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Abstract

This paper examines the macroeconomic implications of uncertainty
shocks related to artificial intelligence (AI). I construct a novel
text-based AI Uncertainty (AIU) Index from newspaper coverage
that displays sharp increases around notable AI developments. The
index also demonstrates limited correlation with established measures
of economic uncertainty. Using SVAR-IV with an instrument that
orthogonalises first- and second-moment coverage of AI, I find that
positive AI uncertainty shocks generate significant contractionary
effects on equity prices, hours worked, and wages, with smaller and
less persistent effects on employment and output. Industry-level
estimates, in turn, highlight heterogeneous adjustments along both
the labour quantity and price margins. These findings indicate that
AI uncertainty is a distinct source of economic fluctuations, with a
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”To understand AI’s implications, we need to measure its impact across
multiple dimensions[...].” Kroese (2024), International Monetary Fund

1. Introduction
The rapid adoption of artificial intelligence (AI) and its potential to reshape

productivity, labour markets, and economic structures have intensified efforts to assess

its broader economic implications. Estimates on the macroeconomic impact of AI

vary substantially. These range approximately 4.0% growth in global gross domestic

product (GDP) over the next decade under a high total factor productivity (TFP)

scenario (Cerutti et al., 2025), to projections of 7.0% growth in global GDP and increases

of 1.5 percentage points in annual United States (US) labour productivity (Goldman

Sachs, 2023).1 Similarly, other estimates suggest that adoption of generative AI (GenAI)

models could contribute up to 25.6 trillion USD in global output (Chui et al., 2023).

A more conservative evaluation, however, points to substantially smaller aggregate

gains. Using a task-based macroeconomic framework, Acemoglu (2025) estimates that

AI adoption will raise US GDP by only 0.9 to 1.6% over the next decade.

These wide-ranging estimates reflect more than differences in modelling

assumptions. They point to fundamental uncertainty about how AI will evolve, be

regulated, and be integrated into the economy. AI development is characterised

by accelerating, ambiguous technical change, fragmented and contested regulatory

responses, opaque competitive dynamics, and substantial organisational adjustment

costs that emerge only through deployment, which can vary across sectors. In this

environment, economic agents make decisions without reliably mapping AI adoption

to future productivity, task allocation, or labour demand. When such uncertainty

is pervasive, standard economic theory implies contractionary responses. A large

body of literature shows that elevated uncertainty depresses investment, hiring, and

consumption through real-option and precautionary saving channels (Bloom, 2009,

2014; Jurado et al., 2015; Baker et al., 2016). Against this backdrop, it remains

unclear whether uncertainty surrounding AI operates through similar mechanisms

and whether it constitutes a distinct source of macroeconomic fluctuations rather than

a reflection of broader economic or policy uncertainty.

Despite the growing interest in the economic effects of AI, its role as an independent

1A high TFP growth scenario refers to a counterfactual framework in which the adoption of AI
leads to a sustained increase in global TFP growth relative to a baseline scenario that assumes historical
average productivity growth in the absence of AI-driven gains. See Cerutti et al. (2025)
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source of macroeconomic uncertainty has received limited systematic analysis. This

can be understood for two main reasons. First, much of the existing literature focuses

on first-moment effects of AI, particularly on output, productivity, and labour market

outcomes (Acemoglu et al., 2022; Chui et al., 2023; Bonney et al., 2024; Acemoglu, 2025;

Cerutti et al., 2025). These studies proceed under the implicit assumption of known AI

capabilities and deployment paths, and therefore focus on how realised AI adoption

affects economic outcomes. Second, commonly used uncertainty measures, such as

the Real Economic Uncertainty (REU) Index (Jurado et al., 2015), the Economic Policy

Uncertainty (EPU) Index (Baker et al., 2016), and financial volatility indices (i.e., S&P

500 Volatility Index, NASDAQ 100 Volatility Index), capture broad macroeconomic

or policy-related volatility. These indicators do not isolate the distinct dimension

of uncertainty that is specific to technological change, complicating efforts to assess

whether AI-related uncertainty has distinct macroeconomic effects.

In this paper, I address these limitations by developing a novel measure of AI

uncertainty and examining its macroeconomic effects. I construct the AI Uncertainty

(AIU) Index using text-based methods applied to newspaper coverage from leading

news outlets in the US, the United Kingdom (UK), and selected European countries.

Following Baker et al. (2016), the index is based on systematic identification of news

coverage that simultaneously references AI, economic conditions, and uncertainty.

The resulting series displays pronounced movements around major AI-related

developments, including the introduction of GPT-4 by OpenAI in March 2023, the

issuance of US Executive Order 14110 titled “Safe, Secure, and Trustworthy Development

and Use of Artificial Intelligence” in October 2023, and the release of DeepSeek-R1 in

January 2025. The AIU Index also shows low correlations with broader measures of

uncertainty, suggesting it captures a distinct dimension of economic uncertainty.

Using the AIU Index, I then estimate the macroeconomic effects of uncertainty

surrounding AI within a structural vector autoregression identified with an external

instrument (SVAR-IV). The identification strategy exploits variation in AI-related

news coverage that reflects uncertainty about the economic implications of AI,

while remaining orthogonal to broader macroeconomic and policy developments.

To disentangle uncertainty from positive news about AI-driven productivity gains,

I construct an instrument that isolates the first- and second-moment components

embedded in AI-related coverage. This approach builds on evidence that news

and uncertainty shocks are often confounded in empirical applications (Piffer and

Podstawski, 2018; Cascaldi-Garcia and Galvao, 2021).
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The analysis yields three main findings. First, AI uncertainty shocks generate

contractionary effects on the economy. Equity prices decline sharply and persistently,

while labour market adjustment occurs primarily along the intensive margin. Hours

worked fall temporarily, whereas wages contract more persistently and continue

to weaken over time. Employment displays transitory responses, while industrial

production experiences modest and short-lived contractions. This response, however,

differs from conventional uncertainty shocks, which tend to generate broader and

more uniform declines across macroeconomic aggregates.

Second, the adjustment dynamics following an AI uncertainty shock are consistent

with labour behaving as a quasi-fixed factor (Oi, 1962), while departing from its

standard implications. The combination of stable employment response alongside

declining hours worked indicates that labour adjustment occurs primarily along

the intensive margin rather than through changes in employment levels. This

pattern is consistent with employment retention in the presence of hiring, training,

and organisational adjustment costs. At the same time, wages display sustained

downward adjustment rather than remaining rigid, which contrasts with standard

quasi-fixed labour models. One interpretation is that uncertainty about AI weakens

worker bargaining conditions by complicating the assessment of outside employment

opportunities (Leduc and Liu, 2024). Moreover, unlike conventional uncertainty

episodes that tend to subside as conditions stabilise, AI-related uncertainty evolves

alongside ongoing technological change, reducing the scope for recovery driven by the

resolution of uncertainty. Employment may therefore be maintained not in anticipation

of cyclical improvement, but to preserve organisational capital and firm-specific

knowledge that is valuable during periods of technological transition.

Third, responses to AI uncertainty display substantial heterogeneity across

industries. Using local projections (Jordà, 2005), I find considerable variation in

both the magnitude and direction of labour market responses. Hours worked and

employment decline in most industries, although magnitudes differ substantially.

Wage responses are particularly heterogeneous, with some sectors experiencing

sustained declines while others display muted or even positive adjustments. This

cross-industry variation in wage is systematically related to AI exposure, measured by

the share of tasks exposed to automation (Felten et al., 2021). Industries with greater

exposure to AI display larger adjustments following an AI uncertainty shock. This

heterogeneity, together with composition effects, reconciles the differences between

aggregate and industry-level estimates. Industries with larger employment shares
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exhibit smaller responses, while high-exposure industries with smaller shares display

more pronounced adjustments that attenuate in employment-weighted aggregation.

This paper contributes to numerous strands of the literature. By examining

uncertainty associated with AI, it extends research on uncertainty shocks and business

cycle fluctuations beyond broad macroeconomic or policy related measures (Bloom,

2009; Jurado et al., 2015; Baker et al., 2016). The development of a technology

focused uncertainty index constructed from newspaper coverage also advances work

on source-specific uncertainty and text-based measurement (Jurado et al., 2015; Baker

et al., 2016; Caldara et al., 2020; Husted et al., 2020; Caldara and Iacoviello, 2022; Abiad

and Qureshi, 2023), while complementing the growing use of textual data in empirical

macroeconomics (Hansen et al., 2018; Gentzkow et al., 2019; Ash and Hansen, 2023).

In addition, the analysis contributes to the growing literature on the economics of AI

(Felten et al., 2021; Acemoglu et al., 2022; Acemoglu, 2025) by shifting attention from

realised effects to the uncertainty surrounding adoption. Evidence on heterogeneous

responses across industries further informs research on labour market adjustment to

technological change. To the best of my knowledge, this is the first study to construct

a dedicated measure of AI related uncertainty and to assess its macroeconomic effects

using identified structural shocks.

The remainder of the paper is structured as follows. Section 2 discusses the

definition and construction of the AIU Index. Section 3 compares the index with

different measurements of uncertainty. Section 4 outlines the data, model, and

identification of the AI uncertainty shock. Section 5 presents the empirical results.

Section 6 concludes and outlines avenues for future research.

2. Measuring AI Uncertainty
The AIU Index measures AI-related economic uncertainty as reflected in news

coverage. It aims to capture perceived uncertainty surrounding the economic

implications of AI, covering a broad set of considerations, including effects

on tasks and occupational exposure, productivity and wage dynamics, labour

market adjustment and worker reallocation, changes in the sectoral organisation

of production, and the economic effects of regulatory responses to AI. The index

reflects both near-term concerns, such as disruptions associated with model releases

or policy actions, and longer-run questions about aggregate productivity gains and

distributional outcomes. By tracking the frequency of relevant newspaper coverage,
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the index provides a timely measure of how perceptions of AI-related economic

uncertainty evolve in response to new developments.

I construct the AIU Index by applying dictionary-based text analysis to news

articles from leading national and international news outlets. The approach follows

established methods for constructing news-based uncertainty indicators, including the

EPU Index, the Trade Policy Uncertainty (TPU) Index (Caldara et al., 2020), and the Oil

Price Uncertainty (OPU) Index (Abiad and Qureshi, 2023).

The development of the AIU Index proceeds in four stages. First, I retrieve news

articles that reference AI in an economic context under conditions of uncertainty.

Second, I process the articles into structured text using feature-extraction methods.

Third, I compute a standardised index from the frequency of qualifying articles.

Lastly, I identify salient AI-related developments and assess their correspondence with

observed shifts in the index. The following subsections provide a detailed discussion

of each stage.

2.1. Search Procedure

Article Selection. The monthly AIU Index is constructed based on news articles

retrieved from the Factiva database, a comprehensive media research platform owned

by Dow Jones. The initial selection consists of all articles tagged under the “artificial

intelligence” subject code, which reflects the internal taxonomy of the platform based

on the substantive content of each article.2 These subject-based classifications provide

a systematic and consistent means of identifying AI-focused media coverage, forming

an initial corpus of 34,187 daily news articles spanning from M1:1979 to M4:2025.

The sample is then restricted to publications classified under “Top Newspaper”

section (e.g., The Wall Street Journal, The New York Times, Financial Times, The Guardian)

as well as those commonly used in prior studies that construct a set of text-based

indices from news articles (Baker et al., 2016; Caldara et al., 2020; Abiad and Qureshi,

2023) (Table 2.1). This restriction ensures consistency in editorial focus and economic

reporting over time. By focusing on widely circulated and internationally recognised

sources, the index remains anchored to a stable and comparable set of publications.

Following Abiad and Qureshi (2023), I further exclude content types unlikely

to reflect detailed economic reporting. In particular, I remove articles that are

classified under the categories of sports, editorials, abstracts, advertorials or sponsored

2This includes categories such as machine learning, risk topics - AI, automation, and generative AI. A
detailed description of the classification and filtering procedure is provided in Appendix A.
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content, advice, analyses, audio-visual links, blogs, event calendars, chronologies,

columns, commentaries or opinions, corporate digests, country profiles, transcripts,

tables, surveys or polls, statistics, reviews, rankings, prospectuses, press releases,

personal announcements, people profiles, front-page headlines, obituaries, letters,

interviews, images, and headline-only listings. This approach is intended to enhance

the signal-to-noise ratio by removing articles that are either stylistically peripheral or

lack substantive economic content.

Table 2.1: Factiva News Outlet

Country: News Outlet:

United States The Boston Globe, The Baltimore Sun, Chicago Tribune,
Investor’s Business Daily, The New York Times,
New York Post, Pittsburgh Post-Gazette, USA Today,
The Wall Street Journal, The Washington Post

United Kingdom Daily Mail, The Daily Telegraph, Financial Times,
The Guardian, The Independent, Reuters News,
The Times

Euro Area Agence France Presse, DW News, Euronews

Note: Table 2.1 lists the news articles used to construct the AIU Index. All outlets are sourced from the Factiva database
and classified under the ”Top Newspaper” category, alongside those frequently used in constructing text-based indices
in the literature. Only articles from these outlets are included in the index after applying keyword filters and excluding
non-relevant content types.

Keyword Filtering. After implementing the article restrictions, I apply a Boolean

keyword filter to identify articles that explicitly connect AI developments to economic

issues under conditions of uncertainty.3 Specifically, articles are retained only if they

contain at least one term from each of the following three categories: (1) artificial

intelligence, (2) economy, and (3) uncertainty. AI-related terms include keywords

commonly associated with technological developments in the field. Economic

terms capture macroeconomic concepts such as employment, productivity, or output.

Uncertainty terms, on the other hand, reflect the volatility, unpredictability, risk, doubt,

and related concepts. Table 2.2 provides the comprehensive list of keywords for each

category.

