the fit of the kernel functions in the data. The most popular kernel functions include:
(i) the linear, (ii) the polynomial, (iii) the sigmoid, and (iv) the radial basis function
(RBF). It is important to highlight that different kernel functions result to different
models and, therefore, different estimations and subsequent nowcasts. However, it
is beyond the scope of the current report to provide an extensive discussion on the
advantages and disadvantages of each kernel function. In what follows, we stick to
the radial basis function.

The kernel allows the SVR to find a fit and then the data is mapped to the
original space. In our setup, SVR works as simple non-linear model described as:

yt = WK(xt, x) + b, (20)

where W is the product of the coefficients and the resulting support vectors and
b is the negative intercept. We refer the reader to Chang and Lin (2021) Python
implementation and references therein. In machine learning, the radial basis function
kernel is commonly used in support vector machine classification.

Following Vert et al. (2004), the RBF kernel on two samples x and x′, represented
as feature vectors in some input space, is defined as:

K (x,x′) = exp

(
−∥x− x′∥2

2σ2

)
(21)

where ∥x− x′∥2 may be recognized as the squared Euclidean distance between the
two feature vectors. σ is a free parameter. An equivalent definition involves a
parameter γ = 1

2σ2 :

K (x,x′) = exp
(
−γ ∥x− x′∥2

)
. (22)
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Since the value of the RBF kernel decreases with distance and ranges between
zero (in the limit) and one (when x = x′ ), it has a ready interpretation as a similarity
measure. The feature space of the kernel has an infinite number of dimensions; for
σ = 1, its expansion is:

exp

(
−1

2
∥x− x′∥2

)
= exp

(
2

2
x⊤x′ − 1

2
∥x∥2 − 1

2
∥x′∥2

)
= exp

(
x⊤x′) exp(−1

2
∥x∥2

)
exp

(
−1

2
∥x′∥2

)
=

∞∑
j=0

(
x⊤x′)j
j!

exp

(
−1

2
∥x∥2

)
exp

(
−1

2
∥x′∥2

)

=
∞∑
j=0

∑
∑

ni=j

exp

(
−1

2
∥x∥2

)
xn1
1 · · · xnk

k√
n1! · · ·nk!

exp

(
−1

2
∥x′∥2

)
x′n1
1 · · · x′nk

k√
n1! · · ·nk!

.

(23)
Because support vector machines and other models employing the kernel trick

do not scale well to large numbers of training samples or large numbers of features
in the input space, several approximations to the RBF kernel (and similar kernels)
have been introduced. Typically, these take the form of a function z that maps a
single vector to a vector of higher dimensionality, approximating the kernel:

⟨z(x), z (x′)⟩ ≈ ⟨φ(x), φ (x′)⟩ = K (x,x′) (24)

where φ is the implicit mapping embedded in the RBF kernel.
One way to construct such a z is to randomly sample from the Fourier trans-

formation of the kernel as noted in Rahimi et al. (2007). Another approach uses
the Nyström method to approximate the eigendecomposition of the Gram matrix
K, using only a random sample of the training set as given in Williams and Seeger
(2001).

27



4 Nowcasting Setup
In this section, we describe the setup of the out-of-sample pseudo cross-validation
nowcasting exercise. In what follows, xt denotes the vector of all available predictors.

4.1 Algorithm

Our nowcasting algorithm is structured in the following way.

1. Set the out-of-sample nowcasting dates, i.e. the weekly dates that nowcasting
estimates for yt will be produced. In our exercise, we have 92 weekly nowcast
dates spanning from 2021-03-22 to 2021-12-19.

2. For each given out-of-sample date, t, collect the available data for yt and xt and
mimic the pattern of availability by imposing missing values according to the
corresponding .xlsx file. It is important to notice here that we use the weekly
disaggregated version of yt to match the weekly frequency of all xt.

