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Motivation
[;7V4

® House Price Indices (HPIs) inform the public, banks, and government

institutions on the price developments in housing markets. Introduction
Data
® Housing downturns are a good predictor of recessions (Leamer, 2007). Hedonic Price
. . . . Distance
® Economic crises that involve the housing market tend to be more severe and Metrics
prolonged. _Er,(p\;nlrjmg the
ime

Implications

= timely information on what is going on in the housing market is important
to establish optimal macroprudential and monetary policies.
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The Importance of Transaction Data

® Constant-quality House Price Indices need micro-level price data.

Introduction

e Different data sources for micro-level house-price data, e.g., transaction data,
appraisal data, online housing platforms.

Data

Hedonic Price
Indices

® Transaction prices are the “gold standard” for compiling house price indices Dictance
(Eurostat, 2013, IMF,2020). Metrics

Expla
Time

— Appraisal data (e.g., from banks, real estate agents, or property tax
departments) tend to be downward biased and backward looking.

Implications

— Prices from online platforms reflect the wishes of the seller side, but typically not
the realised purchase price.
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The

Problems with Transaction Data

Transaction data are typically based on the purchase contracts between sellers
and buyers.

In some countries there are long time lags before these prices are recorded and
made available to index compilers.

These lags undermine the timeliness and usefulness of the HPI itself as well as
the broader CPI (if the HPI is a sub-component). (Shimizu et al. 2016)

We concentrate on a second — less appreciated — problem with transaction
data: namely that transaction prices for new-build properties often take years
to be recorded in transaction data.
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New-build properties

® New-builds are often sold before the building process is complete, and
sometimes even before the building process started (i.e., “off the plan™).
Prices are set when these preliminary agreements are signed. Introduction

Data

® However, the transaction is only completed and registered once the building is Hedonic Price
finished and ownership transferred. ndees

Distance
Metrics

® Depending on when during the building stage thee property is sold, this
(additional) time lag can consist of many months or years. Time

Implications

® This additional lag in transaction data is particularly problematic for countries
with large new-build markets (e.g. 50 percent of transacted properties in
Poland).
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Our Dataset

® We concentrate on apartment market in two large Polish cities: Warsaw and
Poznan.

Introduction

® Transaction prices and dates are recorded by the Property registry offices in
Warsaw and Poznan. These data contain information on the individual
apartment (i.e., size, parking arrangements, story, and transaction date) as

Data

Hedonic Price
Indices

well as the building (e.g., age and exact location). If it exists, the date of the P
preliminary contract is recorded as well. Expla
Time
® We link these datasets with the cadastre dataset to obtain additional Implications

information on each building (e.g., how many floors it has and the age of the
building). Where this information was not available, we used Google Street
view.
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Establishing Hedonic Price Indices

® We use the Rolling-Time-Dummy (RTD) hedonic method. This estimates a
hedonic model with a fixed window length (for example, m + 1 periods).

C t+m
hlan = Z BeZren + Z 0slrsn + Ern,y
c=1 s=t+1

where t is the first period in the window and n indexes the housing
transactions that fall in the rolling window.

® The characteristics of the properties are denoted by z,¢,, while d;g, is a
time-dummy variable that equals 1 when 7 = s, and zero otherwise.
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I GRAZ

® The change in the price index from period ¢t +m — 1 to period t 4+ m is then
calculated as follows: )
Pt-l-m _ eXp(éf-i-m)
Prym—1  exp(dl,,, ;)

Introduction

Data

® A superscript t is included on the estimated ¢ coefficients to indicate that they [
are obtained from the hedonic model with period t as the base (i.e., P, = 1). IS

Distance

. . . . . Metrics

® The window is then rolled forward by one period, and the hedonic model is . t‘
. . . . . . .. xpla
re-estimated. The price index over multiple periods is computed by chaining Time

these bilateral comparisons together as follows: Implications

Primt1 _ [exp(gf;{n)] [eXP(S;EHH)] y y [eXp(éfirlnH)]

P exp(d; ™) | [exp(65"H) exp(d;Ly,)

«O»«Fr«E» <=



Hedonic Price Indices for Warsaw
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Figure: Real House Price Indices for Warsaw, derived with RTD method with a 6-quarter data
window




The Time Lag of a New-Builds Index
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Figure: Real House Price Indices for Poznan, derived with RTD method with a 6-quarter data
window
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Measuring Lags using Distance Metrics

® The previous figures showed that the indices for new-build properties lag

behind the index for existing properties. Introduction
® We want to estimate how long this lag is. ;;n Price
e We do this using Distance Metrics. 3$
® Various distance metrics exist. We find that the estimated lag does not ST

depend on which method is used.