3A Boolean keyword filter combines terms using logical operators, i.e. "AND" and "OR". Articles are
retained only if they include at least one keyword from each category. This ensures the final sample
reflects joint coverage of AI developments, economic relevance, and uncertainty.
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Table 2.2: Keywords used per Category

Category: Keywords:

Artificial Intelligence "artificial intelligence" OR "artificial general

intelligence" OR "deep learning" OR "generative ai"

OR "large language model" OR "machine learning" OR

"neural network" OR "anthropic" OR "amazon" OR "amd"

OR "apple" OR "chatgpt" OR "claude" OR "deepseek" OR

"gemini" OR "google" OR "grok" OR "llama" OR "meta" OR

"microsoft" OR "nvidia" OR "openai" OR "perplexity"

OR "sora"

Economy "econom*" OR "employ*" OR "growth" OR "job*" OR

"layoff" OR "macroeconom*" OR "microeconom*" OR

"output" OR "productivit*" OR "recession" OR

"unemploy*" OR "wage*"

Uncertainty "uncert*" OR "ambigu*" OR "fluctu*" OR "risk*" OR

"unknown*" OR "unpredict*" OR "volat*"

Note: Table 2.2 presents the keyword-based filtering criteria used to construct the AIU Index. Articles are required to
contain at least one term from each of the three categories. Keyword stems (e.g., ”uncert*”) capture linguistic variants
and enhance recall across different writing styles. Boolean operators ensure that selected articles pertain to both AI and
economic uncertainty. The list of alternative keywords used in constructing the index is provided in Appendix A.

While some uncertainty-related terms correspond to measurable forms of risk,

economic theory distinguishes them from Knightian uncertainty. The former refers

to situations in which the probability distribution of outcomes is known or can

be reasonably estimated. In contrast, the latter characterises environments where

such probabilities are indeterminate due to incomplete information (Knight, 1921).

Although this conceptual distinction is foundational in theory, it is often conflated in

applied settings and public discourse, where observable indicators such as volatility

serve as proxies for uncertainty. The AIU Index is designed to capture both

quantifiable variation and broader forms of uncertainty, insofar as they are jointly

reflected in media narratives surrounding AI and its economic relevance. Accordingly,

uncertainty-related terms are counted only when they appear alongside keywords

related to both AI and the economy. This approach ensures that the index captures

a broad spectrum of narratives, encompassing both measurable risk and less tractable

forms of ambiguity linked explicitly to AI-related economic concerns.

The filtering procedure also includes Unicode normalisation, character encoding

standardisation, conversion to lowercase, and removal of punctuation and

non-informative symbols.4

4Unicode normalisation standardises characters that may have multiple valid digital representations
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2.2. Text Analysis and Feature Extraction

The corpus of news articles is processed in Portable Document Format (PDF), with

each file containing up to 100 full-length articles, which is the maximum allowed

per batch download from the Factiva database. Each article follows a consistent

structure and includes standardised metadata fields, such as article type, title, author,

word count, publication data, newspaper name, copyright statement, and a unique

document identifier assigned by Factiva.

The uniform layout of the documents facilitates efficient and reliable preprocessing.

The fixed placements of structural elements, such as the copyright statement near

the beginning of each article and the document identified at the end, enable accurate

segmentation of individual articles within each file. This standardised structure also

allows for clean separation of metadata from the main body of the text. While metadata

are retained for filtering, classification, and documentation purposes, only the main

article text is used in constructing the index.

As a validation step, I manually review 120 randomly selected articles spanning

the full sample period. This review confirms that the automated extraction procedure

correctly identifies article boundaries and accurately records metadata fields. The

manual review provides assurance that the preprocessing pipeline performs as

intended and that the resulting dataset used to construct the AIU Index is internally

consistent and free from systematic extraction errors.

2.3. Index Construction

As highlighted in earlier studies on news-based uncertainty indices, one of the primary

methodological challenges is controlling for variation in total article volume, which

can distort comparisons across time or between news outlets. Raw articles counts

containing relevant keywords are highly sensitive to changes in publication frequency,

editorial scope, and archival completeness (Baker et al., 2016; Abiad and Qureshi,

2023). To ensure comparability over time and across outlets, I adopt the standard

procedure developed by Baker et al. (2016) for the EPU Index. Following this approach,

I construct the AIU Index through four steps: (1) normalising article counts by outlet

volume, (2) standardising variance relative to a baseline period, (3) aggregating across

but appear visually identical. For example, accented letters or quotation marks may be encoded
differently across sources. Normalisation converts such characters to a consistent form, improving
keyword matching and ensuring encoding consistency.
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outlets, and (4) renormalising to index levels.

Volume Normalisation. For each news outlet, I compute the monthly share of

qualifying articles, particularly those that mention at least one term from each of

the three categories discussed in Section 2.1, relative to the total number of articles

published by that outlet in the same month:

θit =
αit

τit
, (2.1)

where θit denotes the share of articles that meet the inclusion criteria for outlet i in

month t, αit is the number of articles containing at least one term from each of the three

keyword categories, and τit is the total number of articles published. This step ensures

comparability across outlets with different publication volumes.

Variance Standardisation. Each outlet series is then scaled by its own standard

deviation, σi, computed over a pre-specified baseline window Tbase:

Yit =
θit

σi
, σi = stdev(θit, t ∈ Tbase). (2.2)

This procedure standardises the variance of each outlet series while preserving its

mean. The objective is not to re-centre the distribution but to place all outlets on a

comparable variance scale. This prevents outlets with more volatile coverage from

exerting disproportionate influence on the aggregate index.5

Aggregation. The variance-standardised series, Yit, are averaged across outlets

available in month t:

Zt =
1

Nt
∑
i∈St

Yit, (2.3)

where St is the set of outlets with observations in month t and Nt = |St|.6

Renormalisation to Index Levels. Finally, the aggregated series, Zt, is renormalised

based on the baseline period:

AIUt = 100 × Zt

Z̄base
, (2.4)

5The baseline period is set to M1:2016 to M12:2022, representing a relatively stable phase prior to the
significant advances in GenAI models. See Appendix A for details.

6The notation |St| denotes the cardinality (number of elements) of the set St, not an absolute value.
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where AIUt is the value of the AIU Index in month t, and Z̄t is the mean of Zt across

the months of the baseline period.

This four-step procedure ensures that no single outlet disproportionately influences

the index and mitigates potential biases arising from differences in publication

frequency or archival depth. Appendix B reports the contribution of each news outlet

to the AIU Index.

2.4. Narrative Evidence

To illustrate the way the AIU Index reflects periods when AI becomes a focal

macroeconomic concern, I follow the narrative approach of Romer and Romer (2010). I

review the news articles underlying the most significant index movements and verify

whether they align with events that generated heightened economic uncertainty.

Figure 2.1 presents the AIU Index for the period M1:2016 to M4:2025, together with

selected episodes in which pronounced movements in the series coincide with major

AI-related developments. These episodes are highlighted to guide the subsequent

narrative analysis and illustrate the types of events examined when assessing the

correspondence between index movements and contemporaneous AI-related news

coverage.

Figure 2.1: AIU Index (3-Month Moving Average)

Note: Figure 2.1 plots the AIU Index from M1:2016 to M4:2025. For presentation purposes, a three-month moving average
is applied. Spikes in the index were investigated by manually reviewing the underlying news articles to identify the events
driving the largest movements.
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Among these episodes, the largest increases in the index coincide with advances in

AI technology and episodes of regulatory action that were accompanied by heightened

uncertainty regarding their economic implications. A notable example occurs in

March 2023, following the release of GPT-4 by OpenAI. Contemporary news articles

discussed the potential productivity gains from generative AI and its contribution to

economic growth, while also highlighting concerns about labour displacement, skill

obsolescence, and the adequacy of existing regulatory frameworks. These discussions

built on the earlier release of ChatGPT in late 2022, which had demonstrated

human-level performance across tasks such as programming, legal reasoning, writing,

and mathematical problem-solving, thereby intensifying debate about the economic

consequences of rapid AI adoption.

Another significant increase in the index follows the issuance of Executive Order

14110 in October 2023, titled “Safe, Secure, and Trustworthy Development and Use

of Artificial Intelligence”. Articles published at the time discussed the order as a

turning point in AI governance and raised uncertainty regarding its regulatory

scope, enforcement, and potential implications for innovation and economic activity.

Commentary pointed to risks of regulatory fragmentation, compliance costs, and

uncertainty about how policy interventions might shape the pace and direction of

AI adoption. This episode illustrates how regulatory action itself can become a focal

source of macroeconomic uncertainty.

A further increase in the AIU Index appears in January 2025, coinciding with

the release of DeepSeek-R1. News articles discussed the model as a lower-cost

alternative to leading foundation models such as ChatGPT and examined how greater

affordability could broaden access and accelerate diffusion. At the same time, coverage

raised concerns about workforce displacement, competitive pressures on incumbent

technology firms, and the challenges of regulating rapid adoption at scale. The

release was frequently described as a turning point in global AI competition and

prompted discussion about the implications for US industrial policy and export

controls. Financial market reactions were also noted, with major technology firms,

including Nvidia, experiencing sharp declines in equity prices. Commentators further

emphasised that DeepSeek relied on domestically produced processors, reinforcing

concerns about technological rivalry and supply-chain resilience.

These episodes provide narrative evidence that movements in the AIU Index

coincide with periods in which AI-related developments are discussed alongside

heightened economic uncertainty. The timing and content of the underlying articles
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indicate that fluctuations in the index reflect shifts in public discourse in which AI

is framed not only as a source of potential productivity gains, but also as a driver

of uncertainty related to labour markets, regulatory capacity, and policy responses.

Appendix C provides additional evidence by linking other notable spikes in the index

to AI-related events.

3. AIU Index Benchmarking
As discussed in Section 2, the AIU Index shares methodological features akin to other

perception-based uncertainty measures that rely on text analysis of news coverage,

most notably the EPU Index. Both indices use news articles to capture how uncertainty

is reflected in public discourse, albeit with a different thematic focus. Given this

similarity in construction, it is not a priori clear whether the AIU Index captures

information distinct from that contained in the EPU Index, or whether it largely reflects

the same news-based sources of economic uncertainty.

Figure 3.1: AIU Index and Selected Uncertainty Measures

Note: Figure 3.1 plots the AIU Index together with the REU Index (Jurado et al., 2015), the EPU Index (Baker et al., 2016),
the VIX, and the VXN. All series are normalised to facilitate comparison.

AI-related uncertainty may also be reflected in measures that do not rely on

news-based methods, through distinct economic channels. The REU Index reflects

the volatility in macroeconomic forecasts, providing a broad measure of aggregate

economic uncertainty (Jurado et al., 2015). Developments in AI that raise uncertainty
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about productivity growth, labour market adjustment, or structural change could

affect expectations about future economic outcomes, thereby increasing forecast

dispersion and generating co-movement between the AIU Index and the REU Index.

In addition, developments about AI may influence financial market expectations

by affecting anticipated firm profitability, sectoral valuations, or growth prospects,

particularly in technology-intensive industries. In such cases, AI uncertainty could

be reflected in higher implied equity market volatility, leading to co-movement with

market-based measures such as the VIX and VXN.

Figure 3.1 plots the AIU Index alongside measures of economic uncertainty. The

figure shows that movements in the AIU Index differ systematically from those of

benchmark measures. This is particularly evident during the COVID-19 pandemic in

2020, when the REU Index, EPU Index, VIX, and VXN exhibit a sharp, synchronised

increase, whereas the AIU Index shows only a limited response. By contrast, from late

2022 onward, following the release of ChatGPT, the AIU Index records a sequence of

pronounced increases that are not mirrored by the other uncertainty measures, which

remain comparatively subdued or decline. Differences in both timing and magnitude

across these indicators suggest that perceived uncertainty related to AI is not captured

by traditional measures of macroeconomic, policy, or financial uncertainty.

To formally assess this distinction, I examine the extent of co-movement between

the AIU Index and these established measures of uncertainty using correlation analysis

and linear regressions.

3.1. Statistical Tests

Pearson Correlation. I begin by computing the pairwise Pearson correlation

coefficients between the AIU Index and each benchmark measure:

ρ =
Cov(Γi, AIU)

σΓi σAIU
, (3.1)

where ρ is the Pearson correlation coefficient, Cov(Γi, AIU) is the covariance between

each benchmark measure, Γi, and the AIU Index, computed over the sample period

t = 1, . . . , T. While σΓi and σAIU are their respective standard deviations.

Figure 3.2 presents the correlation matrix. The AIU Index displays low correlations

with each benchmark: (1) -0.1 with VXN, (2) -0.1 with VIX, (3) -0.2 with the REU Index,

and (4) 0.2 with the EPU Index. The negative correlations with the VXN, VIX, and REU
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Index suggest that movements in the AIU Index are not systematically aligned with

fluctuations in financial market volatility or real activity uncertainty. In contrast, the

modest positive correlation with the EPU Index indicates some degree of comovement

with policy-related uncertainty, although the relationship is weaker than that observed

among the benchmark indices. Overall, the evidence suggests that the AIU Index

captures a dimension of uncertainty that is only partially related to these broader

measures. By comparison, the benchmark indices are more strongly correlated with

one another, with coefficients ranging from 0.4 to 1.0, confirming that the AIU Index

provides distinct informational content.

Figure 3.2: Correlation Matrix of Uncertainty Measures

Note: Figure 3.2 reports the Pearson correlation coefficients between AIU Index and benchmark uncertainty measures. The
benchmarks are the EPU Index, REU Index, VIX, and VXN. The sample spans from M1:2016 to M4:2025, reflecting the
availability of news articles used to construct the AIU Index and the benchmark uncertainty measures.

Linear Regression. To complement the correlation analysis, I estimate a set of ordinary

least squares (OLS) regressions. In each regression, one of the benchmark uncertainty

measures serves as the dependent variable, while the AIU Index is the explanatory

variable:

Γit = αi + λiAIUt + εit, (3.2)

where Γit denotes the EPU, REU, VIX, and VXN at time t, and AIUt is the AIU Index.