3. Once the pseudo-available data is ready, fix any potential seasonalities.

4. Transform all variables to stationarity.

5. Remove outliers.

6. Impute missing values (where applicable).

7. Assuming that yt has k missing values at the bottom, which we actually need
to nowcast, estimate the linear regression model of the generic type:

yt−k = α + βxt−k + εt, (25)

obtain α̂ and β̂ and produce the nowcast estimate as: ŷt = α̂ + β̂xt.

8. Repeat Steps 2 to 8 for all out-of-sample dates recursively (i.e. increasing the
sample size). By the end of the nowcasting exercise, we obtain estimates for the
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61out-of-sample weeks with models coming from the methodologies discussed
in the previous section.

It is important to notice that the above nowcasting takes place in the weekly
frequency using the disaggregated version of yt. Nowcast errors can be computed
at the weekly frequency or, more appropriately, weekly nowcasts can be aggregated
to monthly and nowcast error can be computed using the monthly nowcasts and
the actual monthly observations for yt rather than the weekly approximates. In this
report, we produce nowcast error statistics appropriately in the monthly frequency
and end up with 20 out-of-sample dates from 2020-03-31 to 2021-10-31.

4.2 Evaluation

The purpose of this framework is to utilise nowcasting regressions and compare linear
models using the main (Level I) aggregates versus models which are based on the
disaggregate variables (Level II disaggregates). To compare the nowcasting perfor-
mance we report standard nowcasting error statistics, Mean Absolute Nowcast Error
(MAE), Mean Squared Nowcast Error (MSE) and the Root Mean Squared Error
(RMSE) evaluated for Model M across the out-of-sample nowcasts as:

MAEM =
1

Tout

Tout∑
l=1

|eM | , (26)

MSEM =
1

Tout

Tout∑
l=1

e2M , (27)

RMSEM =
√
MSEM , (28)

where eM is the vector of Tout nowcast errors for Model M . We report both the
above statistics relative to a standard AR(1) benchmark, i.e. values smaller than 1
indicate predictive gains of the given model against the benchmark. This also allows
the cross-comparison across models.
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4.3 Models

In the out-of-sample nowcasting exercise, we consider the following models.

• Univariate time series benchmark models: AR(1) and AR(P) where P̂ is
chosen minimising AIC.

• Linear models using the Level I aggregate in each case appropriately.

• BFW selecting variables from the Online Job Advertisements disaggregates,
the Traffic in Ports disaggregates and across all disaggregates.

• Ridge regression using the Online Job Advertisements disaggregates, the Traf-
fic in Ports disaggregates and across all disaggregates.

• Lasso regression using the Online Job Advertisements disaggregates, the Traf-
fic in Ports disaggregates and across all disaggregates.

• EN regression using the Online Job Advertisements disaggregates, the Traffic
in Ports disaggregates and across all disaggregates; the mixing parameter is set
to α = 0.5 for illustration, but more choices could be considered.

• Ad. Lasso, V1: Adaptive Lasso regressions using the Ridge weights in the
penalty (Ad. Lasso, V1).

• Ad. Lasso, V2: Adaptive Lasso regressions using the Lasso weights in the
penalty.

• Linear regression using PCA(1) factor from the Online Job Advertisements
disaggregates, the Traffic in Ports disaggregates and across all disaggregates.

• PCA(A1): Linear regression using PCA(k̂1) factor using the Online Job
Advertisements disaggregates, the Traffic in Ports disaggregates and across all
disaggregates; k̂1 is chosen via cross-validation.
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• PCA(A2)Linear regression using PCA(k̂2) factor using the Online Job Ad-
vertisements disaggregates, the Traffic in Ports disaggregates and across all
disaggregates; k̂2 is chosen in a fashion similar to Bai (2003).

• Random Forests using the Online Job Advertisements disaggregates, the
Traffic in Ports disaggregates and across all disaggregates.

• MLP using the Online Job Advertisements disaggregates, the Traffic in Ports
disaggregates and across all disaggregates.

• ELM using the Online Job Advertisements disaggregates, the Traffic in Ports
disaggregates and across all disaggregates.

• SVR using the Online Job Advertisements disaggregates, the Traffic in Ports
disaggregates and across all disaggregates.