Implications

We like the metrics proposed by Diewert (2009).
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Diewert Metric 1 (DM1):
GRAZ

&1 1 k+1 Py k+1 Pp 1
DM1(k t+ t+k+ t+k+ t+1 9
W= k 1= {Pp /Pts+k i Pk i
Diewert Metric 2 (DM2): o
ntroduction
T—k—1 L Ps il 2 Ps ol PP L 2 satj o
DM2(]€) ( t+ /% _ 1) + < t“l‘; + / t+1 1) Inz(_‘:;!c rice
o k ! =t Pt+k Pt+k Ptp Distance
Diewert Metric 3 (DM3): Metrics
Explaining the
T—k-1 2 Time
DM3(]€) = ; Z ln t+1 Pts+k+l Implications
T k-1 & P/ P, '

e PP and P§ denote the levels of the price indices for the new-built and existing
property markets in period t.

® DM(k) denotes a modified-Diewert metric with the market for new-builds lagging the
market for existing properties by k£ quarters.
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Results of Dissimilarity Measures
GRAZ

® All metrics find a new-builds index lags an existing property index by 8 Introduction
quarters in Warsaw, although the lag is much less pronounced in the second Data
half Of our Samp|e :_,:iﬁf:r‘c Price
® For Poznan the lag is 6 quarters for the first half of the sample and 5 quarters [ &
for the second half. Expla
Time
® Dissimilarity Results are shown on the next two slides. Implications
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Results for Warsaw

Time  Metric o 1 2 3 4 5 13 1 8 9 0 A
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=1
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g M2 DOOGTE DG4S DUD0S2E  DO00TAE DOSES  DLNOT26  DA0066L  DODKIE  D.00D242  QL000SE  DLOMTD | 0000

=1

;_'; [LAE] OO00256  DOKEE  OOI0264 000071 D002 DUDIBET  D.O00EE2 D.ODNSS 0000121 (DTS5 DLO0TES | 0.0001

a HIY DUEHOTS DO DUES422 DOG4196  DIEGT]  OOE2456  DOG05S  DOAME D.DITIRE 0019170 DO20406 | 0015
TG | DOMET  DEETE OO11ESE0 0 D320 DETERE  O4TISE  DOSEMT 009N 0080600 (L1808 06661 | 00098
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Results for Poznan

Time  Metric 1] 1 2 3 4 5 [ T & a n A
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Using Preliminary Agreement Dates

20
—— Existing Properties RTD(6)
—== Preliminary Agreements RTD(6)
=== Preliminary Agreements and Existing Properties RTD(6)
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Explaining the Time Lag
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Explaining the Time Lag

The time lag in price indices for new-builds depends on at least three factors:

— How long it takes to build an apartment block.
— How far into the building process are preliminary agreements signed.
— How well buyers and sellers anticipate future price movements.

Average time to build an apartment complex: in Warsaw about 25 months, in
Poznan around 23 months.

Do buyers commit sooner during a boom? We do not see this in our results.

When the market is calmer, future price developments are easier to predict.
Hence the lag between the price indices for new and existing properties should
be less pronounced. This is consistent with our findings.
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Implications
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Implications for House Price Indices (HPlIs)

® For countries in which a significant part of the property market consists of new
builds, including these stale transaction prices can undermine the timeliness of
the HPI.

® This is particularly problematic when the HPI is used for macroprudential
supervision or monetary policy decisions.

® How to deal with this?

@ Exclude new-builds in HPI?
— But then the index ignores an important part of the market.
@® Replace transactions for new-builds with preliminary agreements?
— Then no time lag, but such data are not currently collected in most EU Land
Registries (at least not independently of transaction data).
— Undermines strong preference for transaction prices for HPI in statistical circles
(e.g., Eurostat and the IMF).
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Implications for the HICP

Introduction

® Owner-occupied housing (OOH) is currently excluded from the HICP.

Data

® The preferred method of Eurostat/ECB for including OOH uses a price index Hedonic Price

Indic

that only tracks new builds. e
Metrics
® Such an index will lag behind current market conditions and undermine the Expla
. . Time
timeliness of the HICP.
Implications
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Thank you for your attention!

For questions please contact
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