The coefficient λi captures the association between the AIU Index and each benchmark

measure.
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Table 3.1: OLS Regressions of Uncertainty Measures on AIU Index

Dependent Variable:

EPU REU VIX VXN

(1) (2) (3) (4)

AIU 0.03∗∗ −0.00∗∗ −0.00 −0.00

(0.01) (0.00) (0.00) (0.00)

Constant 219.63∗∗∗ 0.75∗∗∗ 19.15∗∗∗ 23.10∗∗∗

(8.34) (0.02) (0.79) (0.81)

Observations 112 112 112 112

R2 0.04 0.04 0.02 0.02

Note: Table 3.1 reports OLS regression results of benchmark uncertainty measures on the AIU Index. Robust standard
errors in parentheses. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. The sample covers M1:2016 to M4:2025, reflecting the availability
of news articles used in constructing the AIU Index and benchmark uncertainty measures.

The regression results reported in Table 3.1 complement the correlation analysis

and indicate a weak relationship between the AIU Index and existing benchmarks.

Across all specifications, the estimated coefficients are close to zero. Although some

coefficients are statistically significant, their magnitudes are small and economically

unimportant. The explanatory power is also limited, with R2 values consistently below

0.1. Further, the results suggest that the AIU Index reflects movements in uncertainty

that are not captured by standard measures of policy, macroeconomic, or financial

uncertainty.

3.2. Interpretation

The AIU Index captures a dimension of uncertainty that is statistically independent

from established measures. This distinction stems from the structural nature of

AI-related uncertainty, its transmission of mixed economic signals, and its distinctive

policy dimension.

Structural Nature. One explanation lies in the structural nature of AI-related

uncertainty. Unlike conventional measures that reflect volatility in outcomes

conditional on established economic relationships, AI-related uncertainty concerns

questions such as which occupations will remain viable, how production technologies

will evolve, and what forms of complementarity between human labour and artificial
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intelligence will emerge. This constitutes structural uncertainty in the sense that

it reflects disagreement about the underlying economic relationships themselves.

Such structural uncertainty need not correlate with indices capturing cyclical or

policy-driven volatility, which measure movements within a known distribution of

outcomes. The weak correlation between the AIU Index and benchmark uncertainty

indices is consistent with this conceptual distinction. As shown in Figure 3.1, increases

in AI-related uncertainty coincide with technological developments such as the release

of ChatGPT in late 2022 onward, whereas the REU Index, EPU Index, VIX, and VXN

display sharp spikes during episodes of broad economic and financial stress such as

the COVID-19 pandemic.

Mixed Economic Signals. A second explanation is that AI-related uncertainty

comprises signals of opposing sign. T Technological breakthroughs simultaneously

raise expectations of productivity improvements and efficiency gains while

intensifying concerns about potential adverse effects such as labour displacement,

adjustment costs, and distributional consequences. This informational structure differs

from macroeconomic, policy, or financial uncertainty shocks, which often transmit

predominantly contractionary signals (Bloom, 2009, 2014; Jurado et al., 2015; Baker

et al., 2016).

The ambiguous nature of AI-related signals manifests in the substantial differences

of macroeconomic impact estimates, which range from modest aggregate gains

(Acemoglu, 2025) to substantial increases in output and productivity (Chui et al.,

2023; Goldman Sachs, 2023; Cerutti et al., 2025). The coexistence of optimistic and

adverse assessments accounts for the weak correlation between AI uncertainty and

conventional measures that predominantly capture downside risks. During episodes

of financial stress or heightened policy uncertainty, news coverage tends to emphasise

negative economic developments and contractionary pressures. Reporting on AI, by

contrast, frequently combines optimistic projections of technological progress with

concern about distributional consequences and labour market disruption. This dual

nature of AI-related uncertainty is further examined in Section 4.

Disctinct Policy Dimension. The modest positive correlation between the AIU

Index and EPU Index reflects a partial overlap in their informational content. This

overlap arises when AI-related developments enter policy discussions, generating

media coverage of legislative initiatives, executive orders, and regulatory frameworks

that register in both indices (as discussed in Section 2). Hence, policy uncertainty
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may also encompass AI-related concerns when technological disruption is a prominent

feature of policy debates.

The limited magnitude of this correlation, substantially below the correlations

observed among benchmark uncertainty measures, indicates that policy

considerations constitute only one dimension of AI-related uncertainty. The AIU Index

predominantly reflects uncertainty regarding technological developments, sectoral

transformation, and labour market effects, which operate largely independently of

conventional policy channels. This independence suggests that AI-related uncertainty

encompasses economic and technological dimensions that extend beyond the scope of

traditional policy uncertainty.

4. Data, Model Specification, and Inference
This section describes the data, model specification, and identification strategies used

to assess the macroeconomic effects of AI uncertainty. I estimate a baseline recursive

SVAR, extend it using an SVAR-IV to relax exogeneity, and apply local projections to

analyse industry-level responses.

4.1. Data

The SVAR is estimated using six monthly US variables spanning the period from

M1:2016 to M4:2025. Table 4.1 reports the variables, their definitions, and the

transformations applied before estimation. Appendix D plots the variables.

Table 4.1: Data Description

Variable: Description: Transform:

AIU Index AI Uncertainty Index Level

S&P 500 Index Value at Market Close Log Level

Wage Average Hourly Earnings of
All Employees, Total Private

Log Level

Hours Average Weekly Hours of
All Employees, Total Private

Log Level

Employment All Employees, Total Private Log Level

Industrial Production Industrial Production: Total Index Log Level

Note: Table 4.1 presents the monthly variables used in the SVAR estimation, together with their descriptions and applied
transformations. All macroeconomic variables, except for the AIU Index, are sourced from the US Bureau of Labour
Statistics (BLS) and Federal Reserve Bank of St. Louis (FRED).
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The selection of variables is grounded in the broader literature on economic

uncertainty (Bloom, 2009, 2014; Jurado et al., 2015; Baker et al., 2016; Piffer and

Podstawski, 2018; Caldara et al., 2020). However, two key modifications are introduced

to align the specification with the objectives of this study. First, I estimate the SVAR

in levels, following Sims et al. (1990). This is to retain long-run information that could

be lost through differencing or filtering methods such as the Hodrick–Prescott (HP)

filter (Hodrick and Prescott, 1997). Second, inflation and monetary policy variables are

omitted to maintain focus on broader macroeconomic aggregates.

4.2. Structural Vector Autoregression

The macroeconomic effects of AI-related uncertainty are estimated within an SVAR:

Yt = α +
p

∑
i=1

AiYt−i + ut, ut = B εt. (4.1)

where Yt is the n × 1 vector of endogenous variables, α is an n × 1 vector of intercepts,

and Ai are n× n coefficient matrices for the p lags. The reduced-form residuals ut have

covariance matrix Σu ≡ E[utu′
t] = BB′ with B denoting the contemporaneous impact

matrix. Structural shocks εt are assumed to be mutually orthogonal and normalised to

unit variance, E[εtε
′
t] = I.

Specifically, Yt is specified as:

AIU Index
log(S&P 500)

log(Wage)
log(Hours)

log(Employment)
log(Industrial Production)


, (4.2)

where the AIU Index is followed by indicators for the equity market, labour market,

and real economic activity. This ordering is maintained across both identification

strategies discussed below.

Equation (4.1) defines the reduced-form VAR and its structural representation.

Since B cannot be uniquely identified from Σu, recovering the column associated with

the AI uncertainty shock requires additional restrictions. I consider two alternative

identification strategies. The first is a recursive approach, which imposes timing

restrictions through the ordering of variables. The second is an instrumental variable
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approach, which exploits an external instrument to isolate innovations in AI-related

uncertainty without relying on recursive assumptions.

SVAR with Recursive Identification. I initially examine the macroeconomic effects of

AI uncertainty using an SVAR with recursive identification. This approach provides

a natural starting point because it is tractable and transparent, particularly in the

absence of strong theoretical priors on the structural role of AI-related uncertainty

in the economy. It also follows established practice in the literature, which models

uncertainty as an exogenous source of economic fluctuations (Bloom, 2009; Jurado

et al., 2015; Baker et al., 2016; Caldara et al., 2020).

Under recursive identification, the contemporaneous impact matrix B is restricted

to be lower triangular. Variables that appear earlier in the ordering may affect those

ordered after them contemporaneously, but not the reverse. The AI uncertainty

shock is identified by placing the AIU Index first in the ordering given in equation

(4.2). This reflects the assumption that innovations in AI-related uncertainty can

contemporaneously influence all macroeconomic variables while remaining insulated

from the same period movements in fundamentals, consistent with the informational

nature of the index.

SVAR with Instrumental Variable. To relax the timing restriction assumption, I also

employ an instrumental variable approach to identify AI uncertainty (SVAR-IV) (Stock

and Watson, 2012; Mertens and Ravn, 2013). This approach uses an external instrument

that is correlated with innovations in AI-related uncertainty but orthogonal to all other

shocks in the system. In contrast to the recursive specification, it does not depend on

ordering assumptions, since contemporaneous relationships among the endogenous

variables remain unrestricted.

Identification requires an external instrument, zt, that satisfies two conditions:

E[zt, εAI
t ] ̸= 0, (4.3)

E[zt, ε
j
t] = 0 for j ̸= AI, (4.4)

where εAI
t is the AI uncertainty shock and ε

j
t are the remaining structural shocks.

Condition (4.3) ensures relevance, while condition (4.4) imposes exogeneity.

Under these conditions, the impulse vector s1, the column of B associated with the

AI uncertainty shock, can be recovered from the covariance between the instrument

and the reduced-form residuals:
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s1 ∝ Cov(zt, ut), (4.5)

where Cov(zt, ut) denotes the vector of covariances between the instrument and the

reduced-form residuals.

To fix the scale, I impose the normalisation that the structural AI uncertainty shock

has unit variance. With this restriction, the identified shock series is obtained as:

ε̂AI
t =

ŝ′1Σ̂
−1
u ut√

ŝ′1Σ̂
−1
u ŝ1

, (4.6)

where Σ̂u is the estimated covariance matrix of reduced-form residuals. This

normalisation ensures that ε̂AI
t has unit variance. Therefore, the impulse responses

can be interpreted as the effects of a one standard deviation AI uncertainty shock.7

Tail Realisation Instrument. To implement the SVAR-IV, one of the instrument

construction methods follows the approach of Carriero et al. (2015) where the

instrument is derived from extreme observations of the VXO. In this paper, the same

logic is applied to the AIU Index, where I construct a binary instrument based on its

tail realisations.

The instrument takes the value 1 when the AIU Index exceeds a certain quantile of

its historical distribution and 0 otherwise:

z(τ)t =

1 if AIUt ≥ qτ(AIU),

0 otherwise,
(4.7)

where qτ denotes the τ-th quantile of the AIU Index. In particular, instruments are

constructed using τ ∈ {0.95, 0.90, 0.75}. This strategy captures periods of AI-related

uncertainty that are more likely to represent exogenous shocks rather than systematic

responses to macroeconomic conditions. These discrete realisations therefore provide

a plausible source of external variation for identification. The tail realisations of the

index are shown in Appendix F.

Residual-Based Instrument. The second approach distinguishes between two

dimensions of AI-related news coverage. One dimension captures narratives in which

7As a robustness check, I also implement an internal instrument approach (Plagborg-Møller and
Wolf, 2021; Känzig, 2023), which directly incorporates the instrument into the VAR and remains valid
even when the structural shock is non-invertible. This alternative specification requires that the
instrument be orthogonal to leads and lags of all structural shocks, but does not impose invertibility.
Details on the internal instrument methodology and results are provided in Appendix E.
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AI is discussed as a source of economic uncertainty. The other reflects broader

discussions of the economic role of AI, including its implications for productivity,

growth, and technological progress. Distinguishing between these components is

important because they correspond to different channels through which AI could

potentially affect the economy. Prior studies show that uncertainty often co-moves

with unanticipated revisions in expectations about future economic conditions (Piffer

and Podstawski, 2018; Cascaldi-Garcia and Galvao, 2021).

The approach draws on two text-based indices constructed from the same corpus of

newspaper articles. The first is the AIU Index, which measures economic uncertainty

related to AI using references to AI, economic terms, and explicit mentions of

uncertainty. The second is the AI Economic (AIE) News Index, which follows the

same construction methodology but does not require uncertainty-related keywords

and therefore captures the overall discussion of AI in an economic context.

By construction, all articles contributing to the AIU Index form a subset of those

contributing to the AIE News Index. This nested structure allows the uncertainty

index to be decomposed into a component that scales with the overall level of

reporting on AI and the economy and a residual component that captures deviations in

uncertainty-related content, conditional on the volume of such reporting. Both indices

are expressed as normalised frequencies to ensure comparability over time.

The decomposition is implemented through the following regression:

AIUt = α1 + β1AIEt + µunc
t , (4.8)

where µunc
t represents the variation in AI-related uncertainty coverage that is

orthogonal to total AI-economy coverage. Appendix H reports the corresponding

regression results. The estimated coefficient β̂1 = 0.93 indicates a close proportional

relationship between the two indices. On average, a one-unit increase in general

coverage about AI and the economy is associated with a 0.93 unit increase in

uncertainty-related coverage. An R2 of 0.99 indicates that this relationship is highly

stable over the sample period, leaving only 1.0% of the variation in AIU Index

unexplained.

This residual variation corresponds to periods in which uncertainty-related content

is unusually elevated or subdued relative to the overall level of reporting on AI

and economic conditions. As such, it reflects changes in the framing of AI-related

discourse rather than shifts in the volume of coverage alone. Examining the time-series

behaviour of this residual helps clarify the nature of the variation isolated by the
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instrument.