It is important to highlight that our main purpose is not to identify the best
methodology or model suitable for nowcasting. Instead, the suggested framework
utilises various models to provide robust evidence on the predictive content of the
specific set of indicators considered and conclude if the detailed series of each dataset
are more useful than the main aggregate.

5 Empirical Results

5.1 Limitations

This section is concerned with a brief discussion of the main results. Table 1 to Table
3 are concerned with the MAE and RMSE results for the models discussed in the
previous sections across two periods: (i) the full sample which spans from 2020-03-31
to 2021-10-31 (20 obs.), and (ii) a subsample which spans from 2020-11-30 to 2021-
10-31 (12 obs.). Individual figures with the nowcasts from each model are included
in the Appendix.

First, it is important to highlight that the traffic in ports dataset is extremely
short with the first data being published in 2019-04-01. This really limits the whole
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nowcasting exercise which needs some sufficient data to be available for the first
estimation and, at the same time, some sufficient data to be kept separately for the
out-of-sample cross-validation. Even in the case of weekly frequency, a dataset which
spans from 2019-04-01 to 2021-10-31 allows for about 124 weeks. Some part of this
dataset needs to be used for the first estimation and the remaining to be available in
the cross-validation exercise. One could use the first 50 weekly observations for the
first estimation. This allows for about 74 weeks in the out-of-sample cross-validation.
Since our target variable is monthly, this translates to about 18 months in the out-
of-sample. Part of this problem is solved with the recursive estimation which leads
to more improved estimates but only for the latter part of the sample.

Second, the limited out-of-sample dates also include the COVID-19 outbreak
which is a shock to the economic system making the target variable to be locally
nonstationary and many models to misbehave. Ideally, in case of ample data avail-
able, one could run a proper nowcasting exercise for a number of years prior to the
COVID-19 pandemic and evaluate the nowcasting power of various models. Then,
she could repeat the exercise including the COVID-19 outbreak and measure the
shock to the system using the nowcast error. However, since we do not have data
available for many years prior to the COVID-19 pandemic, we also report the statis-
tics for a subsample which spans from one year, from 2020-11-30 to 2021-10-31 (12
obs.), to offer some insights on how different models perform in a period which
does not have an economic shock; even though this period is still included in the
estimation.

Third, as already discussed in the Introduction, this report is concerned with a
very specific task: to provide a head-to-head comparison of a (linear) model which
uses the total aggregate (Level I) of a dataset versus various models (linear and non-
linear) which attempt to exploit the information based on the disaggregate series
(Level II) of the same dataset. Ideally, to allow models to “learn” and take advan-
tage of possibly repeating patterns in the time and cross-sectional dimension, the
researcher would like to have access to the most disaggregated version of the dataset
possible. For example, if the underlying dataset is the Business Insights and Impact
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on the UK Economy (BICS)9 dataset, one would ideally need access to all individual
UK businesses which have been interviewed across all waves. Assuming that about
half of the 38,000 UK businesses have been interviewed consistently across time and
have answered to about 50 questions10, this gives about 700,000 disaggregate series
to be evaluated. Due to data availability issues, we do not have access to extremely
big datasets and, therefore, this report is based on two sets from the ONS Real-Time
Indicators data comparing the total aggregates to their first level disaggregates. This
is not close to what we describe above, however it can be used as a proof-of-concept.
It is also important to say that the models based on the machine learning method-
ologies we discuss here can also be used in cases with extremely large datasets.

5.2 Online Job Advertisements

Starting with the case of the Online Job Advertisements, we report the nowcasting
results in Table 1. This table is divided in two panels: (i) the left panel is concerned
with the results evaluated in the full sample which includes the COVID-19 outbreak
during the months of March to May 2020, whereas the (ii) right panel is concerned
with the results evaluated after November 2020 which excludes the COVID-19 out-
break.

