Measuring wealth: income capitalization with heterogeneous rates of return

Alberto Vesperoni King's College London

May 27, 2022

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

Motivation

- ► Wealth surveys offer direct evidence of individual wealth
 - but typically *omit the upper end* of the wealth distribution (e.g., the much debated top 1%)
- Income capitalization is a method to indirectly compute individual wealth from
 - the individual income it generates (typically offering better coverage of the *whole distribution* via, e.g., income tax data)

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

combined with aggregate wealth statistics (e.g., national accounts)

Motivation

- ► Wealth surveys offer direct evidence of individual wealth
 - but typically *omit the upper end* of the wealth distribution (e.g., the much debated top 1%)
- Income capitalization is a method to indirectly compute individual wealth from
 - the individual income it generates (typically offering better coverage of the *whole distribution* via, e.g., income tax data)
 - combined with aggregate wealth statistics (e.g., national accounts)
- Thus, income capitalization can *complement* wealth surveys for a better estimation of the wealth distribution
 - Saez E., and G. Zucman, "Wealth Inequality in the United States since 1913: Evidence from Capitalized Income Tax Data", The Quarterly Journal of Economics, 131(2), pp 519-578, 2016

Sketch of the income capitalization method

- Data inputs:
 - individual income by asset y_{i,g}
 - ▶ observed aggregate assets $k_g = \sum_{i \in N} w_{i,g}$

・ロト ・ 戸 ・ モ ト ・ モ ・ うへぐ

- Data outputs:
 - ▶ homogeneous return by asset r_g
 - individual assets w_{i,g}

Sketch of the income capitalization method

- Data inputs:
 - individual income by asset y_{i,g}
 - observed aggregate assets $k_g = \sum_{i \in N} w_{i,g}$
- Data outputs:
 - homogeneous return by asset r_g
 - individual assets w_{i,g}
- Method a-theoretical, based on accounting identities:
 - ▶ homogeneous return derived from aggregates, $r_g = \sum_i y_{i,g} / k_g$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• individual assets directly follow, $w_{i,g} = y_{i,h}/r_g$

Limitations of income capitalization

- The standard income capitalization method relies on the assumption that rates of return are homogeneous within asset categories
 - All individuals earn the same percentage on a unit of investment in equity (or bonds, deposits, housing, etc)

Limitations of income capitalization

- The standard income capitalization method relies on the assumption that rates of return are homogeneous within asset categories
 - All individuals earn the same percentage on a unit of investment in equity (or bonds, deposits, housing, etc)
- There is however strong evidence that
 - within each asset category, individual returns are *positively* correlated with wealth level
 - these also correlate with portfolio composition suggesting complementarities across asset categories
 - Fagereng A., L. Guiso, D. Malacrino, and L. Pistaferri, "Heterogeneity and Persistence in Returns to Wealth", Econometrica, 88(1), pp 115-170, 2020

This project

- We develop a simple extension of the income capitalization method:
 - allowing for estimation of heterogeneous returns within asset categories based on asset complementarity
 - using same data inputs as the standard income capitalization method
 - "micro income & macro wealth"
 - but with data output enriched by theory based on asset complementarities
 - "micro wealth & micro returns"
 - as opposed to "macro" returns by the (theory-free) homogeneity assumption

Core idea:

▶ individual i's income y_i = ∑_{g∈G} y_{i,g} is an increasing
(production!) function of her wealth portfolio w_{i,1},..., w_{i,m}

$$y_i = f_i(w_{i,1},\ldots,w_{i,m})$$

<ロト 4 目 ト 4 目 ト 4 目 ト 1 目 9 9 9 9</p>

Core idea:

▶ individual i's income y_i = ∑_{g∈G} y_{i,g} is an increasing
(production!) function of her wealth portfolio w_{i,1},..., w_{i,m}

$$y_i = f_i(w_{i,1},\ldots,w_{i,m})$$

 individual i's rate of return r_{i,g} from asset category g is equal to marginal productivity (assuming efficiency & constant returns to scale)

$$r_{i,g} = \partial f_i / \partial w_{i,g}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Core idea:

▶ individual i's income y_i = ∑_{g∈G} y_{i,g} is an increasing
(production!) function of her wealth portfolio w_{i,1},..., w_{i,m}

$$y_i = f_i(w_{i,1},\ldots,w_{i,m})$$

 individual i's rate of return r_{i,g} from asset category g is equal to marginal productivity (assuming efficiency & constant returns to scale)

$$r_{i,g} = \partial f_i / \partial w_{i,g}$$

► Assuming positive cross derivatives, we then obtain that r_{i,g} increases in w_{i,g'} for g' ≠ g (thus asset complementarity!)

Looks "neoclassical", but quite radical!

Does it make sense to assume "production" function f_i at individual level?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Looks "neoclassical", but quite radical!

Does it make sense to assume "production" function f_i at individual level?

- *f_i* presenting constant returns to scale?
- *f_i* presenting complementarities across asset categories?

Looks "neoclassical", but quite radical!