Figure 4.1: Pure AI Uncertainty Component (µunc
t )

Note: Figure 4.1 displays the residual-based measure of AI uncertainty µunc
t , constructed by removing the component of

the AIU Index explained by the AIE News Index (Equation 4.8). The annotated points correspond to selected AI-related
developments that received extensive news coverage. The sample spans M1:2016 to M4:2025, consistent with the availability
of the underlying news corpus.

Figure 4.1 presents the resulting residual series. The residual remains relatively

stable through late 2022, indicating that uncertainty-related and general economic

reporting on AI moved largely in proportion during this period. From late 2022

onward, beginning with the release of ChatGPT in November 2022, the series displays

substantially greater volatility. Positive residuals arise when uncertainty-related

themes become more prominent within coverage of AI and the economy, as

observed during episodes involving regulatory debate, geopolitical competition, or

labour market concerns. Negative residuals arise when coverage focuses primarily

on concrete technological capabilities, demonstrated performance, or commercial

applications, reducing the relative emphasis on uncertainty.

COVID-19 Pandemic Adjustment. To address the sharp but temporary increase

in volatility during the COVID-19 pandemic, the estimation of both the baseline

SVAR and the SVAR-IV incorporates time-varying volatility of structural shocks.

Following Lenza and Primiceri (2022), I account for elevated volatility in March,

April, and May 2020 by estimating a sequence of scaling factors derived from the

behaviour of reduced-form residuals. This adjustment allows the model to absorb
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the pandemic-related surge in volatility without discarding observations, thereby

preserving the full sample while limiting its influence on inference.8

Estimation and Inference. Both SVAR with recursive identification and SVAR-IV

are estimated using OLS, with the optimal lag length selected based on standard

information criteria. To construct confidence bands around the impulse response

functions (IRFs), I employ a wild bootstrap procedure, as described in Gonçalves and

Kilian (2004). This method addresses both estimation and identification uncertainty by

generating pseudo-samples in which the signs of reduced-form residuals are randomly

resampled across time. The SVAR is re-estimated for each pseudo-sample using the

same identification scheme, and the procedure is repeated until 1,000 valid replications

are obtained.9

4.3. Local Projections

Aggregate estimates summarise economy-wide responses but may obscure

meaningful variation across sectors. Industries differ along numerous dimensions

that are relevant to the transmission of uncertainty related to AI, including exposure

to automation enabled by AI, the composition of tasks performed, the structure of

employment relationships, and the costs of labour adjustment. Examining whether

responses to AI uncertainty vary systematically with these observable characteristics

can shed light on the channels through which uncertainty affects labour market

outcomes and clarify the sources of aggregate responses. To investigate this potential

heterogeneity, I extend the analysis to the industry level using local projections,

following Jordà (2005).

Data and Industry Classification. I use monthly industry-level data on average

8Following Lenza and Primiceri (2022), I adjust for the temporary increase in the variance of
macroeconomic shocks during the COVID-19 pandemic. I estimate scaling parameters s̄0, s̄1, and s̄2
for March, April, and May 2020, respectively, along with a decay rate ρ, via maximum likelihood.
The volatility scaling factor evolves as st = s̄j for j ∈ {0, 1, 2} (the first three pandemic months), and
st∗+j = 1 + (s̄2 − 1)ρj−2 for j ≥ 3, where t∗ = March 2020, allowing variance to decay exponentially
toward pre-pandemic levels. All endogenous variables except the AIU Index are rescaled by st prior to
estimation, reflecting the observation that AIU exhibited relatively stable variance during this period
compared to other macroeconomic indicators. Further details are provided in Lenza and Primiceri
(2022).

9To ensure that the impulse responses and confidence intervals are not driven by extreme
observations in the AIU Index, particularly those primarily concentrated from late 2022 onwards, I
re-estimate the baseline SVAR and SVAR-IV after excluding periods with large standardised residuals
from the AI uncertainty equation. This robustness check evaluates whether a small number of unusual
observations materially influence the estimates. The outlier exclusion procedure is comprehensively
discussed in Appendix I.
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hourly earnings, hours worked, and employment from the US Bureau of Labour

Statistics (BLS). Industries included in the analysis are classified according to the North

American Industry Classification System (NAICS) at the two-digit level, yielding

eight broad industries: (1) Manufacturing, (2) Trade, Transportation, and Utilities,

(3) Information, (4) Financial Activities, (5) Professional and Business Services, (6)

Education and Health Services, (7) Leisure and Hospitality, and (8) Other Services.

Details on the variables used in the local projections are provided in Appendix J.

Estimation. Following (Känzig, 2023), the structural AI uncertainty shock, ε̂AI
t ,

identified through the SVAR-IV, serves as the exogenous driver of the industry-level

local response. This is treated as a common source of uncertainty affecting all

industries, while allowing the magnitude and persistence of responses to differ across

sectors. This approach avoids the small-sample limitations that would arise from

estimating separate structural vector autoregressions for each industry.

For each industry i and outcome variable yi,t, I estimate the following local

projection at horizon h:

yi,t+h = αi,h + βi,h ε̂AI
t + γ1,i,h yi,t−1 + · · ·+ γp,i,h yi,t−p + ei,t+h, (4.9)

where yi,t+h denotes the outcome variable for industry i at horizon h, αi,h is the

intercept, βi,h captures the response to a one standard deviation AI uncertainty shock,

γi,h accounts for the autoregressive persistence, and the error term is denoted by ei,t+h.

Local projections are estimated separately for each horizon h = 0, 1, . . . , H, producing

a sequence of βi,h coefficients that trace the dynamic response of each industry to the

AI uncertainty shock. Confidence intervals for the local projections are constructed

using Newey-West standard errors.

5. Results
This section reports the empirical results. I first assess the relevance and exogeneity of

the instruments, then present the findings from the recursive SVAR, the SVAR-IV, and

the local projections. The subsections that follow discuss each set of results.

5.1. Strength of Instrument

Following Gertler and Karadi (2015) and Piffer and Podstawski (2018), I assess the

validity of the instruments by examining both relevance (Equation 4.4) and exogeneity
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(Equation 4.5). First, I evaluate relevance by regressing each reduced-form residual on

the proposed instruments:

uit = α + βiŵAI
t + δit, i = 1, 2, . . . , n, (5.1)

where uit denotes the reduced-form residual from equation i at time t, and βi measures

the relationship between the instrument and that residual, δit is the error term, and n

is the number of equations in the SVAR-IV.

Then, to evaluate exogeneity, I examine whether the proposed instruments capture

variation that differs from structural uncertainty driven by macroeconomic or financial

conditions. The analysis compares the tail realisation and residual-based instruments

with structural uncertainty shocks derived from the EPU Index, the REU Index, the

VIX, and the VXN. For each benchmark measure, I estimate an SVAR that includes

the uncertainty indicator together with the variables described in subsection 4.1.

The benchmark uncertainty shock is identified using recursive identification with the

uncertainty measure ordered first. I then regress the instrument on the corresponding

benchmark structural uncertainty shock:

θ IV
t = αj + β jε

j
t + ηjt, (5.2)

where θ IV
t refers to the proposed instruments (i.e., tail realisation or residual-based), ε

j
t

is the structural uncertainty shock derived from benchmark j, and ηjt is the error term.

Tail Realisation Instrument. Using the 0.95 quantile of the AIU Index yields an

F-statistic of 63.7 in the targeted equation, as reported in Table 5.1. This exceeds

the conventional relevance threshold of 10.0 (Stock and Yogo, 2002). Although such

a strong first-stage relationship may appear mechanical, two considerations suggest

otherwise. First, the tail realisation must supply identifying variation beyond what is

already accounted for by the lag structure of the AIU Index and the behaviour of other

variables in the system. Second, relevance is highly sensitive to the choice of quantile

threshold. Instruments constructed from the 0.90 and 0.75 quantiles yield F-statistics

of 34.3 and 3.1, respectively (Appendix K). This indicates that only sufficiently extreme

tail events deliver strong identifying variation.

A complementary assessment of instrument validity comes from the exclusion

restriction. Across all quantiles, the tail realisation instruments display negligible and

statistically insignificant correlations with residuals from the non-targeted equations.

Estimated coefficients are small in magnitude, statistically indistinguishable from zero,
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and associated with low R2 values and weak F-statistics. This pattern suggests that the

instrument does not load systematically on shocks to other variables in the system. If

extreme AIU realisations were systematically associated with financial market or broad

labour market shocks, such orthogonality would not be observed. The absence of these

correlations supports the interpretation that upper-tail realisations isolate variation

specific to AI-related uncertainty.

Table 5.1: Instrument Relevance (0.95 Quantile)

AI Unc. S&P 500 Wage Hours Emp. Ind. Prod.

β 753.04∗∗∗ 0.01 0.00 -0.00 -0.00 -0.00

Std. Errors (94.38) (0.02) (0.00) (0.00) (0.01) (0.01)

t-Statistics 7.98 0.34 0.17 -0.98 -0.01 -0.13

F-Statistics 63.66 0.11 0.03 0.96 0.00 0.02

R2 0.37 0.00 0.00 0.01 0.00 0.00

Note: Table 5.1 reports the regression of the reduced-form residuals uit from each VAR equation on the proposed instrument
ŵAI

t , constructed from the 0.95 quantile of the AIU Index. The specification is uit = α + βiŵAI
t + ηit. Robust standard errors

are reported in parentheses. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table 5.2: Instrument Exogeneity (0.95 Quantile)

Dependent Variable: τ = 0.95

(1) (2) (3) (4)

EPU −0.02

(0.02)

REU 0.01

(0.02)

VIX −0.02

(0.02)

VXN −0.02
(0.02)

Constant 0.05∗∗ 0.05∗∗ 0.05∗∗ 0.05∗∗

(0.02) (0.02) (0.02) (0.02)

R2 0.01 0.00 0.01 0.01

Note: Table 5.2 reports regressions of the tail realisation instrument (0.95 quantile of the AIU Index) on structural uncertainty
shocks from benchmark measures. The specification is θ IV

t = αj + β jε
j
t + ηjt. Structural shocks ε

j
t are extracted from separate

SVARs for each uncertainty measure (EPU, REU, VIX, VXN) using recursive identification with the uncertainty measure
ordered first. Robust standard errors in parentheses. ∗p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01.
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Table 5.2 provides additional support by testing the instrument against benchmark

uncertainty measures. Coefficients on uncertainty shocks measured by the EPU

Index, the REU Index, the VIX, and the VXN are uniformly small in magnitude and

statistically insignificant, with corresponding R2 values below 0.1. This evidence is

consistent with the view that the instrument captures uncertainty associated with

AI-related developments rather than broader sources of macroeconomic uncertainty.

On this basis, the 0.95 quantile of the AIU Index is retained as the baseline tail

realisation instrument, with the 0.90 quantile included as a robustness check.

Residual-Based Instrument. The residual-based instrument µunc
t yields a coefficient of

1.1 with an F-statistic of 10.3 in the targeted equation, as shown in Table 5.3. This also

satisfies the conventional threshold for instrument relevance (Stock and Yogo, 2002).

Table 5.3: Instrument Relevance (Residual-Based)

AI Unc. S&P 500 Wage Hours Emp. Ind. Prod.

β 1.10∗∗∗ -0.00 -0.00 -0.00∗∗ -0.00 -0.00

Std. Errors (0.34) (0.00) (0.00) (0.00) (0.00) (0.00)

t-Statistics 3.22 -1.38 -0.29 -2.23 -0.26 -0.49

F-Statistics 10.34 1.91 0.08 4.97 0.07 0.24

R2 0.09 0.02 0.00 0.04 0.00 0.00

Note: Table 5.3 reports the regression of the reduced-form residuals uit from each VAR equation on the residual-based
instruments derived from Equation (4.9). Specifically, the instrument corresponds to µunc

t to identify ”pure” AI uncertainty
shock. The estimation follows the specification uit = α + βi v̂AI

t + ηit. Robust standard errors are reported in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

In the non-targeted equations, the estimated coefficients associated with the

residual-based instrument are small in magnitude, statistically insignificant, and

accompanied by low R2 values and weak F-statistics. Accordingly, the instrument is

strongly related to the residual in the targeted equation while remaining unrelated to

the remaining reduced-form errors. This pattern implies that the identifying variation

in the instrument is concentrated in the targeted equation, namely the AI uncertainty

equation, rather than being distributed across multiple equations. Such behaviour is

consistent with the identifying assumption that the instrument loads primarily on a

single structural shock.

To assess exogeneity, Table 5.4 reports regressions of the residual-based instrument

on benchmark structural uncertainty shocks. Uncertainty shocks derived from the
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EPU Index, the REU Index, the VIX, and the VXN yield coefficients that are close to

zero and statistically insignificant across all specifications. In addition, the associated

R2 values remain at or below 0.2, and the standard errors are of similar magnitude

to the point estimates, indicating limited explanatory power. These results indicate

that benchmark uncertainty shocks do not account for meaningful variation in the

residual-based instrument.

Table 5.4: Instrument Exogeneity (Residual-Based)

Dependent Variable: µunc
t

(1) (2) (3) (4)

EPU 10.37

(6.56)

REU 8.85

(6.58)

VIX 7.71

(6.59)

VXN 8.70
(6.58)

Constant −0.06 −0.06 −0.06 −0.06

(6.53) (6.55) (6.56) (6.55)

R2 0.02 0.02 0.01 0.02

Note: Table 5.4 reports regressions of the residual-based instrument (µunc
t ) on structural uncertainty shocks from benchmark

measures. The specification is θ IV
t = αj + β jε

j
t + ηjt (Equation 5.2). Structural shocks ε

j
t are extracted from separate SVARs

for each benchmark uncertainty measure (EPU Index, REU Index, VIX, and VXN) using recursive identification with the
uncertainty measure ordered first. Robust standard errors in parentheses. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Overall, the evidence suggests that both instruments isolate movements specific

to AI-related uncertainty rather than broader macroeconomic or financial uncertainty.