Starting with the full sample results, we see that a linear model using the Level
I aggregate, that is the Online Job Advertisements Index across All UK Industries,
already improves against the simple univariate AR(1) and AR(P) benchmarks. In
particular, the Aggregate linear model has a relative MAE of 0.864 and RMSE of
0.913; this already provides evidence that this dataset, proxied via its total index, is
useful in economic nowcasting. The question is to identify if there is more information
in the Level II disaggregates and further justify the publication of the whole dataset.

We see that all the penalised regression variants have MAE and RMSE smaller
than the univariate benchmarks and also slightly smaller than the Aggregate model.
For example, we see that using Ad. Lasso V2 we obtain a relative MAE of 0.834

9See this ONS page.
10This is just a working example. Visiting the link in the previous footnote, the reader can find

that BICS dataset includes more than 100 questions.
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and RMSE of 0.904 which corresponds to a 3.4% and 1% improvement compared to
the Aggregate model. Then, PCA(A1) provides a reduction in the nowcast error of
about 3.2% in MAE and 1.2% in RMSE compared to the Aggregate model. In the
non-linear machine learning models, we see that Random Forests model provides a
reduction in the nowcast error of about 3.7% in MAE and 1.2% in RMSE compared
to the Aggregate model.

Moving to the subsample results which excludes the COVID-19 outbreak period,
we see that the nowcast error in the Aggregate model increases, however all penalised
regressions, PCA(1), PCA(A1) and SVR have improved performance when compared
to their performance in the full sample case. On the other hand, Random Forests,
MLP and ELM have an increased nowcast error. This is evidence that in the post-
COVID-19 outbreak period, the relationship becomes linear which is best captured
by most of the linear models. Ad. Lasso, V2 has the best average performance with
a relative MAE and RMSE of 0.752 and 0.776 which corresponds to about 18.25%
reduction compared to the nowcast error of the Aggregate model.

The above results highlight that, in stable periods, exploiting the information
hidden in the disaggregates leads to larger improved in nowcast error. This argument
still holds when crisis periods are included in the evaluation sample, however the
magnitude of the reduction in the error is much smaller.

5.3 Traffic in Ports

Then, we move to Table 2 which reports the results based on the weekly shipping
indicators which measure the traffic in UK ports. As above, the table is divided in
two panels: (i) the left panel is concerned with the results evaluated in the full sample
which includes the COVID-19 outbreak, whereas the (ii) right panel is concerned with
the results evaluated after November 2020 which excludes the COVID-19 outbreak.
In this case, we include two aggregates: (i) Aggregate1 which is the extracted trend
of the traffic in ports, and (ii) the seasonally adjusted number of visits by ships across
all UK ports. The results indicate minor differences in favour of the second aggregate
which makes most sense as it reflects all the information. Therefore, in the following
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discussion we adopt Aggregate2 as our main aggregate model benchmark.
Looking at the full sample results, we again see that Aggregate2 model improves

against the standard univariate benchmarks with a relative MAE and RMSE of 0.897
and 0.921 respectively. As in the previous case, this already indicates that this type
of dataset has economic value. Now, do the disaggregates in this case really help in
nowcasting?

At first, we see that all models using the Level II disaggregates have a MAE and
RMSE smaller that unity which indicates that they all improve against the univariate
benchmarks. Looking at the penalised regressions, we observe minor improvements
against the Aggregate2 model. Ad. Lasso, V1 has a MAE and RMSE of 0.890
and 0.920 respectively which correspond to 0.29% and 0% improvements against
the Aggregate2 model. PCA-based models also have similar performance. Random
Forests model and SVR seem to provide a slightly larger reduction in the nowcast
error offering a MAE of 0.888 and 0.872 and RMSE of 0.917 and 0.915 respectively.
This is evidence of possibly non-linear underlying relationships which cannot be
effectively captured by the previously-mentioned linear models. SVR returns a 2.79%
reduction in MAE and 0.71% reduction in RMSE.

Turning to the subsample case, we see that almost all models have an increased
error as both MAE and RMSE increases compared to the full sample case. This
could indicate that this dataset has information which can be more useful in times
of crisis.