Does it make sense to assume "production" function f_i at individual level?

- *f_i* presenting constant returns to scale?
- *f_i* presenting complementarities across asset categories?

Method designed for **financial assets & real estate** (generating capital income), but can/should we include **human capital** (generating labor income) as well?

Berman Y., and B. Milanovic, "Homoploutia: Top Labor and Capital Incomes in the United States, 1950-2020", World Inequality Lab, WP 2020/27.

(日本本語を本書を本書を、書、のQの)

Sketch of the proposed method

• Estimate rates of return $r_{i,g}$ and wealth levels $w_{i,g}$ based on

- ▶ the observed aggregate assets $k_g = \sum_{i \in N} w_{i,g}$
- the observed individual incomes y_{i,g}

Sketch of the proposed method

- Estimate rates of return $r_{i,g}$ and wealth levels $w_{i,g}$ based on
 - \blacktriangleright the observed aggregate assets $k_g = \sum_{i \in N} w_{i,g}$
 - the observed individual incomes y_{i,g}
- In the most basic setup, this is done parametrically assuming
 - Cobb-Douglas form

$$f_i(w_{i,1},\ldots,w_{i,m}) = \prod_{g \in G} w_{i,g}^{\alpha_{i,g}}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- ▶ where $(\alpha_{i,1}, \ldots, \alpha_{i,m}) \in \Delta_m$ is to be estimated for each *i*
- low complexity of returns, $r_{i,g} = \rho_i \delta_g$

Sketch of the proposed method

- Estimate rates of return $r_{i,g}$ and wealth levels $w_{i,g}$ based on
 - ▶ the observed aggregate assets $k_g = \sum_{i \in N} w_{i,g}$
 - the observed individual incomes y_{i,g}
- In the most basic setup, this is done parametrically assuming
 - Cobb-Douglas form

$$f_i(w_{i,1},\ldots,w_{i,m})=\prod_{g\in G}w_{i,g}^{\alpha_{i,g}}$$

- ▶ where $(\alpha_{i,1}, \ldots, \alpha_{i,m}) \in \Delta_m$ is to be estimated for each *i*
- low complexity of returns, $r_{i,g} = \rho_i \delta_g$
- Once the f_i are estimated, we obtain
 - rates of return by $r_{i,a} = \partial f_i / \partial w_{i,g}$
 - wealth levels by $w_{i,g} = y_{i,g}/r_{i,g}$
 - via linear approximation of a large system of n equations in n unknowns

Sketch of the proposed method

- Estimate rates of return $r_{i,g}$ and wealth levels $w_{i,g}$ based on
 - \blacktriangleright the observed aggregate assets $k_g = \sum_{i \in N} w_{i,g}$
 - the observed individual incomes y_{i,g}
- In the most basic setup, this is done parametrically assuming
 - Cobb-Douglas form

$$f_i(w_{i,1},\ldots,w_{i,m})=\prod_{g\in G}w_{i,g}^{\alpha_{i,g}}$$

- ▶ where $(\alpha_{i,1}, \ldots, \alpha_{i,m}) \in \Delta_m$ is to be estimated for each *i*
- low complexity of returns, $r_{i,g} = \rho_i \delta_g$
- Once the f_i are estimated, we obtain
 - rates of return by $r_{i,a} = \partial f_i / \partial w_{i,g}$
 - wealth levels by $w_{i,g} = y_{i,g}/r_{i,g}$
 - via linear approximation of a large system of n equations in n unknowns
- ► Flavor of result: ρ_i derived as *eigenvector* (Perron-Frobenius Theorem), then δ_g derived from ρ_i...

Validate & apply the method: two steps

- First step: estimate $r_{i,g}$ and $w_{i,g}$ based on k_g and $y_{i,g}$
 - ► *k_g*: accurate on aggregates
 - ► *y*_{*i*,*g*}: good coverage of the whole income distribution
- Second step: validate the method by comparison with observed r_{i,g} and w_{i,g}
 - ► method validated if estimated *r*_{*i*,*g*} and *w*_{*i*,*g*} roughly match observed ones
 - ► crucial difficulty: *r*_{*i*,*g*} and *w*_{*i*,*g*} rarely observed for the whole distribution

Application 1: Norway

- Team: Bozbay (USurrey), Halvorsen (Statistics Norway), Iacono (NTNU), Vesperoni (King's College London)
- Data sources: tax records from Statistics Norway, same as Fagereng et al. (ECTA 2020)
- Two-steps: household level & full country coverage for both estimation and validation

Application 2: USA

- Team: Berman (King's College London), Vesperoni (King's College London)
- Data sources: tax records from Saez & Zucman (QJE, 2016); macro statistics on wealth & heterogeneous returns from
 - Smith M., O.M. Zidar and E. Zwick, "Top Wealth in America: New Estimates and Implications for Taxing the Rich", NBER WP 29374, October 2021
- Two-steps:
 - ▶ for *estimation*: tax records at household level & full country coverage
 - for validation: macro statistics on wealth & heterogeneous returns

THANK YOU!