This joint evidence supports the interpretation of the identified shocks in the

subsequent structural analysis and mitigates concerns about weak or contaminated

instruments.

5.2. Aggregate-Level Impulse Response

Composite AI Uncertainty Shock. The impulse responses in Figure 5.1 correspond

to a one standard deviation AI uncertainty shock identified using a recursive SVAR

and the SVAR-IV based on the tail realisation of the AIU Index. Both approaches yield
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similar qualitative patterns, which supports the robustness of the results. However,

to maintain a consistent benchmark for interpretation in this subsection, I focus the

discussion on the SVAR-IV results obtained with the tail realisation instrument.

Figure 5.1: Impulse Responses to AI Uncertainty Shock

Note: Figure 5.1 displays the impulse responses to a one standard deviation shock in AI uncertainty estimated with an
SVAR under recursive identification (blue line) and SVAR-IV (red line). The instrument used is a binary IV equal to 1 when
the AIU Index is greater than or equal to its 0.95 quantile and 0 otherwise. Shaded areas denote 68% confidence bands
based on 1,000 wild bootstrap replications.

Financial markets display the most pronounced adjustment. The S&P 500 expands

by approximately 0.6% on impact and remains moderately above baseline throughout

the 36-month horizon, stabilising near 0.2%. Despite wide confidence bands, the

response is consistently positive throughout the horizons. This response is notable
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given the typically contractionary effects observed in equity markets following

uncertainty shocks (Bloom, 2009; Jurado et al., 2015; Baker et al., 2016).

The labour market displays more moderate and asymmetric responses. Hours

worked decline slightly on impact, by less than 0.1%, and return to baseline within

a few months. This behaviour is robust across identification strategies. Wages remain

close to zero throughout the horizon, while employment registers a brief increase in the

early months before returning to baseline within the first year. These results suggest

that AI-related uncertainty is primarily absorbed through short-lived adjustments in

hours worked rather than sustained changes in wages or employment.

Real activity displays a similar degree of stability. Industrial production increases

slightly on impact, but the effect is transitory, and the confidence bands include zero

for most horizons. Relative to the more pronounced adjustments in equity prices and

hours worked, the limited response of industrial production suggests that real activity

plays only a minor role in the near-term transmission of AI-related uncertainty shocks.

Overall, the results indicate a distinctive pattern in the transmission of the

composite AI uncertainty shock. The combination of a positive and persistent

equity price response, a temporary contraction in hours worked, and negligible

effects on wages and industrial production suggests that the AI uncertainty shock

identified using the tail realisation instrument does not isolate pure uncertainty.

Since the instrument conditions on the upper tail of the AIU Index distribution, it

could embed both second-moment uncertainty and first-moment information about

AI-related economic prospects. As a result, the identified shock reflects a mixture

of contractionary uncertainty effects and expansionary productivity-related news

components (Piffer and Podstawski, 2018; Cascaldi-Garcia and Galvao, 2021).

Pure AI Uncertainty Shock. Isolating the uncertainty component within AI-related

coverage reveals effects that differ markedly from those generated by the composite

AI uncertainty shock. Using the residual-based instrument introduced in Section 4,

the resulting impulse responses are presented in Figure 5.2.

Equity markets display a pronounced and persistent contraction. The S&P 500

falls by approximately 1.1% on impact and remains below the baseline throughout

the 36-month horizon. Relative to the composite AI uncertainty shock, this reversal

indicates that the earlier positive response reflects the innovation-related component

embedded in the AIU Index. Once this component is removed, the isolated uncertainty

shock exerts sustained downward pressure on equity markets.
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Figure 5.2: Impulse Responses to AI Uncertainty Shock

Note: Figure 5.2 displays the impulse responses to a one standard deviation pure AI uncertainty shock (red line) identified
using SVAR-IV. The residual-based instrument isolates distinct components of AI-related coverage, separating discussions
that frame AI as a source of uncertainty from broader narratives linked to productivity and innovation. The identified shock,
therefore, captures adverse assessments related to labour displacement, regulatory challenges, and sectoral disruption,
among others. Shaded areas denote 68% confidence bands based on 1,000 wild bootstrap replications.

Labour market adjustments intensify along multiple margins. Hours worked

contract by nearly 0.2% on impact and remain below baseline before reverting around

the 10-month horizon. Wages display a more persistent response, with an initial

decline of approximately 0.1% that deepens to nearly 0.2% and remains below baseline

throughout the horizon. At the extensive margin, employment decreases by around

0.1% on impact, but this adjustment proves transitory. Wide confidence bands,

however, indicate substantial uncertainty around this estimate, and the response

cannot be statistically distinguished from zero. These results indicate that AI-related
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uncertainty generates larger and more persistent adjustments in labour utilisation,

with the strongest amplification in hours worked and wages, while adjustment at the

extensive margin remains muted.

Output also contracts in response to pure AI uncertainty. Industrial production falls

by roughly 0.2% on impact before gradually reverting toward baseline. Although the

decline is less persistent than the responses of S&P 500 and labour market outcomes, it

nonetheless signals that uncertainty about AI disrupts real activity in the short run.

Overall, these results indicate that the movement in the composite AI uncertainty

shock reflects the combined influence of two distinct components embedded in

AI-related coverage. The uncertainty component induces contractionary adjustments

in equity prices, wages, labour utilisation, and output. Expectations of productivity

improvements create an expansionary influence that is most visible in equity markets.

When both components are present in the AIU Index, their effects partially offset one

another, generating the mixed responses observed under the baseline specification in

Figure 5.1. The orthogonalisation of these components shows that AI uncertainty, in

isolation, has a measurable and economically meaningful impact on macroeconomic

activity, while productivity-related references primarily shape the aggregate response

captured by the AIU Index.10

5.3. Forecast Error Variance Decomposition

The forecast error variance decomposition (FEVD) quantifies the importance of AI

uncertainty shocks and highlights adjustment patterns not fully captured by the

impulse responses. As reported in Table 5.5, the composite and pure AI uncertainty

shocks differ markedly in both their overall contribution to macroeconomic

fluctuations and in how these effects are distributed across variables.

In equity markets, the composite AI uncertainty shock accounts for approximately

2.0% of the forecast variance in the S&P 500 from the one-year horizon onward, with

contributions that remain stable at longer horizons. The pure AI uncertainty shock, on

the other hand, explains nearly 11.0% of the variance on impact, declining gradually

to just under 9.0% by the 36-month horizon. This gap indicates that the composite

measure substantially understates the role of an AI uncertainty shock on equity market

fluctuations.

The contrast is even more pronounced in labour markets. At the 12-month horizon,

10The IRFs based on the internal SVAR-IV specification yield similar results. See Appendix E.
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the composite AI uncertainty shock explains around 3.0% of wage variance, 6.0% of

employment variance, and 7.0% of hours worked variance, with these contributions

declining over time. The pure AI uncertainty shock, on the other hand, displays a

sharply different variance allocation across horizons. On impact, it accounts for 24.0%

of the variance in hours worked, declining to approximately 14.0% by the end of the

horizon. Meanwhile, its contribution to wage variance increases steadily, reaching

28.0% at the 36-month horizon and exceeding that of all other variables at longer

horizons. By contrast, employment variance remains largely unaffected by pure AI

uncertainty at all horizons, which never exceeds 1.0%. This asymmetry indicates that

pure AI uncertainty operates primarily through adjustments in hours worked in the

short run and through wages over the medium to long run, with minimal effects on

employment.

Table 5.5: Forecast Error Variance Explained by AI Uncertainty Shock

AI Unc. S&P 500 Wage Hours Emp. Ind. Prod.

Comp. AI Uncert.

h=1 95.56 1.34 0.33 2.90 0.55 0.40

h=6 87.32 2.81 3.31 5.26 4.84 3.92

h=12 79.49 2.06 3.57 6.36 6.27 4.91

h=24 76.18 2.17 2.50 6.61 6.21 4.87

h=36 74.99 2.16 2.17 6.61 6.17 4.87

Pure AI Uncert.

h=1 62.25 10.90 2.60 24.00 0.26 1.22

h=6 60.67 6.40 14.89 16.15 0.21 0.69

h=12 55.06 5.59 23.97 14.02 0.21 0.65

h=24 52.81 7.02 27.80 13.61 0.45 0.68

h=36 52.40 8.51 28.40 13.61 0.77 0.71

Note: Table 5.5 reports the FEVD at horizons 1 to 36. Each entry indicates the percentage share of forecast error variance in
the macroeconomic variables explained by the baseline AI uncertainty shock, identified using the tail realisation of the AIU
Index within the SVAR-IV framework, and by the pure AI uncertainty shock, identified using the residual-based instrument
within the same strategy. All values are expressed as percentages.

For output, the distinction in variance shares is similarly informative. The

composite AI uncertainty shock explains roughly 5.0% of the variance in industrial

production from the 12-month horizon onward, whereas the pure AI uncertainty shock

accounts for about 1.0% at all horizons. This pattern suggests that the explanatory
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power of the composite measure for output fluctuations largely reflects its exposure to

productivity-related narratives rather than uncertainty per se. Once these narratives

are orthogonalised, the contribution of pure AI uncertainty to output variance remains

limited, particularly relative to its dominant role in shaping wage and hours worked

dynamics.

5.4. Comparison with Other Uncertainty Shocks

Evidence from the impulse responses and the FEVD establishes that the pure AI

uncertainty shock generates contractionary macroeconomic effects. The responses

are front-loaded. Equity prices and hours worked respond on impact, wages

adjust persistently, and industrial production exhibits a short-lived contraction, while

employment remains largely unaffected. These features summarise the empirical

response of the economy to AI uncertainty and provide a benchmark for comparison

with other sources of uncertainty.

Empirical Comparison. To assess whether these responses differ systematically from

those associated with conventional uncertainty shocks, I estimate a set of SVARs

in which the REU Index, EPU Index, VIX, and VXN each replace the AIU Index

as the measure of uncertainty. I employ a recursive identification scheme with the

uncertainty measure ordered first, following Bloom (2009), Jurado et al. (2015), and

Baker et al. (2016). The set of endogenous variables and the sample period are identical

to those used in Section 4.

The results, reported in Appendix L, indicate that benchmark uncertainty

shocks generate broad-based contractions across key macroeconomic indicators.

Employment, industrial production, and hours worked decline markedly, equity

prices fall sharply, and wage responses display mixed dynamics. These effects

are largely transitory, with gradual recoveries over the horizon and most variables

reverting towards baseline, consistent with the existing literature.

By contrast, the pure AI uncertainty shock, as seen in Figure 5.2, exhibits a

more concentrated transmission. While equity prices respond sharply on impact,

labour market adjustment occurs primarily through persistent wage compression and

contraction at the intensive margin, with employment remaining close to baseline

throughout the horizon. This contrast suggests that AI-related uncertainty operates

through channels that differ from those associated with broader policy, financial, or

macroeconomic uncertainty, despite sharing a common contractionary direction.
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Economic Interpretation. The distinctive response pattern suggest different

underlying process than those operating during standard uncertainty episodes.

Employment stability alongside declining hours worked and persistent wage

compression resemble the behaviour predicted when labour is treated as a quasi-fixed

factor (Oi, 1962), but with important differences.11 When firms face temporary

downturns and have incurred substantial fixed employment costs through hiring

and training, they maintain their workforce to avoid costly replacement demands

when conditions improve, reducing hours instead of employment while keeping

wages fixed. The response to AI uncertainty shares this similar employment-hours

divergence, with hours worked falling approximately 0.2% on impact while

employment holds near baseline. Two features, however, distinguish the response to

an AI uncertainty shock from the quasi-fixed factor pattern.

First, wages decline persistently rather than remaining rigid. The wage response

deepens over time and remains below baseline throughout the 36-month horizon

(Figure 5.2), a pattern not observed with conventional uncertainty shocks. One

potential explanation is that AI uncertainty weakens worker bargaining power (Leduc

and Liu, 2024). Workers typically secure higher wages when they can credibly signal

the availability of good employment alternatives. When AI developments create

uncertainty about which skills will retain market value, workers may find it difficult

to credibly evaluate their outside options. The inability to assess whether comparable

positions exist or what compensation those positions would offer reduces workers’

credible threat to leave. If workers face greater uncertainty than firms about future skill

demands, or exhibit greater risk aversion toward skill obsolescence, this asymmetry in

beliefs or preferences may lead workers to accept wage concessions in exchange for

employment stability.

Second, the nature of employment retention differs fundamentally. The standard

quasi-fixed factor response reflects firm expectations that productivity shocks are

temporary, making it optimal to retain workers to avoid costly replacement demands,

including hiring and training costs, when conditions normalise (Oi, 1962). The option

value of retaining workers thus derives from the anticipated reversal of the shock. AI

uncertainty provides no such anchor. The uncertainty persists rather than resolves,

evolving alongside technological development without converging to a known state.

11A quasi-fixed factor has employment costs that are partially variable (wages) and partially fixed
(hiring and training costs incurred per worker hired). Firms are reluctant to reduce employment of
workers with substantial fixed employment costs during temporary downturns to avoid losing their
investment and incurring costly replacement demands when conditions improve. See Oi (1962).
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Firms may retain workers not in anticipation of economic recovery, but because

organisational learning during periods of technological transition requires preserving

firm-specific human capital. Integrating AI into existing production processes requires

tacit knowledge embedded in current workers regarding operational procedures, task

interdependencies, and organisational routines. Severing employment relationships

eliminates this organisational capital before firms can identify which worker

capabilities complement or substitute for AI technologies. Firms may therefore

maintain employment levels to preserve organisational knowledge while adjusting

along the intensive margin through hours and wages.