5.4 Online Job Advertisements & Traffic in Ports

Finally, in Table 3 we report the results using both the Online Job Advertisements
and the Shipping indicators from the ONS Real-Time Indicators dataset. The aim
of this exercise is to have a larger number of disaggregate indicators available which
could offer more insights and improve the nowcasting exercise. As in the cases
described above, the table is divided in two panels: (i) the left panel is concerned
with the results evaluated in the full sample which includes the COVID-19 outbreak,
whereas the (ii) right panel is concerned with the results evaluated after November
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2020 which excludes the COVID-19 outbreak.
The All Aggregates model is a linear model with the three Level I aggregate

predictors: (i) the Online Job Advertisements Index across All UK Industries, (ii)
the extracted trend of the traffic in ports, and (iii) the seasonally adjusted number
of visits by ships across all UK ports. As we see in Table 3, the linear model with All
Aggregates improves compared to the univariate benchmarks which, together with
the individual results described in the previous two subsections, highlights that both
this datasets provide gains in nowcasting even if we simply use their total aggregates.

The BFW model is the best model in the full sample case with 0.831 MAE
and 0.900 RMSE which improves the aggregates benchmark model by 4.38% and
1.44% respectively. All other models, apart from MPL and ELM, improve over the
aggregates model with improvements ranging from 0.22% to 3.32% in terms of MAE
and 0.13% to 0.97% in terms of RMSE.

Turning to the subsample case, we see that the error in the aggregates model
increases. This is also the case with most PCA and non-linear models. Penalised
regressions, on the other hand side, provide improved results with BFW being the
best model with 0.766 MAE and 0.788 RMSE which corresponds to 17.93% reduction
in the error in terms of MAE and 18.91% reduction in terms of RMSE. This is followed
by Ad. Lasso, V1 which has a 15.24% and 15.74% reduction of error in terms of MAE
and RMSE respectively.

The above combined case of both datasets again illustrates that the disaggregates
need to be considered together with the main aggregates and ONS should continue
publishing the datasets in this detail (if not in more disaggregate level).

6 Concluding Remarks
This report has a very specific task: to examine gains in nowcasting comparing a
linear regression model using a single aggregate variable with models which utilise all
the underlying disaggregate series. At first, this might seem like a task with a limited
scope. However, the applied research should view this approach as only a part of
an overall assessment framework for novel datasets. Our main aim is to provide a
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framework which answers the following question regarding a candidate dataset of
new indicators: “Should a national statistics institute invest resources in organising,
editing, polishing and publishing this novel dataset of indicators and why?”.

Using two datasets from the ONS Real-Time Indicators we attempt to answer
this question empirically via means of economic nowcasting. In particular, we con-
sider a linear model which uses the main aggregates and compare its nowcasting
performance with various, mainly machine learning-based, models which utilise all
the underlying disaggregate series. In this report linear (penalised regressions and
actor-based regressions) as well as non-linear (random forests, neural networks and
support vector regressions) models are included.

Our findings provide empirical evidence in favour of the “big data” principle; i.e.
in today’s world, national statistics institutes should publish data to some, if not
the highest possible, level of disaggregation as most modern econometric techniques
can handle these datasets and exploit their gains in economic applications such as
nowcasting or forecasting. As expected, our results show that during crises, such as
the COVID-19 outbreak, non-linear models tend to perform better than linear ones,
however this reverts in periods of economic stability.
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Tables

Full Sample Subsample
MAE RMSE MAE RMSE

AR(1) 1 1 1 1
AR(P) 0.999 1 0.998 1
Aggregate 0.864 0.913 0.920 0.961
BFW 0.835 0.902 0.778 0.797
Ridge 0.843 0.908 0.822 0.866
Lasso 0.841 0.906 0.788 0.823
EN 0.842 0.906 0.796 0.831
Ad. Lasso, V1 0.837 0.904 0.770 0.800
Ad. Lasso, V2 0.834 0.904 0.752 0.786
PCA(1) 0.860 0.911 0.834 0.909
PCA(A1) 0.836 0.902 0.916 0.957
PCA(A2) 0.858 0.908 0.815 0.867
Random Forests 0.831 0.902 0.932 0.982
MLP 1.068 1.018 1.221 1.165
ELM 0.862 0.909 0.877 0.915
SVR 0.839 0.905 0.835 0.889

Table 1: Nowcast MAE and RMSE using the Online Job Ads. Values correspond to
statistics relative to the AR(1) benchmark. The Aggegate is Online Job Ads Index
across all industries. The Full Sample case spans from 2020-03-31 to 2021-10-31 (20
obs.) and includes the COVID-19 outbreak (March to May, 2020) in the evaluation.