The FEVD provides supporting evidence that wages and employment adjust

through different channels. At the 36-month horizon, pure AI uncertainty explains

28.4% of wage variance but only 0.8% of employment variance (Table 5.5). This

pronounced asymmetry suggests that wages and employment respond differently

across margins, in ways not fully captured by standard real-options frameworks,

which often suggest that uncertainty affects both wages and employment. Moreover,

the persistence of these effects, rather than the temporary contractions and recoveries

observed with conventional uncertainty shocks, is consistent with the structural

characteristics of AI-related uncertainty discussed in Section 3.

While several mechanisms may contribute to these patterns, AI-related uncertainty

is associated with a distinct macroeconomic adjustment characterised by stable

employment, declining hours, persistent wage compression, transitory output

contractions, and strong equity price responses. These findings distinguish AI-related

uncertainty from conventional uncertainty shocks and provide macroeconomic

evidence to inform future theoretical work.

5.5. Industry-Level Impulse Response

Wages. Industry-level wage responses to pure AI uncertainty shocks display

substantial heterogeneity, although most industries display contractions consistent

with the aggregate response (Figure 5.3).

Professional and Business Services, along with Leisure and Hospitality, register the

most pronounced declines, with wages falling approximately 0.2% within six months

and remaining depressed throughout the 12-month horizon. The Manufacturing

industry, on the other hand, displays a distinct two-phase pattern, with an initial

expansion of roughly 0.1% on impact, followed by a reversal of a similar magnitude by

the end of the horizon. These persistent contractions in multiple industries align with

37



the aggregate finding that pure AI uncertainty exerts sustained downward pressure on

compensation.

Figure 5.3: Response of Industry-Level Wage to AI Uncertainty Shock

Note: Figure 5.3 presents the industry-level wage impulse responses to a one standard deviation pure AI uncertainty shocks,
identified using an SVAR-IV and estimated using local projections. The industries are classified according to NAICS. The
shaded regions represent 68% confidence intervals, computed using Newey–West standard errors.

Financial Activities, however, follow a persistent, distinct pattern. Wages in this

industry increase by approximately 0.1%, peaking around the 5-month horizon before

moderating toward baseline. This positive response contrasts sharply with both the

aggregate pattern and the predominantly negative movements in other industries.

The remaining industries display more muted adjustment. Trade, Transportation,

and Utilities exhibit a slight downward tendency, while Information, Education
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and Health, and Other Services remain close to baseline throughout the horizon.

Wide confidence intervals in these sectors indicate that observed movements are not

statistically significant.

Overall, the industry-level analysis reveals substantial heterogeneity in wage

responses to pure AI uncertainty shocks that the aggregate results obscure. While

most sectors experience persistent declines, financial activities exhibit a countercyclical

response, and several industries show no statistically significant adjustment.

Hours Worked. The response of industry-level hours worked to pure AI uncertainty

shocks is heterogeneous (Figure 5.4). Most industries experience an initial contraction

followed by a recovery and, in several cases, a persistent expansion above baseline.

Leisure and Hospitality registers the largest initial contraction, with hours declining

by approximately 0.3% on impact. Hours worked then rise sharply, reaching roughly

0.2% at the 5-month horizon, and remain above baseline throughout the horizon.

Education and Health also follow a similar but more moderate pattern, with an initial

decline of less than 0.1%, a temporary rebound at the 5-month horizon, and a gradual

return toward baseline thereafter.

Manufacturing records a modest contraction on impact, followed by a gradual

increase, with hours worked expanding to approximately 0.2% and remaining

persistently above baseline. The confidence interval, however, is wide and indicates

substantial uncertainty around the point estimate. Trade, Transportation, and Utilities

follow a comparable pattern, with an initial impact decline of less than 0.1%,

subsequent recovery, and a small expansion at long horizons. By contrast, the

information industry remains close to baseline initially and then drifts upward to

around 0.2% toward the end of the horizon.

Professional and Business Services, Financial Activities, and Other Services record

minimal movements on impact, with hours worked remaining near zero and then

recording small positive responses that generally stay below 0.1%. In these industries,

confidence intervals are wide relative to the point estimates. Hence, inference about

the magnitude of the responses is imprecise.

The initial contractions observed across industries are consistent with the aggregate

impulse response for hours worked, which also displays a decline on impact.

The subsequent industry-level expansions, however, differ from the aggregate

pattern, where hours remain modestly below baseline throughout the horizon. This

discrepancy could reflect compositional and aggregation effects that obscure the

recovery in hours worked at the industry level in the aggregate series.
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Figure 5.4: Response of Industry-Level Hours to AI Uncertainty Shock

Note: Figure 5.4 presents the industry-level hours worked impulse responses to a one standard deviation pure AI
uncertainty shocks, identified using an SVAR-IV and estimated using local projections. The industries are classified
according to NAICS. The shaded regions represent 68% confidence intervals, computed using Newey–West standard
errors.

Employment. The industry-level employment responses to pure AI uncertainty

shocks broadly reflect the aggregate pattern of a modest and transitory decline, with

most industries exhibiting small adjustments that revert toward baseline within the

12-month horizon (Figure 5.5). However, notable heterogeneity emerges in both the

magnitude and persistence of contractions.

The Information industry, along with Professional and Business Services,

experiences declines of approximately 0.5% before gradually returning to baseline.

Financial Activities register a more persistent contraction of roughly 0.2%, with limited
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recovery throughout the horizon. The most pronounced response occurs in leisure and

hospitality, where employment falls approximately 2.0% on impact, although wide

confidence intervals surrounding this estimate substantially limit inferential precision.

Meanwhile, the remaining industries display negligible or statistically insignificant

movements.

Figure 5.5: Response of Industry-Level Employment to AI Uncertainty Shock

Note: Figure 5.5 presents the industry-level employment impulse responses to a one standard deviation pure AI uncertainty
shocks, identified using an SVAR-IV and estimated using local projections. The industries are classified according to NAICS.
The shaded regions represent 68% confidence intervals, computed using Newey–West standard errors.

These findings reveal that while the aggregate employment response masks

substantial cross-industry variation, certain sectors face disproportionate exposure to

labour market adjustments following pure AI uncertainty shocks. The heterogeneity
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in both magnitude and duration of employment responses suggests differential

vulnerability across industries to AI-related uncertainty.

5.6. The Role of AI Exposure and Compositional Effects

The industry-level estimates show variation that is not fully captured in the aggregate

findings. While aggregate responses to AI uncertainty shocks show predominantly

contractionary effects across labour market outcomes, the industry-level analysis

reveals substantial heterogeneity. Responses differ sharply across industries. In

particular, Financial Activities exhibits expansionary movements in wage, whereas

several other sectors experience sizeable contractions. This divergence raises two

natural questions: (1) what explains the differences in industry-level responses?, and

(2) why do aggregate effects remain contractionary despite expansionary adjustments

in some sectors?

To explore these questions, I examine the relationship between the exposure of

these industries to AI and wage responses using the AI Industry Exposure (AIIE)

Index from Felten et al. (2021), which measures the overlap between the required

occupational abilities of an industry and the current capabilities of AI. The index is

originally constructed at the 4-digit NAICS level. However, for this paper, I aggregate

it to 2-digit industries to match the labour market data used in the local projections. It

is standardised across industries with a mean of zero, where positive values indicate

that the task composition of an industry is more susceptible to AI-related changes than

the average industry, and negative values indicate less susceptibility.

Figure 5.6 plots industry-level wage responses obtained from local projection

estimates at the 6-month horizon against AI exposure, with marker sizes proportional

to average employment shares over the sample period, calculated as:

s̄i =
1
T

T

∑
t=1

(
Li,t

∑N
j=1 Lj,t

)
(5.3)

where Li,t is employment in industry i at time t and ∑N
j=1 Lj,t is total employment across

all N = 8 industries at time t, and T denotes the number of time periods in the sample.

The figure yields two complementary insights that together explain the

aggregate-industry divergence. First, there is a strong positive correlation between AI

exposure and wage responses at the 6-month horizon (ρ = 0.79,p = 0.02). Industries

with higher AI exposure tend to display more positive wage responses. Financial

42



Activities records a positive response of approximately 0.06%, whereas Manufacturing

exhibits a decline of roughly 0.11%. This relationship, however, varies across horizons.

As shown in Appendix M, there is no systematic relationship on impact (ρ = −0.12,

p = 0.78), suggesting that initial responses are driven by common uncertainty channels

affecting industries broadly. A strong positive correlation emerges at the 3-month

horizon (ρ = 0.72, p = 0.04), and strengthens at 6 months, and then weakens by the

12-month horizon (ρ = 0.32, p = 0.44). This pattern indicates that AI exposure plays

a time-varying role, becoming most salient at intermediate horizons when industries

process AI-related uncertainty, before other factors dominate at longer horizons.

Figure 5.6: Industry-Level Wage Response
to AI Uncertainty Shock by AI Exposure (h = 6)

Note: Figure 5.6 plots the relationship between industry exposure to AI (x-axis) and wage responses to a one standard
deviation AI uncertainty shock at the 6-month horizon (y-axis). AI exposure is measured using the AIIE Index from Felten
et al. (2021), aggregated to 2-digit NAICS industries. Marker sizes represent average employment shares (s̄i) over the
sample period. The dashed line shows the fitted linear relationship. Small employment shares in high-exposure sectors, e.g.,
financial activities, explain why aggregate response remains contractionary despite some industries experiencing positive
responses. See Appendix M for results at other horizons.

Second, the contribution of industries with positive responses to aggregate

outcomes depends critically on employment composition. Financial Activities

and Information, the two industries with positive responses, together account for

approximately 10.0% of total employment (i.e., 6.2% and 3.5%, respectively) as

reflected in Figure 5.6. By contrast, industries with contractionary responses represent

substantially larger employment shares. As a result, positive responses in small and
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high-exposure sectors are outweighed by modest declines in employment-intensive

industries. Aggregate responses, therefore, reflect weighted averages in which large

sectors with negative effects dominate, explaining why aggregate wage responses

remain contractionary across horizons despite pronounced sectoral heterogeneity.

The time-varying correlation between AI exposure and wage responses suggests

that industry characteristics interact with uncertainty in complex ways. High

exposure sectors may face greater uncertainty about task reallocation and skill

requirements, leading to distinct adjustment dynamics at intermediate horizons.

However, other factors such as skill composition, capital intensity, and sector-specific

cyclical patterns could also shape responses. The weakening of the exposure-response

relationship at longer horizons further indicates that AI-related uncertainty may

interact with industry characteristics primarily over short to medium horizons,

before broader macroeconomic dynamics become more influential. Decomposing

the relative importance of AI exposure versus these institutional and structural

characteristics represents a valuable direction for future research. The observed

association between responses and ex ante measures of AI exposure (Felten et al.,

2021) nevertheless suggests that the identified shock captures meaningful variation

in AI-related uncertainty rather than reflecting only conventional macroeconomic

fluctuations.

6. Conclusion
The rapid emergence of AI has intensified debate over its macroeconomic

consequences. Optimistic assessments emphasise substantial productivity gains and

stronger growth, while more cautious analyses anticipate modest improvements

accompanied by labour displacement and transitional adjustment costs. The

divergence between these views, together with the pace of AI development and

adoption, implies that uncertainty is intrinsic to the contemporary AI environment.

This paper quantifies that uncertainty by developing the AIU Index, a novel text-based

measure derived from newspaper coverage, and uses it to assess the macroeconomic

effects of AI-related uncertainty shocks.

The empirical analysis established three main findings. First, positive AI

uncertainty shocks are contractionary, but their adjustment pattern displays important

differences relative to conventional uncertainty shocks. Rather than producing broad

and transitory contractions across real activity, AI-related uncertainty is characterised
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by pronounced and front-loaded adjustments in equity markets and labour market

conditions, alongside comparatively muted and less persistent effects on employment

and aggregate output. These dynamics share some common features with established

uncertainty episodes, but display a distinct configuration that reflects the nature of

uncertainty surrounding AI.

Second, the response pattern resembles behaviour predicted by models in

which labour is treated as a quasi-fixed factor (Oi, 1962), but it departs from

standard formulations in important ways. Wages decline persistently rather than

remaining rigid, consistent with weakened worker bargaining power when AI-related

uncertainty makes outside options difficult to assess (Leduc and Liu, 2024). Firms

may therefore retain workers not in anticipation of cyclical recovery, but to preserve

investments in firm-specific training and tacit knowledge embedded in operational

procedures and organisational routines that cannot be rapidly reconstituted (Oi,

1962). A deeper distinction concerns the nature of uncertainty itself. Conventional

uncertainty tends to resolve as economic conditions become clearer, whereas

AI-related uncertainty persists as the technology continues to evolve and uncertainty

over task automation and skill relevance remains unresolved. This ongoing

uncertainty provides a natural explanation for why AI uncertainty is associated with

sustained wage and labour-input adjustments, rather than the temporary contractions

and subsequent recoveries that characterise many other uncertainty shocks.

Third, industry-level evidence reveals substantial heterogeneity beneath these

aggregate responses. Most industries experience wage declines, whereas the financial

industry displays countercyclical wage increases. Hours worked contract on impact

across industries but subsequently recover and move above baseline in several sectors,

even as the aggregate series remains slightly below baseline. This aggregate-industry

divergence stems from two complementary factors. Compositional effects matter

because industries with contractionary responses account for more than half of

employment, whereas industries with expansionary responses comprise a much

smaller share. Responses also vary with AI exposure (Felten et al., 2021), a relationship

that is strongest at intermediate horizons. These patterns establish that AI-related

uncertainty does not propagate uniformly across industries, with both employment

composition and technological exposure determining the magnitude and direction of

industry-level adjustments.

These findings have two closely related implications. For business cycle analysis,

AI uncertainty represents an emerging source of macroeconomic fluctuations with
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transmission that is not well captured by the existing uncertainty measures. Even

before any long-run productivity effects of AI adoption materialise, uncertainty

surrounding AI is associated with contractionary movements in equity markets,

labour outcomes, and real activity. From a measurement standpoint, the results

support treating AI uncertainty as a separate component within the broader class

of uncertainty shocks, rather than subsuming it within general economic policy or

financial uncertainty. This distinction helps isolate the economic effects of AI-specific

uncertainty, clarifying how it shapes macroeconomic outcomes independently of other

sources of volatility.
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Appendix A

Computation of the AI Uncertainty (AIU) Index

The AIU Index is constructed according to the following steps described below:

1. ARTICLE SELECTION AND FILTERING PROCEDURE:

The construction of the AIU Index begins by identifying a corpus of news articles

that consistently report on the economic dimensions of AI. Articles are sourced

from the Factiva database, a comprehensive repository of global news content

managed by Dow Jones. The selection process is designed to ensure both topical

relevance and consistency in editorial standards. Moreover, it involves three (3)

stages: (1) filtering via subject classifications, (2) exclusion of non-substantive

content types, and (3) restriction to English-language articles. Each of these steps

is detailed below:

Factiva-Based Thematic Filtering: The first stage involves retrieving articles

tagged with Factiva subject codes related to AI. Specifically, the search is

restricted to the following categories: (1) artificial intelligence, (2) machine

learning, (3) risk topics - artificial intelligence, (4) automation, and (5)

generative AI. These subject codes are part of Factiva’s internal classification

system, which groups articles based on their substantive relevance to the

assigned topic.

Content-Type Exclusions: To ensure that the index captures substantive reporting

on AI with potential economic relevance, I exclude articles classified under

content types that generally lack detailed analysis or original reporting.

Following the exclusion criteria in Abiad and Qureshi (2023), who also

used Factiva to construct the Oil Price Uncertainty (OPU) Index, the

corpus excludes the following categories: (1) sports, (2) editorials, (3)

abstracts, (4) advertorials or sponsored content, (5) advice, (6) analyses,

(7) audio-visual links, (8) blogs, (9) event calendars, (10) chronologies,

(11) columns, (12) commentaries or opinions, (13) corporate digests, (14)

country profiles, (15) transcripts, (16) tables, (17) surveys or polls,
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(18) statistics, (19) reviews, (20) rankings, (21) prospectuses, (22) press

releases, (23) personal announcements, (24) people profiles, (25) front-page

headlines, (26) obituaries, (27) letters, (28) interviews, (29) images, and (30)

headline-only listings. These exclusions aim to enhance the signal-to-noise

ratio by focusing the analysis on articles that are likely to contain original

reporting or analytical discussion relevant to the AIU Index.

Language and Source Restrictions: The dataset is restricted to English-language

articles published in newspapers classified under Factiva’s Top Newspaper

source group. Restricting coverage to English ensures consistency in keyword

matching and avoids biases introduced by translation or multilingual reporting.

Limiting the sample to leading newspapers helps guarantee both archival

completeness and editorial reliability, while also aligning with established

practice in the construction of text-based indices such as the EPU Index (Baker

et al., 2016), GPR Index (Caldara and Iacoviello, 2022), and OPU Index (Abiad

and Qureshi, 2023). The selected outlets are as follows:

Table A: Factiva News Outlet

Country: News Outlet:

United States The Boston Globe, The Baltimore Sun, Chicago Tribune,
Investor’s Business Daily, The New York Times,
New York Post, Pittsburgh Post-Gazette, USA Today,
The Wall Street Journal, The Washington Post

United Kingdom Daily Mail, The Daily Telegraph, Financial Times,
The Guardian, The Independent, Reuters News,
The Times

Euro Area Agence France Presse, DW News, Euronews

2. KEYWORD FILTERING:

The objective of the keyword filtering process is to isolate news articles that

capture economic uncertainty associated with developments in AI. Following

the methodology of Baker et al. (2016) in constructing the EPU Index, I apply

a structured Boolean keyword filter designed to identify articles that meet three

inclusion criteria. In particular, an article must contain at least one term from

each of the following categories:
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AI-related terms → This includes keywords such as: "artificial

intelligence", "artificial general intelligence", "deep learning",

"generative ai", "large language model", "machine learning", "natural

language processing", "neural network", "alphabet", "alphago", "amazon",

"amd", "anthropic", "apple", "chatbot", "chatgpt", "copilot", "claude",

"deepmind", "deepseek", "gemini", "google", "grok", "llama", "meta",

"microsoft", "nvidia", "openai", "oracle", "perplexity", "softbank",

"sora".

Economy-related terms → This includes keywords such as: "bank*",

"business*", "econom*", "education*", "employ*", "financ*", "firm*",

"fiscal", "gdp", "growth*", "industr*", "invest*", "job*", "labo*",

"layoff", "macroeconom*", "manufactur*", "market**", "microeconom*",

"monetar**", "output", "productivit*", "recession*", "retail*", "sector**",

"service*", "suppl*", "supply chain*", "trad*", "unemploy*", "wage*",

"work*", "workforc*".

Uncertainty-related terms → This includes keywords such as: "uncert*",

"ambigu*", "anxi*", "concern*", "dilemma", "doubt*", "fear*", "instabil*",

"risk*", "unclear", "unknown*", "unpredict*", "volat*", "worry".

The use of wildcard-based stemming, such as "uncert*", allows the search

to capture multiple grammatical forms and journalistic variations while

preserving thematic relevance. For example, the stem "uncert*" includes both

“uncertainty” and “uncertain”.

Further, an article is included in the sample only if it contains at least one term

from each of the three categories. This Boolean filtering structure applies an

"AND" condition across the main categories and an "OR" condition within each

category. It ensures that all included articles explicitly discuss AI within an

economic context and under conditions of uncertainty. Articles that mention AI

without economic or uncertainty context, or discuss economic topics unrelated

to AI, are excluded to maintain the conceptual coherence of the index.

3. AGGREGATION PROCEDURE:

Similar to the keyword filtering process, the aggregation procedure used to

construct the AIU Index follows the methodology of Baker et al. (2016) for the
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EPU Index. It employs a systematic procedure involving article-level filtering,

within-source normalisation, and cross-source aggregation. In particular, the

procedure consists of three (3) steps: (1) volume normalisation, (2) variance

standardisation, (3) aggregation, and (4) renormalisation to index levels.

Volume Normalisation: For each news outlet i and month t, I calculate the

proportion of articles that contain at least one keyword from each of the three

categories, i.e. AI-related terms, economy-related terms, and uncertainty-related

terms. This is given by:

θit =
αit

τit
(A.1)

where: θit is the share of qualifying articles for outlet i in month t, αit is the

number of articles that contain at least one term from each of the three keyword

categories, and τit is the total number of articles published by outlet i in month t.

This normalisation step adjusts for differences in publication frequency by using

the proportion of relevant articles, rather than absolute counts.

Variance Standardisation: To adjust for outlet-specific reporting tendencies and

heterogeneity in coverage intensity, each outlet series is scaled by its own

standard deviation, σi, computed over a pre-specified baseline window Tbase:

Yit =
θit

σi
, σi = stdev

(
θit, t ∈ Tbase

)
. (A.2)

where σi is the standard deviation of θit over the baseline period Tbase. This

procedure standardises the variance of each outlet’s time series while leaving

its mean unchanged. The purpose is not to re-centre the distribution but to

ensure comparability across outlets by placing them on a common variance scale.

Without this adjustment, outlets with more volatile reporting behaviour could

dominate the aggregate index, introducing bias unrelated to underlying trends

in AI-related uncertainty. By scaling relative to outlet-specific variability, the

procedure balances contributions across sources and mitigates distortions from

editorial styles or uneven publication intensity.

Aggregation: The variance-standardised series Yit are then averaged across the
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set of outlets with observations available in month t:

Zt =
1

Nt
∑
i∈St

Yit. (A.3)

where St is the set of outlets with an observation in month t, and Nt = |St| is

the number of such outlets. The notation |St| denotes the cardinality (number of

elements) of the set St, not an absolute value. Averaging across the available

outlets produces a single aggregate series that reflects broad-based patterns

rather than the idiosyncratic behaviour of individual sources. This approach

naturally accommodates an unbalanced panel (Nt can vary over time) and

smooths outlet-specific fluctuations, thereby enhancing the robustness of the AIU

Index.

Renormalisation to Index Levels: Finally, the aggregated series Zt is

renormalised relative to its mean value over the baseline period:

AIUt = 100 × Zt

Z̄base
, (A.4)

where AIUt denotes the value of the AIU Index in month t, and Z̄base is the mean

of Zt during the baseline period.

This final step expresses the index in percentage terms, with the baseline

mean normalised to 100. The four-step procedure ensures that no single

outlet disproportionately influences the index and mitigates biases arising from

differences in publication frequency or archival depth.

The baseline period is set from M1:2016 to M12:2022, representing a phase of

relatively stable attention preceding the sharp increase in interest in generative

AI models from 2023 onwards. Standardising each outlet’s time series against

this benchmark improves comparability across sources with differing editorial

priorities and publication volumes
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Appendix B

Figure B: AIU Index per News Outlet (3-Month Moving Average)

Note: Figure B plots the AIU Index per news outlet from M1:2016 to M4:2025. The index is normalised such that its mean
equals 100. It reflects the standardised share of newspaper articles that simultaneously reference AI, economic conditions,
and uncertainty.
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Appendix C

Table C.1.: Selected AI-Related Events (1/2)

Year: Month: Event:

2016 March AlphaGo defeated world Go champion Lee Se-dol
2017 July China Next Generation AI Development Plan
2018 June OpenAI introduces GPT-1
2019 February Donald Trump signs US Executive Order titled American AI

Initiative
February OpenAI releases GPT-2
April Google shuts down its external AI Ethics Council (ATEAC)
July Microsoft invests USD 1 billion in OpenAI

2020 January US Government limits exports of AI software
May OpenAI unveils GPT-3

2022 November OpenAI launches ChatGPT
2023 January Microsoft invests USD 10 billion in OpenAI

February Google announces and releases AI chatbot Bard
February Microsoft launches AI-powered Bing and Edge
March OpenAI releases GPT-4
April Italy temporarily bans ChatGPT
April UK invests in a supercomputer as part of AI strategy
May Sam Altman testifies before the US Senate
June European Parliament approves first draft of the EU AI Act
July US Federal Trade Commission (FTC) investigates OpenAI
October Joe Biden signs US Executive Order 14110 titled Safe, Secure,

and Trustworthy Development and Use of AI
November UK AI Safety Summit held at Bletchley Park
November OpenAI Dev Day 2023. Launches GPT-4 Turbo, etc.
November OpenAI reinstates CEO Sam Altman

2024 January OpenAI recruits team to manage AI risks during US election
February OpenAI unveils Sora
March Microsoft hires DeepMind co-founder Mustafa Suleyman
April Meta introduces Llama 3
May OpenAI releases GPT-4o
July CrowdStrike Global IT Outage
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Appendix C

Table C.2.: Selected AI-Related Events (2/2)

Year: Month: Event:

2024 July OpenAI Data Breach
August US election officials warned that Grok was spreading election

misinformation
October Nvidia delayed the initial shipments of Blackwell

2025 January DeepSeek releases R1 model
February OpenAI unveils Deep Research powered by o3
February Paris AI Summit
April US Gov’t. controls the exports of Nvidia H20 chips to China
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Appendix D

Figure D: Time Series of Variables

Note: Figure D plots the variables used in the analysis. The AIU Index is expressed in levels, while all other variables are
expressed in log-levels. The data cover the period from M1:2016 to M4:2025. All series, except the AIU Index, are sourced
from the US BLS and FRED unless otherwise noted.
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Appendix E

Internal Instrument Approach

Methodology. SVAR-IV relies on an invertibility condition that requires the structural

shock to be recoverable from current and past observables. Formally, invertibility

implies that the structural shock can be expressed as a function of current and lagged

VAR residuals. When relevant information is omitted from the VAR, this condition

may fail, leading to inconsistent impulse responses (Stock and Watson, 2018).

To address potential invertibility violations, I also implement an internal

instrument approach as in Plagborg-Møller and Wolf (2021) and Känzig (2023).

This strategy augments the VAR with the instrument itself, thereby expanding

the information set available for identification and avoiding the need to impose

invertibility. The cost of this is a stronger exogeneity requirement. In particular, the

instrument must be orthogonal not only to contemporaneous structural shocks, but

also to all leads and lags of those shocks:

E[zt, ε
j
t+k] = 0 for all k ̸= 0, (F.1)

where k indexes time leads and lags. This restriction is stronger than

the contemporaneous exogeneity condition imposed in the external instrument

framework, but it allows identification even when the structural shock is

non-invertible.

Under this assumption, identification is achieved by augmenting the VAR

with the instrument ordered first and recovering impulse responses from the

first orthogonalised innovation. Specifically, I obtain the impulse response vector

associated with the AI uncertainty shock as:

s̄1 =
[chol(Σ̄)]·,1
chol(Σ̄)1,1

, (F.2)

where Σ̄ denotes the variance-covariance matrix of residuals from the augmented

VAR. By construction, this procedure delivers consistent estimates of relative impulse

responses regardless of whether the shock is invertible, or the instrument is measured

with error (Plagborg-Møller and Wolf, 2021).
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Results. Figure E reports the impulse responses obtained from the external SVAR-IV

used in the main analysis and from the internal SVAR-IV specification. The responses

are very similar, both qualitatively and quantitatively. Sign patterns are consistent

across all variables, and the magnitudes and dynamics are closely aligned. Overall,

however, these findings suggest that the results are robust to relaxing the assumption

of invertibility.