The Subsample case spans from 2020-11-30 to 2021-10-31 (12 obs.).
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Full Sample Subsample
MAE RMSE MAE RMSE

AR(1) 1 1 1 1
AR(P) 0.999 1 0.998 1
Aggregate1 0.899 0.921 1.000 1.004
Aggregate2 0.897 0.921 0.991 0.994
BFW 0.890 0.922 0.972 0.984
Ridge 0.894 0.921 0.979 0.985
Lasso 0.894 0.921 0.978 0.984
EN 0.893 0.921 0.978 0.984
Ad. Lasso, V1 0.890 0.920 0.968 0.979
Ad. Lasso, V2 0.894 0.921 0.977 0.984
PCA(1) 0.895 0.920 0.979 1.005
PCA(A1) 0.894 0.922 0.991 0.993
PCA(A2) 0.895 0.921 0.996 0.996
Random Forests 0.888 0.917 1.001 1.002
MLP 0.972 0.984 0.968 0.982
ELM 0.910 0.926 0.929 0.943
SVR 0.872 0.915 0.949 1.003

Table 2: Nowcast MAE and RMSE using the traffic at UK ports. Values
correspond to statistics relative to the AR(1) benchmark. Aggregate1 refers to the
extracted trend of the total number of ships visiting UK ports. Aggregate2 refers
to the total number of ships visiting UK ports index (SA). The Full Sample case

spans from 2020-03-31 to 2021-10-31 (20 obs.) and includes the COVID-19
outbreak (March to May, 2020) in the evaluation. The Subsample case spans from

2020-11-30 to 2021-10-31 (12 obs.).
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Full Sample Subsample
MAE RMSE MAE RMSE

AR(1) 1 1 1 1
AR(P) 0.999 1 0.998 1
All Aggregates 0.869 0.913 0.933 0.972
BFW 0.831 0.900 0.766 0.788
Ridge 0.867 0.914 0.911 0.942
Lasso 0.852 0.909 0.836 0.873
EN 0.854 0.910 0.848 0.885
Ad. Lasso, V1 0.840 0.905 0.791 0.819
Ad. Lasso, V2 0.840 0.904 0.810 0.834
PCA(1) 0.863 0.912 0.852 0.926
PCA(A1) 0.860 0.911 0.923 0.962
PCA(A2) 0.864 0.912 0.930 0.962
Random Forests 0.843 0.905 0.927 0.964
MLP 1.043 1.029 1.211 1.237
ELM 0.876 0.921 0.981 0.990
SVR 0.849 0.908 0.893 0.948

Table 3: Nowcast MAE and RMSE using the online job ads and the traffic at UK
ports real-time indicators. Values correspond to statistics relative to the AR(1)

benchmark. All Aggregates refers to the online job index across all industries, the
extracted trend of the total number of ships visiting UK ports and the number of

ships visiting UK ports index (SA). The Full Sample case spans from 2020-03-31 to
2021-10-31 (20 obs.) and includes the COVID-19 outbreak (March to May, 2020) in
the evaluation. The Subsample case spans from 2020-11-30 to 2021-10-31 (12 obs.).

43



Figures

MLP

Input
Hidden

(5) Output

ELM

Input
Hidden

(39) Output

Figure 1: MLP and EML layers based on both Job Ads and port traffic 86
disaggregates; estimation as of 2020-01-26.
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Figure 2: MLP and EML layers based on both Job Ads and port traffic 86
disaggregates; estimation as of 2021-10-24.
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Appendix: All Nowcasts
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