Figure E: Impulse Responses to AI Uncertainty Shock

Note: Figure E presents the impulse responses to a one standard deviation AI uncertainty shocks, identified using an
external (solid lines) and internal (dashed lines) SVAR-IV. Shaded areas denote 68% confidence bands based on 1,000 wild
bootstrap replications.
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Appendix F

Figure F: AIU Index Upper Tail Realisations

Note: Figure F plots the tail realisations (0.95, 0.90, 0.75, and 0.50 quantiles) of the AIU Index from M1:2016 to M4:2025.
The AIU Index reflects the standardised share of news articles that simultaneously reference AI, economic conditions, and
uncertainty.
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Appendix G

Figure G: AIE News Index (3-Month Moving Average)

Note: Figure G plots the AIE News Index from M1:2016 to M4:2025. For presentation purposes, a three-month
moving average is applied. The AIE News Index follows the same construction steps as the AIU Index but excludes
uncertainty-related keywords.
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Appendix H

Table H: OLS Regression of AIU Index on AIE News Index

AIU

AIE 0.93∗∗∗

(0.01)

Constant 4.68

(7.66)

Observations 112

R2 0.99

Note: Table H reports OLS regression results of the AIU Index on AIE News Index. Robust standard errors in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. The sample covers M1:2016 to M4:2025, reflecting the availability of news articles used in
constructing the AIU and AIE News indices.
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Appendix I

Robustness to Outlier Exclusion

This appendix evaluates the sensitivity of the results to extreme observations in the

AIU Index. Two econometric issues motivate the analysis:

1. IMPULSE RESPONSE FUNCTIONS:

The impulse response functions (IRFs) are obtained via ordinary least squares

(OLS) estimation of the vector autoregression (VAR) model, and a few extreme

observations may function as influential observations with high leverage on the

estimated coefficients. If this occurs, the dynamic responses reported in the main

analysis could be driven disproportionately by these influential points rather

than by systematic features of AI-related uncertainty.

2. CONFIDENCE INTERVAL:

The wild bootstrap used to construct confidence intervals is valid under

the assumption of heteroskedasticity, and its consistency requires serially

uncorrelated residuals and the absence of structural breaks in the residual

distribution. The most pronounced forecast errors in the AI uncertainty equation

may signal changes in the variance or tail behaviour of the residuals. If

the residual distribution changes during periods of extreme uncertainty, the

bootstrap may not accurately approximate the sampling distribution of the

impulse responses, leading to confidence intervals with incorrect coverage.

Methodology. To evaluate both concerns, I re-estimate the structural vector

autoregression with instrumental variable (SVAR-IV) after excluding observations

where the standardised residual in the AIU equation exceeds |z| > 3 or |z| > 2. I then

compare the impulse responses and confidence intervals with those obtained from the

full sample.

Following the estimation of SVAR on the full sample, I obtain the reduced-form

residuals for each equation:

ui,t = yi,t − ŷi,t, i = 1, . . . , k, t = p + 1, . . . T, (H.1)
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where yi,t denotes the observed value of variable i at time t and ŷi,t is the fitted value.

To identify observations with unusually large forecast errors, I standardise the

residuals by their sample standard deviation:

zi,t =
ui,t

σ̂i
, σ̂i =

√√√√ 1
T − p

T

∑
t=p+1

u2
i,t (H.2)

where σ̂i is the sample standard deviation of the residual from equation i, computed

over T − p observations after accounting for p lags. By construction in OLS estimation,

VAR residuals have mean zero, which implies that σ̂i reduces to the root mean squared

error without requiring a mean adjustment. The standardised residual zi,t therefore

expresses each forecast error in units of equation-specific standard deviations. Under

approximate normality and constant variance, these standardised residuals follow a

standard normal distribution.

Table I: AIU Equation VAR Residuals Exceeding Outlier Thresholds

Category: Observation No.: Date: Z-score:

|z| > 2 89 2023-05 4.58

94 2023-10 2.40

97 2024-01 2.79

98 2024-02 −3.39

108 2024-12 2.07

109 2025-01 4.82

111 2025-03 −2.71

|z| > 3 89 2023-05 4.58

98 2024-02 −3.39

109 2025-01 4.82

Total |z| > 2 observations: 6.3% of sample

Total |z| > 3 observations: 2.8% of sample

Note: Table H.1 reports the standardised residuals from the VAR(p) AI uncertainty equation exceeding normality
thresholds. Standardisation: zt = ût/σ̂ where σ̂ is the residual standard deviation.

Observations with |z| > 3 correspond to forecast errors more than three standard

deviations from zero and are treated as extreme outliers. A second threshold excludes

observations with |z| > 2, identifying moderately large forecast errors and serving as
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a conservative robustness check. Table I reports the number of excluded observations

under each rule.

Results. Figure I displays the impulse responses across three specifications: (1) full

sample (red), (2) excluding |z| > 3 observations (blue), and (3) excluding |z| > 2

observations (green).

Figure I: Impulse Responses to AI Uncertainty Shock (Excl. |z| > 3 and |z| > 2)

Note: Figure I displays the impulse responses to a one standard deviation shock in AI uncertainty across three specifications
via SVAR-IV using the residual-based instrument discussed in Section 4: (1) full sample (red line), (2) excluding observations
with standardised residuals |z| > 3 in the AIU equation (blue dashed line), and (3) excluding observations with |z| > 2
(green dotted line). Shaded areas denote 68% confidence bands based on 1,000 wild bootstrap replications.

The impact response in the AI uncertainty equation decreases as larger residuals are

removed, which reflects that excluding the upper tail realisations reduces the estimated

size of the underlying innovation. However, the responses of each macroeconomic

variables remains similar across specifications. The effects diminish over comparable
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horizons, and the overall pattern and persistence of the responses show limited

variation. This stability indicates that the propagation of AI-related uncertainty is not

driven by a small number of high-leverage observations.

The analysis shows that neither the economic results nor the statistical inference is

driven by a small set of extreme observations in the AIU Index. The macroeconomic

responses remain consistent across specifications, and the wild bootstrap continues

to produce confidence intervals that align closely with those from the full sample.

These findings indicate that the SVAR-IV estimates reflect systematic macroeconomic

responses to AI-related uncertainty rather than the influence of isolated high-leverage

residuals.
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Appendix J

Table J: Data Description – Local Projections

Variable: Description: Transform:

AI Uncertainty AI Uncertainty Shock
(identified from the SVAR-IV)

N/A

Wage Average Hourly Earnings of All Employees Log Level

Hours Average Weekly Hours of All Employees Log Level

Employment Total Employment, All Employees Log Level

Note: Table J reports the monthly variables used in the local projection estimation, together with their descriptions and
transformations. All variables, except for AI Uncertainty, are obtained from the US Bureau of Labour Statistics (BLS).
Service-providing industries include: (1) Trade, Transportation, and Utilities, (2) Information, (3) Financial Activities, (4)
Professional and Business Services, (5) Education and Health Services, (6) Leisure and Hospitality, and (7) Other Services
(excluding Public Administration). Goods-producing industries comprise only Manufacturing. Industry classifications
follow NAICS. Natural Resources and Mining, as well as Construction, are excluded from the analysis since their dynamics
are heavily influenced by external disturbances, such as oil price and monetary policy shocks, which could confound the
estimated effects of AI-related uncertainty.
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Appendix K

Table K: Test on the Strength of the Instrument (Tail Realisations)

AI Unc. S&P 500 Wage Hours Emp. Ind. Prod.

0.95 Quantile

β 753.04∗∗∗ 0.01 0.00 -0.00 -0.00 -0.00

Std. Errors (94.38) (0.02) (0.00) (0.00) (0.01) (0.01)

t-Statistics 7.98 0.34 0.17 -0.98 -0.01 -0.13

F-Statistics 63.66 0.11 0.03 0.96 0.00 0.02

R2 0.37 0.00 0.00 0.01 0.00 0.00

0.90 Quantile

β 421.10∗∗∗ -0.00 0.00 -0.00 -0.00 -0.00

Std. Errors (71.91) (0.01) (0.00) (0.00) (0.00) (0.01)

t-Statistics 5.86 -0.26 0.15 -1.03 -0.25 -0.63

F-Statistics 34.29 0.07 0.02 1.07 0.06 0.40

R2 0.24 0.00 0.00 0.01 0.00 0.00

0.75 Quantile

β 98.88∗ 0.00 -0.00 -0.00 0.00 0.00

Std. Errors (55.93) (0.01) (0.00) (0.00) (0.00) (0.00)

t-Statistics 1.77 0.41 -0.63 -1.00 0.71 0.50

F-Statistics 3.13 0.17 0.40 0.99 0.50 0.25

R2 0.03 0.00 0.00 0.01 0.00 0.00

Note: Table K reports the regression results from ûit = α + βiwAI
t + ηit, where ûit denotes the reduced-form residual from

the VAR equation corresponding to each variable. The purpose is to test the strength of the proposed proxy wAI
t , constructed

from the upper tail of the AIU Index. Robust standard errors are reported in parentheses. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Appendix L

Figure L.1: Impulse Responses to Economic Policy Uncertainty Shock
(Recursive Identification)

Note: Figure L.1 displays the impulse responses to a one standard deviation shock in economic policy uncertainty estimated
with an SVAR under recursive identification. The light and dark shaded areas denote 68% and 90% confidence bands based
on 1,000 wild bootstrap replications.
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Appendix L

Figure L.2: Impulse Responses to Real Economic Uncertainty Shock
(Recursive Identification)

Note: Figure L.2 displays the impulse responses to a one standard deviation shock in real economic uncertainty estimated
with an SVAR under recursive identification. The light and dark shaded areas denote 68% and 90% confidence bands based
on 1,000 wild bootstrap replications.
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Appendix L

Figure L.3: Impulse Responses to Uncertainty Shock (VIX)
(Recursive Identification)

Note: Figure L.3 displays the impulse responses to a one standard deviation shock in uncertainty (measured using VIX)
estimated with an SVAR under recursive identification. The light and dark shaded areas denote 68% and 90% confidence
bands based on 1,000 wild bootstrap replications.

73



Appendix L

Figure L.4: Impulse Responses to Uncertainty Shock (VIX)
(Recursive Identification)

Note: Figure L.4 displays the impulse responses to a one standard deviation shock in uncertainty (measured using VXN)
estimated with an SVAR under recursive identification. The light and dark shaded areas denote 68% and 90% confidence
bands based on 1,000 wild bootstrap replications.
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Appendix M

Figure M.1: Industry-Level Wage Response
to AI Uncertainty Shock by AI Exposure (h = 0)

Note: Figure M.1 plots the relationship between industry exposure to AI (x-axis) and wage responses to a one standard
deviation AI uncertainty shock at the 0-month horizon (y-axis). AI exposure is measured using the AIIE Index from Felten
et al. (2021), aggregated to 2-digit NAICS industries. Marker sizes represent average employment shares (s̄i) over the
sample period. The dashed line shows the fitted linear relationship.
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Appendix M

Figure M.2: Industry-Level Wage Response
to AI Uncertainty Shock by AI Exposure (h = 3)

Note: Figure M.2 plots the relationship between industry exposure to AI (x-axis) and wage responses to a one standard
deviation AI uncertainty shock at the 3-month horizon (y-axis). AI exposure is measured using the AIIE Index from Felten
et al. (2021), aggregated to 2-digit NAICS industries. Marker sizes represent average employment shares (s̄i) over the
sample period. The dashed line shows the fitted linear relationship.
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Appendix M

Figure M.3: Industry-Level Wage Response
to AI Uncertainty Shock by AI Exposure (h = 12)

Note: Figure M.3 plots the relationship between industry exposure to AI (x-axis) and wage responses to a one standard
deviation AI uncertainty shock at the 12-month horizon (y-axis). AI exposure is measured using the AIIE Index from
Felten et al. (2021), aggregated to 2-digit NAICS industries. Marker sizes represent average employment shares (s̄i) over
the sample period. The dashed line shows the fitted linear relationship.
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Appendix N

Figure N.1: Impulse Responses to AI Uncertainty Shock
Recursive Identification (Different Lag Specification)

Note: Figure N.1 displays the impulse responses to a one standard deviation shock in AI uncertainty estimated with an
SVAR under recursive identification with different lag specifications. Shaded areas denote 68% confidence bands based on
1,000 wild bootstrap replications.
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Appendix N

Figure N.2: Impulse Responses to AI Uncertainty Shock
SVAR-IV (Different Lag Specification)

Note: Figure N.2 displays the impulse responses to a one standard deviation shock in AI uncertainty estimated using
SVAR-IV with different lag specifications. The instrument is the residual-based measure of AI uncertainty from Equation
(4.9). Shaded areas denote 68% confidence bands based on 1,000 wild bootstrap replications.
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Appendix O

Figure O: Correlation of µunc
t with different Uncertainty Measures

Note: Figure O reports the Pearson correlation coefficients between residual-based instrument µunc
t and benchmark

uncertainty measures. The benchmarks are the EPU Index, the REU, and the VIX. The sample spans from M1:2016
to M4:2025, reflecting the availability of news articles used in constructing the AIU Index and benchmark uncertainty
measures.
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Appendix P

Figure P.1: Response of Industry-Level Wage to AI Uncertainty Shock
(Different Lag Specifications)

Note: Figure P.1 presents the industry-level wage impulse responses to a one standard deviation ”pure” AI uncertainty
shocks estimated via local projections with different lag specifications. The industries are classified according to NAICS.
The shaded regions represent 68% confidence intervals, computed using Newey–West standard errors.
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Appendix P

Figure P.2: Response of Industry-Level Hours Worked to AI Uncertainty Shock
(Different Lag Specifications)

Note: Figure P.2 presents the industry-level hours worked impulse responses to a one standard deviation ”pure” AI
uncertainty shocks estimated via local projections with different lag specifications. The industries are classified according
to NAICS. The shaded regions represent 68% confidence intervals, computed using Newey–West standard errors.
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Appendix P

Figure P.3: Response of Industry-Level Employment to BAI Uncertainty Shock
(Different Lag Specifications)

Note: Figure P.3 presents the industry-level employment impulse responses to a one standard deviation ”pure” AI
uncertainty shocks estimated via local projections with different lag specifications. The industries are classified according
to NAICS. The shaded regions represent 68% confidence intervals, computed using Newey–West standard errors.
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